JP2000265233A - Hydrogen storage alloy - Google Patents
Hydrogen storage alloyInfo
- Publication number
- JP2000265233A JP2000265233A JP11069864A JP6986499A JP2000265233A JP 2000265233 A JP2000265233 A JP 2000265233A JP 11069864 A JP11069864 A JP 11069864A JP 6986499 A JP6986499 A JP 6986499A JP 2000265233 A JP2000265233 A JP 2000265233A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- hydrogen
- matrix
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水素吸蔵合金、特に
Mg系水素吸蔵合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy, particularly to a Mg-based hydrogen storage alloy.
【0002】[0002]
【従来の技術】従来、この種の水素吸蔵合金としてはM
g−Ni系合金よりなるものが知られている(例えば、
特公平7−84636号公報参照)。2. Description of the Related Art Conventionally, as a hydrogen storage alloy of this kind, M
What consists of a g-Ni alloy is known (for example,
See Japanese Patent Publication No. 7-84636.
【0003】[0003]
【発明が解決しようとする課題】しかしながら従来合金
は、その溶製後活性化処理を必要とするため、それに応
じて工数およびコストの増加を来たし、また活性化処理
を行ったにも拘らず、水素化速度および脱水素化速度が
未だ遅い、という問題があった。However, conventional alloys require activation after smelting, which leads to an increase in man-hours and costs, and despite the activation, There was a problem that the hydrogenation rate and the dehydrogenation rate were still slow.
【0004】[0004]
【課題を解決するための手段】本発明は、活性化処理を
行わなくても、速い水素化速度および脱水素化速度を有
する前記水素吸蔵合金を提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a hydrogen storage alloy having a high hydrogenation rate and a high dehydrogenation rate without performing an activation treatment.
【0005】前記目的を達成するため本発明によれば、
複数のMg結晶粒の集合体よりなり、且つそれらMg結
晶粒の平均粒径DがD≦500nmであるマトリックス
と、そのマトリックスに分散し、且つ粒径d1 が50nm
≦d1 ≦500nmである複数の金属間化合物微粒子と、
複数の前記Mg結晶粒内に分散し、且つ粒径d2 が5nm
≦d2 ≦20nmである複数の超微粒子とより構成されて
いる水素吸蔵合金が提供される。[0005] To achieve the above object, according to the present invention,
A matrix comprising an aggregate of a plurality of Mg crystal grains and having an average particle size D of D ≦ 500 nm, and a matrix dispersed in the matrix and having a particle size d 1 of 50 nm
A plurality of fine particles of an intermetallic compound satisfying ≦ d 1 ≦ 500 nm,
Dispersed in the plurality of Mg crystal grains and having a particle size d 2 of 5 nm
There is provided a hydrogen storage alloy comprising a plurality of ultrafine particles satisfying ≦ d 2 ≦ 20 nm.
【0006】水素吸蔵合金における水素吸蔵過程は、以
下に述べるような第1および第2段階に大別することが
できる。 第1段階:水素吸蔵合金表面への水素分子の吸着および
その水素分子の水素原子への解離、 第2段階:水素原子の水素吸蔵合金内部への拡散。[0006] The hydrogen storage process in a hydrogen storage alloy can be roughly divided into the following first and second stages. First stage: adsorption of hydrogen molecules on the surface of the hydrogen storage alloy and dissociation of the hydrogen molecules into hydrogen atoms, second stage: diffusion of hydrogen atoms into the hydrogen storage alloy.
【0007】水素吸蔵合金における3つの構成要件のう
ち、金属間化合物微粒子はマトリックスを活性化して、
第1段階の促進に寄与する。またマトリックスおよびそ
の結晶粒に含まれた超微粒子は、第1段階の後段、つま
り水素分子の水素原子への解離および第2段階の促進に
寄与する。[0007] Among the three constituent requirements of the hydrogen storage alloy, the intermetallic compound fine particles activate the matrix,
Contribute to the promotion of the first stage. The ultrafine particles contained in the matrix and its crystal grains contribute to the latter stage of the first stage, that is, the dissociation of hydrogen molecules into hydrogen atoms and the promotion of the second stage.
【0008】ただし、金属間化合物微粒子の粒径d1 が
前記範囲を逸脱すると、マトリックスの活性化および第
1段階促進の効果が得られない。またマトリックスの平
均粒径Dおよび超微粒子の粒径d2 が前記範囲を逸脱す
ると、水素分子の水素原子への解離および第2段階促進
の効果が得られない。However, if the particle diameter d 1 of the intermetallic compound fine particles is outside the above range, the effect of activating the matrix and promoting the first stage cannot be obtained. Also the average particle diameter D and the ultrafine particle size d 2 of the matrix deviates from the above range, no effect of dissociation and the second stage acceleration of the hydrogen atoms of the hydrogen molecules is obtained.
【0009】一方、水素吸蔵合金における水素放出過程
は、以下に述べるような第1および第2段階に大別する
ことができる。 第1段階:拡散による水素原子の水素吸蔵合金表面への
集合、 第2段階:水素原子の結合による水素分子の生成および
水素吸蔵合金表面からの水素分子の離脱。On the other hand, the hydrogen release process in the hydrogen storage alloy can be roughly divided into the following first and second stages. First step: assembly of hydrogen atoms on the surface of the hydrogen storage alloy by diffusion, second step: generation of hydrogen molecules by bonding of hydrogen atoms and detachment of hydrogen molecules from the surface of the hydrogen storage alloy.
【0010】水素吸蔵合金における3つの構成要件のう
ちマトリックスおよびその結晶粒に含まれた超微粒子
は、第1段階の促進、および第2段階の前段、つまり水
素原子の結合による水素分子の生成に寄与する。また金
属間化合物微粒子はマトリックスを活性化して、第2段
階の促進に寄与する。Of the three constituent elements of the hydrogen storage alloy, the ultrafine particles contained in the matrix and its crystal grains are used for promoting the first stage and for generating hydrogen molecules by bonding hydrogen atoms before the second stage. Contribute. The intermetallic compound fine particles activate the matrix and contribute to the promotion of the second stage.
【0011】ただし、マトリックスの平均結晶粒径Dお
よび超微粒子の粒径d2 が前記範囲を逸脱すると、第1
段階促進および水素原子の結合による水素分子の生成の
効果が得られない。また金属間化合物微粒子の粒径d1
が前記範囲を逸脱すると、マトリックスの活性化および
第2段階促進の効果が得られない。However, if the average crystal grain size D of the matrix and the grain size d 2 of the ultrafine particles deviate from the above ranges, the first
The effect of the generation of hydrogen molecules by the step promotion and the bonding of hydrogen atoms cannot be obtained. Also, the particle diameter d 1 of the intermetallic compound fine particles
Is out of the above range, the effect of activating the matrix and promoting the second stage cannot be obtained.
【0012】[0012]
【発明の実施の形態】水素吸蔵合金は、図1に示すよう
に、複数のMg結晶粒の集合体よりなり、且つそれらM
g結晶粒の平均粒径DがD≦500nmであるマトリック
スと、そのマトリックスに略均一に分散し、且つ粒径d
1 が50nm≦d1 ≦500nmである複数の金属間化合物
微粒子と、複数のMg結晶粒内に分散し、且つ粒径d2
が5nm≦d2 ≦20nmである複数の超微粒子とより構成
されている。なお、粒径とは、顕微鏡組織図(または金
属組織を示す顕微鏡写真)においてMg結晶粒等の最長
部分の長さを言う。DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a hydrogen storage alloy comprises an aggregate of a plurality of Mg crystal grains.
a matrix in which the average particle size D of the g crystal grains is D ≦ 500 nm;
1 and a plurality of intermetallic compound fine particles is 50 nm ≦ d 1 ≦ 500 nm, dispersed in a plurality of Mg crystal grains, and the particle diameter d 2
Is composed of a plurality of ultrafine particles satisfying 5 nm ≦ d 2 ≦ 20 nm. The particle size refers to the length of the longest part such as Mg crystal grains in a microstructure diagram (or a micrograph showing a metal structure).
【0013】例えば、水素吸蔵合金はMg−Ni系合金
より構成され、この合金において、前記金属間化合物微
粒子はMg2 Ni微粒子であり、また超微粒子はMg−
Ni系超微粒子である。この場合、Mg含有量は66.
7原子%≦Mg≦99原子%に、またNi含有量は1原
子%≦Ni≦33.3原子%にそれぞれ設定される。N
i含有量がNi<1原子%ではMg2 Ni微粒子および
Mg−Ni系超微粒子を形成することができず、一方、
Ni>33.3原子%ではマトリックス全体がMg2 N
iより構成されるため、前記のような顕微鏡組織を得る
ことができない。4wt%以上の高水素吸蔵量を実現す
るためには、Niの上限値は27原子%に設定される。For example, the hydrogen storage alloy is composed of a Mg—Ni alloy, in which the intermetallic compound fine particles are Mg 2 Ni fine particles and the ultrafine particles are Mg—Ni fine particles.
Ni-based ultrafine particles. In this case, the Mg content is 66.
7 atomic% ≦ Mg ≦ 99 atomic%, and the Ni content is set to 1 atomic% ≦ Ni ≦ 33.3 atomic%. N
If the i content is Ni <1 atomic%, Mg 2 Ni fine particles and Mg—Ni-based ultrafine particles cannot be formed.
At Ni> 33.3 atomic%, the entire matrix is Mg 2 N
i, it is not possible to obtain the above-mentioned microscopic structure. In order to realize a high hydrogen storage amount of 4 wt% or more, the upper limit of Ni is set to 27 atomic%.
【0014】以下、具体例について説明する。 (A) メカニカルアロイングによる水素吸蔵合金の製
造 純度がそれぞれ99.9%であり、且つ粒径がそれぞれ
100メッシュよりも小であるMg粉末およびNi粉末
を、水素吸蔵合金の組成がMg95Ni5 (数値の単位は
原子%)となるように秤量して、合計3gの混合粉末を
得た。この混合粉末を遊星型ボールミル(Furitsch製、
P−5)の容量80mlのポット(JISSUS316
製)に直径10mmのボール(JIS SUS316製)
18個と共に入れ、ポット内が10-3Torrとなるまで真
空引きを行った。真空引き後、ポット内に2MPaの水
素加圧を施し、ポット回転数 780rpm 、ディスク回
転数 360rpm 、処理時間 10時間の条件でボール
ミリングを行った。ボールミリング後、グローブボック
ス中で水素吸蔵合金粉末を採集した。これを実施例とす
る。 (B) 溶製法による水素吸蔵合金の製造 純度がそれぞれ99.9%であるMg粉末およびNi粉
末を、水素吸蔵合金の組成がMg95Ni5 (数値の単位
は原子%)となるように秤量し、次いでその秤量物を高
周波溶解し、その後鋳造を行ってインゴットを得た。こ
のインゴットをグローブボックス中で粉砕・分級して、
粒径が10μmよりも小である水素吸蔵合金粉末を得
た。さらに、この粉末に活性化処理を施した。活性化処
理に当っては、粉末を容器内に入れ、350℃にて、容
器内を10-4Torrに真空引きし、次いで容器内に4MP
aの水素加圧を施し、これを1サイクルとして5サイク
ル繰返し行った。このようにして得られた水素吸蔵合金
粉末を比較例とする。 (C) 金属組織の観察 実施例について、透過電子顕微鏡および付属のEDX
(エネルギ分散型X線回折)を用いて金属組織の観察を
行った。図2は実施例の顕微鏡組織を示し、この図面に
おいて、Mg結晶粒の集合体よりなるマトリックスと、
そのマトリックスに分散するMg2 Ni微粒子と、Mg
結晶粒内に分散するMg−Ni系超微粒子とが観察され
る。また図3は、図2を部分的に拡大した場合に相当す
る顕微鏡組織を示し、この図面において、Mg結晶粒
と、それに分散するMg−Ni系超微粒子とが観察され
る。Hereinafter, a specific example will be described. (A) was 99.9% Manufacturing purity each of the hydrogen storage alloy by mechanical alloying, and the Mg powder and Ni powder is smaller than 100 mesh particle size, respectively, the composition of the hydrogen storage alloy is Mg 95 Ni It was weighed so as to be 5 (the unit of the numerical value was atomic%) to obtain a total of 3 g of the mixed powder. A planetary ball mill (Furitsch,
P-5) Pot with 80 ml capacity (JISSUS316)
10mm diameter ball (JIS SUS316)
Eighteen were placed together, and the pot was evacuated to 10 -3 Torr. After evacuation, hydrogen pressure of 2 MPa was applied in the pot, and ball milling was performed under the conditions of a pot rotation speed of 780 rpm, a disk rotation speed of 360 rpm, and a processing time of 10 hours. After ball milling, the hydrogen storage alloy powder was collected in a glove box. This is an example. (B) Production of hydrogen storage alloy by smelting method Mg powder and Ni powder each having a purity of 99.9% were weighed so that the composition of the hydrogen storage alloy was Mg 95 Ni 5 (the unit of the numerical value is atomic%). Then, the weighed material was subjected to high frequency melting and then cast to obtain an ingot. This ingot is crushed and classified in a glove box,
A hydrogen storage alloy powder having a particle size smaller than 10 μm was obtained. Further, this powder was subjected to an activation treatment. In the activation treatment, the powder was placed in a container, and the inside of the container was evacuated to 10 −4 Torr at 350 ° C.
The hydrogen pressurization of a was performed, and this was repeated for 5 cycles as one cycle. The hydrogen storage alloy powder thus obtained is used as a comparative example. (C) Observation of metal structure For the examples, transmission electron microscope and attached EDX
The metal structure was observed using (energy dispersive X-ray diffraction). FIG. 2 shows the microstructure of the example, in which a matrix composed of an aggregate of Mg crystal grains,
Mg 2 Ni fine particles dispersed in the matrix,
Mg-Ni-based ultrafine particles dispersed in the crystal grains are observed. FIG. 3 shows a microscopic structure corresponding to the case where FIG. 2 is partially enlarged. In this drawing, Mg crystal grains and Mg-Ni-based ultrafine particles dispersed therein are observed.
【0015】比較例の金属組織は、それが溶製法による
ものであることに起因して、実施例に比べ粗大化してお
り、Mg結晶粒の平均粒径およびMg2 Ni粒子の粒径
はそれぞれ約1μmであって、Mg結晶粒内にはMg−
Ni系超微粒子の存在は認められなかった。 (D) 水素の吸蔵・放出特性およびPCT線 実施例および比較例について、容積法による圧力−組成
等温線(PCT線)測定法(JISH7201)に規定
された真空原点法に則って、300℃および350℃に
てそれぞれ水素化速度試験を行い、また300℃にて脱
水素化速度試験を行った。The metal structure of the comparative example is coarser than that of the example due to the fact that the metal structure is obtained by the melting method, and the average particle size of the Mg crystal grains and the particle size of the Mg 2 Ni particles are respectively About 1 μm, and Mg-
No Ni-based ultrafine particles were found. (D) Hydrogen absorption / desorption characteristics and PCT line For the examples and comparative examples, 300 ° C. and 300 ° C. were determined in accordance with the vacuum origin method specified in the pressure-composition isotherm (PCT line) measurement method (JISH7201) by the volumetric method. A hydrogenation rate test was performed at 350 ° C., and a dehydrogenation rate test was performed at 300 ° C.
【0016】図4,5はそれぞれ測定温度300℃およ
び350℃における水素化速度試験結果を示す。この試
験においては、真空状態から3.2MPaの高圧水素加
圧を行った。実施例と比較例は同一組成(Mg95N
i5 )であるにも拘らず、水素化速度に関し両者間には
大きな差が生じており、実施例は、水素導入後60sec
間で5wt%以上の水素を吸蔵する、という優れた水素
化特性を持つ。また実施例は、最終的には6wt%以上
の高水素吸蔵量を有する。FIGS. 4 and 5 show the results of hydrogenation rate tests at measurement temperatures of 300 ° C. and 350 ° C., respectively. In this test, a high-pressure hydrogen pressurization of 3.2 MPa was performed from a vacuum state. The Example and the Comparative Example have the same composition (Mg 95 N
i 5) a is in spite, and in between them occurs a large difference relates hydrogenation rate, example, 60 sec after the hydrogen introduction
It has an excellent hydrogenation property of absorbing 5 wt% or more of hydrogen between them. Further, the examples finally have a high hydrogen storage amount of 6 wt% or more.
【0017】図6は測定温度300℃における脱水素化
速度試験結果を示す。この場合、実施例および比較例の
300℃におけるプラトー圧と、装置の仕様上の制約か
ら初期設定水素圧力は0.03MPaであった。図6か
ら明らかなように、実施例においては、水素放出曲線の
放出開始後の下り勾配が比較例に比べて、極端に急であ
り、したがって実施例は優れた脱水素化速度を有するこ
とが判る。なお、実施例における水素放出量が約5.1
wt%で一定となっているのは、水素の放出に伴い試料
容器内の水素圧力が増加し、5.1wt%放出したとこ
ろで平衡解離圧に達したためである。FIG. 6 shows the results of a dehydrogenation rate test at a measurement temperature of 300 ° C. In this case, the initial set hydrogen pressure was 0.03 MPa due to the plateau pressure at 300 ° C. of the example and the comparative example and restrictions on the specifications of the apparatus. As is clear from FIG. 6, in the example, the slope of the hydrogen release curve after the start of the release is extremely steep as compared with the comparative example, and therefore, the example has an excellent dehydrogenation rate. I understand. Note that the amount of released hydrogen in the example was about 5.1.
The reason why the concentration is constant at wt% is that the hydrogen pressure in the sample container increases with the release of hydrogen, and reaches the equilibrium dissociation pressure when 5.1 wt% is released.
【0018】図7は、実施例および比較例に関する前記
測定結果としての水素放出曲線を示す。測定条件は、測
定温度:300℃;圧力安定時間:20sec ;収束時
間:5min ;収束判断時間:1min ;収束差圧:0.0
01MPa;プラトー判断:0.3Log(P)/(w
t%)である。この測定では収束時間を5min に設定し
たため、比較例は反応速度が遅いことからプラトー圧が
著しく低くなっている。この水素放出曲線の測定に要し
た時間は、実施例の場合は2時間50分であり、一方、
比較例の場合は20時間であった。よって、工業的に応
用可能な測定条件では、実施例および比較例に大きなプ
ラトー圧の優位差が現われ、水素吸蔵量にも違いが生じ
ることが判る。FIG. 7 shows a hydrogen release curve as a result of the measurement for the example and the comparative example. The measurement conditions were as follows: measurement temperature: 300 ° C .; pressure stabilization time: 20 sec; convergence time: 5 min; convergence judgment time: 1 min;
01 MPa; plateau judgment: 0.3 Log (P) / (w
t%). In this measurement, the convergence time was set to 5 min, so that the plateau pressure was extremely low in the comparative example because the reaction speed was slow. The time required for the measurement of the hydrogen release curve was 2 hours and 50 minutes in the case of the example, while
In the case of the comparative example, it took 20 hours. Therefore, it can be seen that under the measurement conditions that can be applied industrially, a large difference in plateau pressure appears between the example and the comparative example, and a difference also occurs in the hydrogen storage amount.
【0019】[0019]
【発明の効果】本発明によれば前記のように構成するこ
とによって、活性化処理を行わなくても速い水素化速度
と高い水素吸蔵量とを有し、その上、脱水素化速度も速
い等、優れた実用性を有し、工業的応用範囲の広い水素
吸蔵合金を提供することができる。According to the present invention, with the above-described structure, a high hydrogenation rate and a high hydrogen storage amount can be obtained without performing the activation treatment, and the dehydrogenation rate is also high. Thus, it is possible to provide a hydrogen storage alloy having excellent practicality and a wide range of industrial applications.
【図1】水素吸蔵合金の顕微鏡組織の概略図である。FIG. 1 is a schematic view of a microstructure of a hydrogen storage alloy.
【図2】実施例の顕微鏡組織図である。FIG. 2 is a microscopic organization diagram of an example.
【図3】図2を部分的に拡大した場合に相当する顕微鏡
組織図である。FIG. 3 is a microscopic organization diagram corresponding to a case where FIG. 2 is partially enlarged.
【図4】測定温度を300℃に設定した水素化速度試験
における経過時間と水素化量との関係を示すグラフであ
る。FIG. 4 is a graph showing a relationship between an elapsed time and a hydrogenation amount in a hydrogenation rate test in which a measurement temperature is set to 300 ° C.
【図5】測定温度を350℃に設定した水素化速度試験
における経過時間と水素化量との関係を示すグラフであ
る。FIG. 5 is a graph showing a relationship between an elapsed time and a hydrogenation amount in a hydrogenation rate test in which a measurement temperature is set to 350 ° C.
【図6】測定温度を300℃に設定した脱水素化速度試
験における経過時間と水素化量との関係を示すグラフで
ある。FIG. 6 is a graph showing a relationship between an elapsed time and a hydrogenation amount in a dehydrogenation rate test in which a measurement temperature is set to 300 ° C.
【図7】測定温度300℃における水素放出曲線を示
す。FIG. 7 shows a hydrogen release curve at a measurement temperature of 300 ° C.
Claims (3)
つそれらMg結晶粒の平均粒径DがD≦500nmである
マトリックスと、そのマトリックスに分散し、且つ粒径
d1 が50nm≦d1 ≦500nmである複数の金属間化合
物微粒子と、複数の前記Mg結晶粒内に分散し、且つ粒
径d2 が5nm≦d2 ≦20nmである複数の超微粒子とよ
り構成されていることを特徴とする水素吸蔵合金。1. A matrix comprising an aggregate of a plurality of Mg crystal grains and having an average particle size D of D ≦ 500 nm, and a matrix dispersed in the matrix and having a particle size d 1 of 50 nm ≦ d. 1 ≦ 500 nm and a plurality of ultrafine particles dispersed in the Mg crystal grains and having a particle diameter d 2 of 5 nm ≦ d 2 ≦ 20 nm. Characteristic hydrogen storage alloy.
粒子である、請求項1記載の水素吸蔵合金。2. The hydrogen storage alloy according to claim 1, wherein the intermetallic compound fine particles are Mg 2 Ni fine particles.
ある、請求項1または2記載の水素吸蔵合金。3. The hydrogen storage alloy according to claim 1, wherein the ultrafine particles are Mg—Ni-based ultrafine particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11069864A JP2000265233A (en) | 1999-03-16 | 1999-03-16 | Hydrogen storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11069864A JP2000265233A (en) | 1999-03-16 | 1999-03-16 | Hydrogen storage alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000265233A true JP2000265233A (en) | 2000-09-26 |
Family
ID=13415103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11069864A Pending JP2000265233A (en) | 1999-03-16 | 1999-03-16 | Hydrogen storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000265233A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001000891A1 (en) * | 1999-06-24 | 2001-01-04 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen storage alloy powder and method for producing the same |
US7060120B1 (en) * | 2000-05-31 | 2006-06-13 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen absorbing alloy powder and hydrogen storing tank for mounting in a vehicle |
DE102008040734A1 (en) | 2007-07-27 | 2009-02-05 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Hydrogen storage material and method of making the same |
-
1999
- 1999-03-16 JP JP11069864A patent/JP2000265233A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001000891A1 (en) * | 1999-06-24 | 2001-01-04 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen storage alloy powder and method for producing the same |
US6689193B1 (en) | 1999-06-24 | 2004-02-10 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen storage alloy powder and method for producing the same |
US7060120B1 (en) * | 2000-05-31 | 2006-06-13 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen absorbing alloy powder and hydrogen storing tank for mounting in a vehicle |
DE102008040734A1 (en) | 2007-07-27 | 2009-02-05 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Hydrogen storage material and method of making the same |
US8690985B2 (en) | 2007-07-27 | 2014-04-08 | Toyota Jidosha Kabushiki Kaisha | Hydrogen storage material and method of producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1174385B1 (en) | Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle | |
EP2511029B1 (en) | Preparation method of metal matrix composite | |
US8056840B2 (en) | Nanotization of magnesium-based hydrogen storage material | |
JP3696514B2 (en) | Method for producing alloy powder | |
JPH11503489A (en) | Nanocrystalline Mg-based material and its use for hydrogen transport and hydrogen storage | |
JP2001520316A (en) | Nanocomposites with activated interfaces created by mechanical grinding of magnesium hydride and applications for storing hydrogen | |
US8690985B2 (en) | Hydrogen storage material and method of producing the same | |
JP5300265B2 (en) | Magnesium alloy for hydrogen storage | |
US9293166B2 (en) | Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same | |
JP2005535785A (en) | Reactive grinding method for producing hydrogen storage alloys | |
US6689193B1 (en) | Hydrogen storage alloy powder and method for producing the same | |
JP6342916B2 (en) | Method for producing Al / TiC nanocomposite material | |
JP2000265233A (en) | Hydrogen storage alloy | |
Yin et al. | Hydriding-dehydriding properties of Mg-rich Mg-Ni-Nd alloys with refined microstructures | |
Ha et al. | Hydrogenation and degradation of Mg–10 wt% Ni alloy after cyclic hydriding–dehydriding | |
JPS6372849A (en) | Hydrogen occlusion alloy | |
JP4189447B2 (en) | Mg-Ti hydrogen storage alloy and method for producing the same | |
JP2560566B2 (en) | Method for producing hydrogen storage alloy | |
JP2003193166A (en) | Mg HYDROGEN-STORAGE ALLOY AND ITS MANUFACTURING METHOD | |
EP1117500B8 (en) | Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures | |
JP3062743B2 (en) | Hydrogen-containing titanium-aluminum alloy powder, method for producing the same alloy powder, sintered titanium-aluminum alloy, and method for producing the same | |
WO2006075680A1 (en) | Gas-adsorbing substance, gas-adsorbing alloy and gas-adsorbing material | |
JP2008095172A (en) | Hydrogen storage material and manufacturing method therefor | |
JP2002167609A (en) | Method for producing hydrogen storage alloy | |
JP4304000B2 (en) | Mg-Co based hydrogen storage alloy and method for producing the same |