JP3696514B2 - Method for producing alloy powder - Google Patents
Method for producing alloy powder Download PDFInfo
- Publication number
- JP3696514B2 JP3696514B2 JP2001044088A JP2001044088A JP3696514B2 JP 3696514 B2 JP3696514 B2 JP 3696514B2 JP 2001044088 A JP2001044088 A JP 2001044088A JP 2001044088 A JP2001044088 A JP 2001044088A JP 3696514 B2 JP3696514 B2 JP 3696514B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- alloy
- additive component
- metal matrix
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 75
- 239000000956 alloy Substances 0.000 title claims description 75
- 239000000843 powder Substances 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000002245 particle Substances 0.000 claims description 377
- 239000000654 additive Substances 0.000 claims description 63
- 230000000996 additive effect Effects 0.000 claims description 63
- 229910052751 metal Inorganic materials 0.000 claims description 53
- 239000011159 matrix material Substances 0.000 claims description 52
- 239000002184 metal Substances 0.000 claims description 52
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 38
- 239000001257 hydrogen Substances 0.000 claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- 238000003860 storage Methods 0.000 claims description 32
- 238000005551 mechanical alloying Methods 0.000 claims description 12
- 238000000227 grinding Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 5
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 229910001020 Au alloy Inorganic materials 0.000 claims description 4
- 229910000531 Co alloy Inorganic materials 0.000 claims description 4
- 229910000599 Cr alloy Inorganic materials 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 4
- 229910000575 Ir alloy Inorganic materials 0.000 claims description 4
- 229910000914 Mn alloy Inorganic materials 0.000 claims description 4
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 4
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 4
- 229910001252 Pd alloy Inorganic materials 0.000 claims description 4
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 4
- 229910000629 Rh alloy Inorganic materials 0.000 claims description 4
- 229910000929 Ru alloy Inorganic materials 0.000 claims description 4
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 4
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 4
- 229910000756 V alloy Inorganic materials 0.000 claims description 4
- 229910001080 W alloy Inorganic materials 0.000 claims description 4
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 4
- 229910001093 Zr alloy Inorganic materials 0.000 claims description 4
- 238000003801 milling Methods 0.000 description 19
- 230000001133 acceleration Effects 0.000 description 14
- 239000011812 mixed powder Substances 0.000 description 13
- 238000000498 ball milling Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000011882 ultra-fine particle Substances 0.000 description 7
- 238000006356 dehydrogenation reaction Methods 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910017706 MgZn Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910018007 MmNi Inorganic materials 0.000 description 1
- 229910010340 TiFe Inorganic materials 0.000 description 1
- 229910010380 TiNi Inorganic materials 0.000 description 1
- 229910008340 ZrNi Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/041—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は合金粉末の製造方法、特に、金属マトリックスと添加成分とよりなる合金粒子の集合体である合金粉末を製造すべく、金属マトリックス粒子の集合体と、添加成分粒子の集合体とを用い、メカニカルアロイングおよびメカニカルグラインディングの一方を行う製造方法に関する。
【0002】
【従来の技術】
従来、この種の製造方法においては、金属マトリックス粒子および添加成分粒子として粒径(通常、1μm以上)が同じか、若しくは略同じものを用い、比較的硬い添加成分粒子を十分に微細化して、金属マトリックス粒子内に均一に侵入分散させる、といった方法が採用されている。
【0003】
【発明が解決しようとする課題】
しかしながら前記従来法においては添加成分粒子の微細化および侵入分散のために、例えば数十時間のミリングを行わなければならず、合金粉末の製造コストが高い、という問題があった。
【0004】
【課題を解決するための手段】
本発明は、ミリング時間を大幅に短縮し得る前記合金粉末の製造方法を提供することを目的とする。
【0005】
前記目的を達成するため本発明の第1の特徴によれば、金属マトリックスと添加成分とよりなる合金粒子の集合体である合金粉末を製造すべく、金属マトリックス粒子の集合体と、添加成分粒子の集合体とを用い、メカニカルアロイングおよびメカニカルグラインディングの一方を行って、前記添加成分粒子の集合体における少なくとも一部の添加成分粒子を前記金属マトリックス粒子内に侵入させるようにした高活性な合金粉末の製造方法であって、前記メカニカルアロイングおよびメカニカルグラインディングを行うに当り、前記金属マトリックス粒子の粒径Dを D≧3μmに、また前記添加成分粒子の粒径dを d≦500nmにそれぞれ設定する、合金粉末の製造方法が提供される。
【0006】
前記目的を達成するため本発明の第2の特徴によれば、金属マトリックスと添加成分とよりなる合金粒子の集合体である水素吸蔵合金粉末を製造すべく、金属マトリックス粒子の集合体と、添加成分粒子の集合体とを用い、メカニカルアロイングおよびメカニカルグラインディングの一方を行って、前記添加成分粒子の集合体における少なくとも一部の添加成分粒子を前記金属マトリックス粒子内に侵入させるようにした高活性な水素吸蔵合金粉末の製造方法であって、前記金属マトリックス粒子は、粒径Dが D≧5μmであるMg粒子であり、また前記添加成分粒子6は、粒径dがd≦100nmであり、且つNi粒子,Ni合金粒子,Fe粒子,Fe合金粒子,V粒子,V合金粒子,Mn粒子,Mn合金粒子,Ti粒子,Ti合金粒子,Cu粒子,Cu合金粒子,Al粒子,Al合金粒子,Pd粒子,Pd合金粒子,Pt粒子,Pt合金粒子,Zr粒子,Zr合金粒子,Au粒子,Au合金粒子,Ag粒子,Ag合金粒子,Co粒子,Co合金粒子,Mo粒子,Mo合金粒子,Nb粒子,Nb合金粒子,Cr粒子,Cr合金粒子,Zn粒子,Zn合金粒子,Ru粒子,Ru合金粒子,Rh粒子,Rh合金粒子,Ta粒子,Ta合金粒子,Ir粒子,Ir合金粒子,W粒子およびW合金粒子から選択される少なくとも一種であることを特徴とする合金粉末の製造方法が提供される。
【0007】
金属マトリックス粒子の集合体と、添加成分粒子の集合体とを用い、メカニカルアロイングおよびメカニカルグラインディングの一方を行うに当たって、前記第1の特徴によれば、金属マトリックス粒子の粒径Dが D≧3μmに、また添加成分粒子の粒径dが
d≦500nmにそれぞれ設定され、また前記第2の特徴によれば、金属マトリックス粒子としてのMg粒子の粒径Dが D≧5μmに、また添加成分粒子の粒径dが d≦100nmにそれぞれ設定されるが、このようなnmサイズの粒径を持つ添加成分粒子は、微粒子または超微粒子であって、非常に高い活性を有するので、添加成分粒子を金属マトリックス粒子内に侵入させるだけでなく、その金属マトリックス粒子表面に保持させておくことによっても、高活性な水素吸蔵合金粉末を得ることが可能である。また添加成分粒子は微粒子または超微粒子であるからミリングによる微細化は不要である。
【0008】
これらのことから、前記方法によれば合金粉末を得るためのミリング時間を、例えば40時間から15分間にする、といったように大幅に短縮することが可能である。ただし、d>500nmでは前記ミリング時間が長くなり、また製造エネルギ的にも非効率的となる。
【0009】
【発明の実施の形態】
図1、2において、合金粉末としての水素吸蔵合金粉末1は、金属マトリックス2と添加成分3とよりなる合金粒子4の集合体である。
【0010】
水素吸蔵合金粉末1の製造に当っては、金属マトリックス粒子5の集合体(金属マトリックス粉末)と、添加成分粒子6の集合体(添加成分粉末)とを用い、メカニカルアロイングおよびメカニカルグラインディングの一方を行う、といった方法が採用される。
【0011】
その際、金属マトリックス5の粒径DはD≧3μm、好ましくはD≧5μmに設定され、また添加成分粒子6の粒径dは10nm≦d≦500nm、好ましくはd≦100nmに設定される。両粒径D、dの関係は、好ましくはD/10000≦d≦D/50であり、また添加成分粒子の添加量Lは0.1原子%≦L≦65原子%、好ましくはL≦10原子%である。
【0012】
金属マトリックス粒子5には、体心立方晶系粒子であるMg粒子,V粒子,TiCrV系粒子,TiCrMn系粒子等が該当し、また水素と反応する金属元素をAとし、またそれ以外の金属元素をBとすると、AB5 系粒子:LaNi5 粒子,MmNi5 (Mm:ミッシュメタル)粒子,CaNi5 粒子等;AB2 系粒子:MgZn2 粒子,ZrNi2 粒子等;AB系粒子:TiNi粒子,TiFe粒子等;A2 B系粒子:Mg2 Ni粒子,Ca2 Fe粒子等が該当する。これらの粒子から選択される一種が金属マトリックス粒子として用いられる。添加成分粒子6としては、Ni粒子,Ni合金粒子,Fe粒子,Fe合金粒子,V粒子,V合金粒子,Mn粒子,Mn合金粒子,Ti粒子,Ti合金粒子,Cu粒子,Cu合金粒子,Al粒子,Al合金粒子,Pd粒子,Pd合金粒子,Pt粒子,Pt合金粒子,Zr粒子,Zr合金粒子,Au粒子,Au合金粒子,Ag粒子,Ag合金粒子,Co粒子,Co合金粒子,Mo粒子,Mo合金粒子,Nb粒子,Nb合金粒子,Cr粒子,Cr合金粒子,Zn粒子,Zn合金粒子,Ru粒子,Ru合金粒子,Rh粒子,Rh合金粒子,Ta粒子,Ta合金粒子,Ir粒子,Ir合金粒子,W粒子およびW合金粒子から選択される少なくとも一種が用いられる。
【0013】
メカニカルアロイングまたはメカニカルグラインディングにおいて、そのミリング時間tは1分間≦t≦5時間といったように、短時間に設定される。このようにミリング時間を短縮すると、図2に明示するように、添加成分粒子6の集合体における、一部の添加成分粒子6は金属マトリックス粒子5内に完全に侵入してその粒子5と結合し、また他の一部の添加成分粒子6は金属マトリックス粒子5の表面に付着してその粒子5と結合し、さらに他の一部の添加成分粒子6は一部分を金属マトリックス粒子5表面に露出させてその粒子5内に埋込まれることにより金属マトリックス粒子5と結合する、といった状態が現出する。
【0014】
前記のようにnmサイズの粒径を持つ添加成分粒子6は超微粒子(または微粒子)であって、非常に高い活性を有する。したがって、前記のように添加成分粒子6を金属マトリックス粒子5内に侵入させるだけでなく、その金属マトリックス粒子5表面に保持させておくことによっても、高活性な水素吸蔵合金粉末1を得ることが可能である。また添加成分粒子6は超微粒子(または微粒子)であるからミリングによる微細化は不要である。なお、両粒径D、dの関係がD/10000>dでは金属マトリックス粒子5と添加成分粒子6とのエネルギ差が大きすぎるため添加成分粒子6が金属マトリックス粒子5内に侵入することができなくなる。
【0015】
以下、メカニカルアロイングを適用した具体例について説明する。
【0016】
〔実施例1〕
純度が99.9%であり、且つ粒径Dが10μmのMg粒子(金属マトリックス粒子)の集合体と、純度が99.9%であり、且つ粒径dが20nmのNi粒子(添加成分粒子)の集合体とを、合金組成がMg2 Ni(NiのL=33.3原子%)となるように秤量して、合計2.5gの混合粉末を得た。この混合粉末を遊星型ボールミル(Furitsch製、P−5)の容量80mlのポット(JIS SUS316製)に直径10mmのボール(JIS SUS316製)18個と共に入れ、ポット内を1.0MPaの水素ガス雰囲気に保持して、ポット回転数 780rpm 、ディスク回転数360rpm 、ミリング時間t 15分間の条件でボールミリングを行った。この場合、ポット内には重力加速度Gの9倍の加速度9Gが発生していた。ボールミリング後、グローブボックス中で水素吸蔵合金粉末を採取した。この合金粉末を例(A1)とする。
【0017】
比較のため、前記Mg粒子の集合体と、純度が99.9%であり、且つ粒径dが10μm、つまりMg粒子と同一粒径のNi粒子の集合体とを用い、ミリング時間tを40時間に設定した、ということ以外は前記と同様の方法で水素吸蔵合金粉末を得た。この合金粉末を例(B1)とする。
【0018】
例(A1)、(B1)は、そのボールミリング過程において水素化されているので、それらに、350℃、1時間の条件で真空引きを行う脱水素化処理を施し、次いで、例(A1)、(B1)についてPCT測定を行った。図3は例(A1)、(B1)のPCT特性(収束時間:5分間;260℃、放出)を示す。図3より、例(A1)は例(B1)のミリング時間の160分の1の短時間にて得られたものであるが、例(B1)と同様のPCT特性を有することが判る。
【0019】
〔実施例2〕
純度が99.9%であり、且つ粒径Dが10μmのMg粒子(金属マトリックス粒子)の集合体と、純度が99.9%であり、且つ粒径dが20nmのFe粒子(添加成分粒子)の集合体とを、合金組成がMg97Fe3 (数値の単位は原子%)となるように秤量して、合計2.5gの混合粉末を得た。この混合粉末を遊星型ボールミル(Furitsch製、P−5)の容量80mlのポット(JIS SUS316製)に直径10mmのボール(JIS SUS316製)18個と共に入れ、ポット内を2.0MPaの水素ガス雰囲気に保持して、ポット回転数 780rpm 、ディスク回転数360rpm 、ミリング時間t 15分間の条件でボールミリングを行った。この場合、ポット内には重力加速度Gの9倍の加速度9Gが発生していた。ボールミリング後、グローブボックス中で水素吸蔵合金粉末を採取した。この合金粉末を例(A2)とする。
【0020】
比較のため、前記Mg粒子の集合体と、純度が99.9%であり、且つ粒径dが10μm、つまりMg粒子と同一粒径のFe粒子の集合体とを用い、ミリング時間tを3時間に設定した、ということ以外は前記と同様の方法で水素吸蔵合金粉末を得た。この合金粉末を例(B2)とする。
【0021】
例(A2)、(B2)に実施例1と同一条件で脱水素化処理を施し、次いで、例(A2)、(B2)についてPCT測定を行った。図4は例(A2)、(B2)のPCT特性(収束時間:5分間;310℃、放出)を示す。図4より、例(A2)は例(B2)のミリング時間の12分の1の短時間にて得られたものであるが、例(B2)よりも優れたPCT特性を有することが判る。
【0022】
図5は例(A2)、(B2)の、測定温度310℃における水素化速度試験結果を示す。この試験においては、真空状態から4.0MPaの高圧水素加圧を行った。図5から、例(A2)は、例(B2)に比べて水素化速度が速く、且つ水素吸蔵量が大であることが判る。
【0023】
〔実施例3〕
(1)純度が99.9%であり、且つ粒径Dが10μmのMg粒子(金属マトリックス粒子)の集合体と、純度が99.9%であり、且つ粒径dが20nmのNi粒子(添加成分粒子)の集合体とを、合金組成がMg97Ni3 (数値の単位は原子%)となるように秤量して、合計2.5gの混合粉末を得た。この混合粉末を遊星型ボールミル(Furitsch製、P−5)の容量80mlのポット(JIS SUS316製)に直径10mmのボール(JIS SUS316製)18個と共に入れ、ポット内を1.0MPaの水素ガス雰囲気に保持して、ポット回転数 780rpm 、ディスク回転数 360rpm 、ミリング時間t 15分間の条件でボールミリングを行った。この場合、ポット内には重力加速度Gの9倍の加速度9Gが発生していた。ボールミリング後、グローブボックス中で水素吸蔵合金粉末を採取した。この合金粉末を例(A3)とする。
【0024】
例(A3)に実施例1と同一条件で脱水素化処理を施し、次いで例(A3)についてPCT測定を行った。図6は例(A3)のPCT特性(収束時間:5分間;350℃、放出)を示し、図6において、1回の水素吸放出を行った場合を1サイクルとして複数の黒三角点を結んだ線で表し、また500サイクル後を複数の黒丸点を結んだ線で表してある。
【0025】
図6から、例(A3)は優れたPCT特性を有し、また良好な耐久性を持つことが判る。
【0026】
(2)前記(1)同様の混合粉末(Mg97Ni3 )を用い、またポット回転数およびディスク回転数を調節してポット内に発生する加速度を、0.5G,3G,6G,9Gに変更した、ということを除き、各加速度下にて前記(1)と同一条件で4種の水素吸蔵合金粉末、即ち、0.5G適用による例(A4)、3G適用による例(A5)、6G適用による例(A6)および9G適用による例(A7)〔例(A3)に同じ〕を製造した。
【0027】
例(A4)〜(A7)に実施例1と同一条件で脱水素化処理を施し、次いで例(A4)〜(A7)についてPCT測定を行った。また前記(1)同様の混合粉末(Mg97Ni3 )を用い、真空アーク溶解、インゴットの鋳造および大気中におけるインゴットの粉砕を順次行って得られた粉末の例(B3)および前記合金組成(Mg97Ni3 )を持つように秤量された前記Mg粒子およびNi粒子の集合物を乳鉢で混合した例(C)についても、同様のPCT測定を行った。
【0028】
図7は例(A4)〜(A7)、(B3)、(C)のPCT特性(収束時間:5分間;310℃、放出)を示す。図7から明らかなように、乳鉢混合による例(C)は鋳造による例(B3)よりも優れたPCT特性を有する。これは超微粒子である高活性なNi粒子の存在に起因する。また加速度0.5G適用による例(A4)はMgとNiの合金化の開始とその進行に伴い例(C)よりもPCT特性が向上している。加速度3Gおよび6G適用による例(A5)、(A6)は通常の合金製造における加速度9G適用による例(A7)と同等のPCT特性を有する。例(A5)、(A6)においては1つのMg粒子内へ侵入したNi粒子の数は例(A7)に比べて少ないが、Mg粒子表面には多くの高活性なNi粒子が付着しているため、それに起因して優れたPCT特性が得られる。
【0029】
〔実施例4〕
純度が99.9%であり、且つ粒径Dが100μmのTi粒子(金属マトリックス粒子)の集合体と、純度がそれぞれ99.9%であり、且つ粒径dがそれぞれ100nm以下のCr粒子(添加成分粒子)およびMn粒子(添加成分粒子)の集合体とを、合金組成がTi1.2 CrMn(CrのL=31.25原子%、MnのL=31.25原子%)となるように秤量して、合計2.5gの混合粉末を得た。この混合粉末を遊星型ボールミル(Furitsch製、P−5)の容量80mlのポット(JIS SUS316製)に直径10mmのボール(JIS SUS316製)18個と共に入れ、ポット内を2.0MPaの水素ガス雰囲気に保持して、ポット回転数 780rpm 、ディスク回転数 360rpm 、ミリング時間t 15分間の条件でボールミリングを行った。この場合、ポット内には重力加速度Gの9倍の加速度9Gが発生していた。ボールミリング後、グローブボックス中で水素吸蔵合金粉末を採取した。この合金粉末を例(A8)とする。
【0030】
比較のため、前記混合粉末(Ti1.2 CrMn)を用い、真空アーク溶解、インゴットの鋳造および大気中におけるインゴットの粉砕を順次行って水素吸蔵合金粉末を得た。この合金粉末を例(B4)とする。
【0031】
例(A8)に実施例1と同一条件で脱水素化処理を施し、次いで例(A8)、(B4)についてPCT測定を行った。図8は例(A8)、(B4)のPCT特性(収束時間:5分間;−10℃、放出)を示す。図8より、例(A8)は例(B4)よりも優れたPCT特性を有することが判る。
【0032】
〔実施例5〕
純度が99.9%であり、且つ粒径Dが180μmのMg粒子(金属マトリックス粒子)の集合体と、純度がそれぞれ99.9%であり、且つ粒径dがそれぞれ20nmのNi粒子(添加成分粒子)およびFe粒子(添加成分粒子)の集合体とを、合金組成がMg99.5Ni0.33Fe0.17(数値の単位は原子%)となるように秤量して、合計1100gの混合粉末を得た。この混合粉末を横型ボールミルの容量24.1Lのポット(JIS SUS316製)に直径10mmのボール(JIS SUS316製)5500個と共に入れ、ポット内を1.0MPaの水素ガス雰囲気に保持して、ポット回転数 60rpm 、ミリング時間t 60分間の条件でボールミリングを行った。この場合、ポット内には重力加速度Gと同等の1Gが発生していた。ボールミリング後、大気中で水素吸蔵合金粉末を採取した。この合金粉末を例(A9)とする。
【0033】
例(A9)に実施例1と同一条件で脱水素化処理を施し、次いで例(A9)についてPCT測定を行った。図9は例(A9)のPCT特性(収束時間:5分間;310℃、吸蔵・放出)を示す。図9より、例(A9)は優れたPCT特性を有し、特に、吸蔵・放出のヒステリシスが小さいことが判る。
【0034】
なお、本発明は水素吸蔵合金以外の合金粉末、例えば磁性材料粉末、セラミックス分散強化合金用複合粉末、耐熱合金粉末、熱電材料粉末、傾斜機能材料粉末、ニッケル−水素電池の負極用水素吸蔵合金粉末等の製造にも適用される。また添加成分粒子としてはセラミック粒子、金属間化合物粒子等を使用することもある。
【0035】
【発明の効果】
金属マトリックス粒子の集合体と、添加成分粒子の集合体とを用い、メカニカルアロイングおよびメカニカルグラインディングの一方を行って、添加成分粒子の集合体における少なくとも一部の添加成分粒子を金属マトリックス粒子内に侵入させるようにした高活性な合金粉末を製造するに当り、本発明の第1の特徴によれば、金属マトリックス粒子の粒径DがD≧3μmに、また添加成分粒子の粒径dがd≦500nmにそれぞれ設定され、また、本発明の第2の特徴によれば、金属マトリックス粒子としてのMg粒子の粒径DがD≧5μmに、また添加成分粒子の粒径dがd≦100nmにそれぞれ設定される。
【0036】
このようなnmサイズの粒径を持つ添加成分粒子は、微粒子または超微粒子であって、非常に高い活性を有するので、添加成分粒子を金属マトリックス粒子内に侵入させるだけでなく、その金属マトリックス粒子表面に保持させておくことによっても、高活性な水素吸蔵合金粉末を得ることが可能である。しかも上記添加成分粒子は、nmサイズの微粒子または超微粒子であるからミリングによる微細化は不要であって、ミリング時間を大いに短縮することができる。
【図面の簡単な説明】
【図1】 水素吸蔵合金粉末の説明図である。
【図2】 合金粒子の要部を破断した説明図である。
【図3】 水素吸蔵合金粉末の例(A1)、(B1)のPCT特性図である。
【図4】 水素吸蔵合金粉末の例(A2)、(B2)のPCT特性図である。
【図5】 水素吸蔵合金粉末の例(A2)、(B2)の水素吸蔵特性図である。
【図6】 水素吸蔵合金粉末の例(A3)のPCT特性図である。
【図7】 水素吸蔵合金粉末の例(A4)〜(A7)、(B3)、(C)のPCT特性図である。
【図8】 水素吸蔵合金粉末の例(A8)、(B4)のPCT特性図である。
【図9】 水素吸蔵合金粉末の例(A9)の水素吸蔵・放出特性図である。
【符号の説明】
1………水素吸蔵合金粉末(合金粉末)
2………金属マトリックス
3………添加成分
4………合金粒子
5………金属マトリックス粒子
6………添加成分粒子[0001]
BACKGROUND OF THE INVENTION
The present invention uses a method for producing an alloy powder, and in particular, an aggregate of metal matrix particles and an aggregate of additive component particles to produce an alloy powder that is an aggregate of alloy particles composed of a metal matrix and an additive component. The present invention relates to a manufacturing method for performing one of mechanical alloying and mechanical grinding.
[0002]
[Prior art]
Conventionally, in this type of manufacturing method, the same or substantially the same particle size (usually 1 μm or more) is used as the metal matrix particles and the additive component particles, and the relatively hard additive component particles are sufficiently refined, A method of uniformly penetrating and dispersing in the metal matrix particles is employed.
[0003]
[Problems to be solved by the invention]
However, the conventional method has a problem that milling for several tens of hours, for example, must be performed in order to make the additive component particles finer and penetrate and disperse, and the production cost of the alloy powder is high.
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide a method for producing the alloy powder capable of greatly reducing the milling time.
[0005]
In order to achieve the above object, according to a first aspect of the present invention , an aggregate of metal matrix particles and additive component particles are used to produce an alloy powder that is an aggregate of alloy particles including a metal matrix and additive components. And performing one of mechanical alloying and mechanical grinding to allow at least some of the additive component particles in the aggregate of additive component particles to enter the metal matrix particles. In the method for producing an alloy powder, in performing the mechanical alloying and mechanical grinding, the particle size D of the metal matrix particles is set to D ≧ 3 μm, and the particle size d of the additive component particles is set to d ≦ 500 nm. A method for producing the alloy powder, which is set respectively , is provided.
[0006]
In order to achieve the above object, according to a second aspect of the present invention, in order to produce a hydrogen storage alloy powder that is an aggregate of alloy particles composed of a metal matrix and an additive component, The assembly of the component particles is used to perform one of mechanical alloying and mechanical grinding so that at least a part of the additive component particles in the aggregate of the additive component particles enter the metal matrix particles. A method for producing an active hydrogen storage alloy powder, wherein the metal matrix particles are Mg particles having a particle size D of D ≧ 5 μm, and the
[0007]
In performing one of mechanical alloying and mechanical grinding using the aggregate of metal matrix particles and the aggregate of additive component particles, according to the first feature, the particle size D of the metal matrix particles is D ≧ D The particle size d of the additive component particles is 3 μm.
d ≦ 500 nm is set, and according to the second feature, the particle diameter D of the Mg particles as the metal matrix particles is set to D ≧ 5 μm, and the particle diameter d of the additive component particles is set to d ≦ 100 nm. but is the additive component particles having a particle size of such a nm size, a fine or ultrafine particles, because they have a very high activity, the additive component particles not only penetrate into the metal matrix particles, It is possible to obtain a highly active hydrogen storage alloy powder by keeping the surface of the metal matrix particles. Further, since the additive component particles are fine particles or ultrafine particles, miniaturization by milling is not necessary.
[0008]
From these facts, according to the above method, the milling time for obtaining the alloy powder can be greatly shortened, for example, from 40 hours to 15 minutes. However, when d> 500 nm , the milling time becomes long, and the production energy becomes inefficient.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2, a hydrogen
[0010]
In the production of the hydrogen
[0011]
At that time, the particle size D is D ≧ 3 [mu] m of
[0012]
The
[0013]
In mechanical alloying or mechanical grinding, the milling time t is set to a short time such that 1 minute ≦ t ≦ 5 hours. When the milling time is shortened in this way, as shown in FIG. 2, some of the
[0014]
As described above, the
[0015]
Hereinafter, specific examples to which mechanical alloying is applied will be described.
[0016]
[Example 1]
Aggregates of Mg particles (metal matrix particles) having a purity of 99.9% and a particle size D of 10 μm, and Ni particles (additive component particles) having a purity of 99.9% and a particle size d of 20 nm ) Was weighed so that the alloy composition was Mg 2 Ni (L = 33.3 atomic% of Ni) to obtain a total of 2.5 g of mixed powder. This mixed powder is put in a planetary ball mill (manufactured by Furitsch, P-5) with a capacity of 80 MPa in a pot (manufactured by JIS SUS316) together with 18 balls having a diameter of 10 mm (manufactured by JIS SUS316). The ball milling was performed under the conditions of a pot rotation speed of 780 rpm, a disk rotation speed of 360 rpm, and a milling time t of 15 minutes. In this case, an acceleration 9G that is nine times the gravitational acceleration G occurred in the pot. After ball milling, hydrogen storage alloy powder was collected in a glove box. This alloy powder is taken as an example (A1).
[0017]
For comparison, an aggregate of Mg particles and an aggregate of Ni particles having a purity of 99.9% and a particle diameter d of 10 μm, that is, the same particle diameter as the Mg particles are used, and the milling time t is 40. A hydrogen storage alloy powder was obtained in the same manner as described above except that the time was set. This alloy powder is taken as an example (B1).
[0018]
Since Examples (A1) and (B1) are hydrogenated in the ball milling process, they are subjected to dehydrogenation treatment in which vacuuming is performed at 350 ° C. for 1 hour, and then Example (A1) , (B1) was subjected to PCT measurement. FIG. 3 shows the PCT characteristics (convergence time: 5 minutes; 260 ° C., release) of Examples (A1) and (B1). FIG. 3 shows that Example (A1) was obtained in a short time that is 1/160 of the milling time of Example (B1), but has the same PCT characteristics as Example (B1).
[0019]
[Example 2]
Aggregates of Mg particles (metal matrix particles) having a purity of 99.9% and a particle diameter D of 10 μm, and Fe particles (additive component particles) having a purity of 99.9% and a particle diameter d of 20 nm ) Was weighed so that the alloy composition was Mg 97 Fe 3 (the unit of numerical values was atomic%), and a total of 2.5 g of mixed powder was obtained. This mixed powder is put in a planetary ball mill (manufactured by Furitsch, P-5) with a capacity of 18 MPa in a pot (manufactured by JIS SUS316) with a capacity of 80 ml and a hydrogen gas atmosphere of 2.0 MPa. The ball milling was performed under the conditions of a pot rotation speed of 780 rpm, a disk rotation speed of 360 rpm, and a milling time t of 15 minutes. In this case, an acceleration 9G that is nine times the gravitational acceleration G occurred in the pot. After ball milling, hydrogen storage alloy powder was collected in a glove box. This alloy powder is taken as an example (A2).
[0020]
For comparison, an aggregate of Mg particles and an aggregate of Fe particles having a purity of 99.9% and a particle diameter d of 10 μm, that is, the same particle diameter as that of the Mg particles, and a milling time t of 3 are used. A hydrogen storage alloy powder was obtained in the same manner as described above except that the time was set. This alloy powder is taken as an example (B2).
[0021]
Examples (A2) and (B2) were subjected to dehydrogenation treatment under the same conditions as in Example 1, and then PCT measurement was performed on Examples (A2) and (B2). FIG. 4 shows the PCT characteristics (convergence time: 5 minutes; 310 ° C., release) of Examples (A2) and (B2). FIG. 4 shows that the example (A2) is obtained in a time shorter than 1/12 of the milling time of the example (B2), but has a PCT characteristic superior to that of the example (B2).
[0022]
FIG. 5 shows the hydrogenation rate test results of Examples (A2) and (B2) at a measurement temperature of 310 ° C. In this test, high pressure hydrogen pressurization of 4.0 MPa was performed from a vacuum state. From FIG. 5, it can be seen that Example (A2) has a higher hydrogenation rate and a larger hydrogen storage capacity than Example (B2).
[0023]
Example 3
(1) An aggregate of Mg particles (metal matrix particles) having a purity of 99.9% and a particle diameter D of 10 μm, and Ni particles having a purity of 99.9% and a particle diameter d of 20 nm ( The aggregate of the additive component particles) was weighed so that the alloy composition was Mg 97 Ni 3 (the unit of numerical values was atomic%) to obtain a total of 2.5 g of mixed powder. This mixed powder is put in a planetary ball mill (manufactured by Furitsch, P-5) with a capacity of 80 MPa in a pot (manufactured by JIS SUS316) together with 18 balls having a diameter of 10 mm (manufactured by JIS SUS316). The ball milling was performed under the conditions of a pot rotation speed of 780 rpm, a disk rotation speed of 360 rpm, and a milling time t of 15 minutes. In this case, an acceleration 9G that is nine times the gravitational acceleration G occurred in the pot. After ball milling, hydrogen storage alloy powder was collected in a glove box. This alloy powder is taken as an example (A3).
[0024]
Example (A3) was subjected to dehydrogenation treatment under the same conditions as in Example 1, and then PCT measurement was performed on Example (A3). FIG. 6 shows the PCT characteristics (convergence time: 5 minutes; 350 ° C., release) of Example (A3). In FIG. 6, a plurality of black triangle points are connected with one hydrogen absorption / release as one cycle. It is represented by an ellipse, and after 500 cycles is represented by a line connecting a plurality of black dots.
[0025]
From FIG. 6, it can be seen that the example (A3) has excellent PCT characteristics and good durability.
[0026]
(2) The same mixed powder (Mg 97 Ni 3 ) as in (1) above is used, and the acceleration generated in the pot is adjusted to 0.5G, 3G, 6G, and 9G by adjusting the pot rotation speed and disk rotation speed. Except that it is changed, four hydrogen storage alloy powders under the same conditions as in (1) under the respective accelerations, that is, examples using 0.5G (A4), examples using 3G (A5), and 6G Example (A6) by application and Example (A7) by application of 9G [same as Example (A3)] were prepared.
[0027]
Examples (A4) to (A7) were subjected to dehydrogenation treatment under the same conditions as in Example 1, and then PCT measurements were performed on Examples (A4) to (A7). In addition, using the same mixed powder (Mg 97 Ni 3 ) as described in (1) above, an example of the powder (B3) obtained by sequentially performing vacuum arc melting, ingot casting, and ingot pulverization in the atmosphere, and the alloy composition ( The same PCT measurement was performed for Example (C) in which the aggregate of Mg particles and Ni particles weighed to have Mg 97 Ni 3 ) was mixed in a mortar.
[0028]
FIG. 7 shows the PCT characteristics (convergence time: 5 minutes; 310 ° C., release) of Examples (A4) to (A7), (B3), and (C). As is apparent from FIG. 7, the mortar mixed example (C) has a PCT characteristic superior to the cast example (B3). This is due to the presence of highly active Ni particles that are ultrafine particles. Further, in the example (A4) using the acceleration of 0.5 G, the PCT characteristics are improved as compared with the example (C) with the start and progress of alloying of Mg and Ni. Examples (A5) and (A6) by applying accelerations 3G and 6G have the same PCT characteristics as the example (A7) by applying acceleration 9G in normal alloy production. In Examples (A5) and (A6), the number of Ni particles that have penetrated into one Mg particle is smaller than in Example (A7), but many highly active Ni particles adhere to the Mg particle surface. As a result, excellent PCT characteristics can be obtained.
[0029]
Example 4
Aggregates of Ti particles (metal matrix particles) having a purity of 99.9% and a particle diameter D of 100 μm, and Cr particles having a purity of 99.9% and a particle diameter d of 100 nm or less (each The additive component particles) and the aggregate of Mn particles (additive component particles) are weighed so that the alloy composition is Ti 1.2 CrMn (L = 31.25 atomic% of Cr, L = 31.25 atomic% of Mn). Thus, a total of 2.5 g of mixed powder was obtained. This mixed powder is put in a planetary ball mill (manufactured by Furitsch, P-5) with a capacity of 18 MPa in a pot (manufactured by JIS SUS316) with a capacity of 80 ml and a hydrogen gas atmosphere of 2.0 MPa. The ball milling was performed under the conditions of a pot rotation speed of 780 rpm, a disk rotation speed of 360 rpm, and a milling time t of 15 minutes. In this case, an acceleration 9G that is nine times the gravitational acceleration G occurred in the pot. After ball milling, hydrogen storage alloy powder was collected in a glove box. This alloy powder is taken as an example (A8).
[0030]
For comparison, a hydrogen storage alloy powder was obtained by sequentially performing vacuum arc melting, ingot casting, and ingot pulverization in the air using the mixed powder (Ti 1.2 CrMn). This alloy powder is taken as an example (B4).
[0031]
Example (A8) was subjected to dehydrogenation treatment under the same conditions as in Example 1, and then PCT measurement was performed on Examples (A8) and (B4). FIG. 8 shows the PCT characteristics (convergence time: 5 minutes; −10 ° C., release) of Examples (A8) and (B4). From FIG. 8, it can be seen that Example (A8) has better PCT characteristics than Example (B4).
[0032]
Example 5
Aggregates of Mg particles (metal matrix particles) with a purity of 99.9% and a particle size D of 180 μm, and Ni particles (additional) with a purity of 99.9% and a particle size d of 20 nm each Component particles) and aggregates of Fe particles (additional component particles) were weighed so that the alloy composition would be Mg 99.5 Ni 0.33 Fe 0.17 (the unit of numerical values is atomic%) to obtain a total of 1100 g of mixed powder. . This mixed powder is put together with 5500 balls (made by JIS SUS316) with a diameter of 24.1L in a pot with a horizontal ball mill capacity of 24.1L (made by JIS SUS316), and the inside of the pot is maintained in a 1.0 MPa hydrogen gas atmosphere to rotate the pot. Ball milling was performed under the conditions of several 60 rpm and milling time t 60 minutes. In this case, 1G equivalent to the gravitational acceleration G was generated in the pot. After ball milling, hydrogen storage alloy powder was collected in the atmosphere. This alloy powder is taken as an example (A9).
[0033]
Example (A9) was subjected to dehydrogenation treatment under the same conditions as in Example 1, and then PCT measurement was performed on Example (A9). FIG. 9 shows the PCT characteristics (convergence time: 5 minutes; 310 ° C., occlusion / release) of Example (A9). From FIG. 9, it can be seen that the example (A9) has excellent PCT characteristics, and in particular, the hysteresis of occlusion / release is small.
[0034]
In the present invention, alloy powders other than hydrogen storage alloys, such as magnetic material powders, composite powders for ceramic dispersion strengthened alloys, heat resistant alloy powders, thermoelectric material powders, functionally graded material powders, hydrogen storage alloy powders for negative electrodes of nickel-hydrogen batteries Etc. Moreover, ceramic particles, intermetallic compound particles, or the like may be used as additive component particles.
[0035]
【The invention's effect】
Using the aggregate of metal matrix particles and the aggregate of additive component particles, performing either mechanical alloying or mechanical grinding, and at least some of the additive component particles in the aggregate of additive component particles are contained in the metal matrix particles. per to produce a highly active alloy powder so as to penetrate, according to the first aspect of the present invention, the particle diameter D D ≧ 3 [mu] m of the metal matrix particles and the particle size d of the added component particles Further, according to the second feature of the present invention, the particle size D of the Mg particles as the metal matrix particles is D ≧ 5 μm, and the particle size d of the additive component particles is d ≦ 100 nm. Respectively.
[0036]
The additive component particle having such a particle size of nm size is a fine particle or an ultrafine particle and has a very high activity, so that not only the additive component particle enters the metal matrix particle but also the metal matrix particle. It is also possible to obtain a highly active hydrogen storage alloy powder by keeping it on the surface. Moreover the additive component particles, refining by milling from a nm-sized fine particles or ultrafine particles not be required, it is possible to greatly shorten the milling time.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a hydrogen storage alloy powder.
FIG. 2 is an explanatory view in which a main part of alloy particles is broken.
FIG. 3 is a PCT characteristic diagram of examples (A1) and (B1) of hydrogen storage alloy powder.
FIG. 4 is a PCT characteristic diagram of examples (A2) and (B2) of hydrogen storage alloy powder.
FIG. 5 is a hydrogen storage characteristic diagram of examples (A2) and (B2) of hydrogen storage alloy powder.
FIG. 6 is a PCT characteristic diagram of an example (A3) of a hydrogen storage alloy powder.
FIG. 7 is a PCT characteristic diagram of examples (A4) to (A7), (B3), and (C) of the hydrogen storage alloy powder.
FIG. 8 is a PCT characteristic diagram of examples (A8) and (B4) of hydrogen storage alloy powder.
FIG. 9 is a hydrogen storage / release characteristic diagram of an example (A9) of a hydrogen storage alloy powder.
[Explanation of symbols]
1 ……… hydrogen storage alloy powder (alloy powder)
2 .........
Claims (4)
前記メカニカルアロイングおよびメカニカルグラインディングを行うに当り、前記金属マトリックス粒子(5)の粒径Dを D≧3μmに、また前記添加成分粒子(6)の粒径dを d≦500nmにそれぞれ設定することを特徴とする、合金粉末の製造方法。In order to produce an alloy powder (1) that is an aggregate of alloy particles (4) composed of a metal matrix (2) and an additive component (3), an aggregate of metal matrix particles (5) and additive component particles (6 ) And performing either mechanical alloying or mechanical grinding, and at least some of the additive component particles (6) in the aggregate of additive component particles (6) are converted into the metal matrix particles (5). A method for producing a highly active alloy powder that is allowed to penetrate into the inside,
In performing the mechanical alloying and mechanical grinding, the particle size D of the metal matrix particles (5) is set to D ≧ 3 μm, and the particle size d of the additive component particles (6) is set to d ≦ 500 nm. A method for producing an alloy powder, characterized in that
前記金属マトリックス粒子(5)は粒径DがD≧5μmであるMg粒子であり、また前記添加成分粒子(6)は、粒径dがd≦100nmであり、且つNi粒子,Ni合金粒子,Fe粒子,Fe合金粒子,V粒子,V合金粒子,Mn粒子,Mn合金粒子,Ti粒子,Ti合金粒子,Cu粒子,Cu合金粒子,Al粒子,Al合金粒子,Pd粒子,Pd合金粒子,Pt粒子,Pt合金粒子,Zr粒子,Zr合金粒子,Au粒子,Au合金粒子,Ag粒子,Ag合金粒子,Co粒子,Co合金粒子,Mo粒子,Mo合金粒子,Nb粒子,Nb合金粒子,Cr粒子,Cr合金粒子,Zn粒子,Zn合金粒子,Ru粒子,Ru合金粒子,Rh粒子,Rh合金粒子,Ta粒子,Ta合金粒子,Ir粒子,Ir合金粒子,W粒子およびW合金粒子から選択される少なくとも一種であることを特徴とする合金粉末の製造方法。In order to produce hydrogen storage alloy powder (1) which is an aggregate of alloy particles (4) composed of metal matrix (2) and additive component (3), aggregate of metal matrix particles (5) and additive component particles using a collection of (6), I one row of mechanical alloying and mechanical grinding, the metal matrix particles at least part of the additive component particles (6) in the assembly of the additive component particles (6) (5) A method for producing a highly active hydrogen storage alloy powder that is allowed to penetrate into the interior ,
The metal matrix particles (5) are Mg particles having a particle diameter D of D ≧ 5 μm, and the additive component particles (6) have a particle diameter d of d ≦ 100 nm, and Ni particles, Ni alloy particles, Fe particles, Fe alloy particles, V particles, V alloy particles, Mn particles, Mn alloy particles, Ti particles, Ti alloy particles, Cu particles, Cu alloy particles, Al particles, Al alloy particles, Pd particles, Pd alloy particles, Pt Particles, Pt alloy particles, Zr particles, Zr alloy particles, Au particles, Au alloy particles, Ag particles, Ag alloy particles, Co particles, Co alloy particles, Mo particles, Mo alloy particles, Nb particles, Nb alloy particles, Cr particles , Cr alloy particles, Zn particles, Zn alloy particles, Ru particles, Ru alloy particles, Rh particles, Rh alloy particles, Ta particles, Ta alloy particles, Ir particles, Ir alloy particles, W particles and W alloy particles Manufacturing method of the alloy powder, characterized in that at least one element.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001044088A JP3696514B2 (en) | 2000-05-31 | 2001-02-20 | Method for producing alloy powder |
EP01113224A EP1174385B1 (en) | 2000-05-31 | 2001-05-30 | Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle |
DE60106149T DE60106149T2 (en) | 2000-05-31 | 2001-05-30 | Hydrogen-absorbing alloy powder and method for producing the same and fuel tank for storing hydrogen |
US09/866,783 US6656246B2 (en) | 2000-05-31 | 2001-05-30 | Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle |
US10/674,018 US7060120B1 (en) | 2000-05-31 | 2003-09-30 | Hydrogen absorbing alloy powder and hydrogen storing tank for mounting in a vehicle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-166480 | 2000-05-31 | ||
JP2000166480 | 2000-05-31 | ||
JP2001044088A JP3696514B2 (en) | 2000-05-31 | 2001-02-20 | Method for producing alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002053902A JP2002053902A (en) | 2002-02-19 |
JP3696514B2 true JP3696514B2 (en) | 2005-09-21 |
Family
ID=26593248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001044088A Expired - Fee Related JP3696514B2 (en) | 2000-05-31 | 2001-02-20 | Method for producing alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3696514B2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US8889065B2 (en) | 2006-09-14 | 2014-11-18 | Iap Research, Inc. | Micron size powders having nano size reinforcement |
US7758784B2 (en) * | 2006-09-14 | 2010-07-20 | Iap Research, Inc. | Method of producing uniform blends of nano and micron powders |
JP5188317B2 (en) * | 2008-08-08 | 2013-04-24 | 本田技研工業株式会社 | Hydrogen storage material and method for producing the same |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US10689740B2 (en) | 2014-04-18 | 2020-06-23 | Terves, LLCq | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10150713B2 (en) | 2014-02-21 | 2018-12-11 | Terves, Inc. | Fluid activated disintegrating metal system |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
CA3012511A1 (en) | 2017-07-27 | 2019-01-27 | Terves Inc. | Degradable metal matrix composite |
-
2001
- 2001-02-20 JP JP2001044088A patent/JP3696514B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002053902A (en) | 2002-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3696514B2 (en) | Method for producing alloy powder | |
US6656246B2 (en) | Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle | |
JP3963947B2 (en) | Electrochemical hydrogen storage alloy and battery containing foreign powder particles | |
WO1997008353A1 (en) | Rare earth metal/nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery | |
JPH11503489A (en) | Nanocrystalline Mg-based material and its use for hydrogen transport and hydrogen storage | |
TW200622006A (en) | Hydrogen storage alloys having reduced PCT hysteresis | |
JP2560565B2 (en) | Method for producing hydrogen storage alloy | |
JPH101731A (en) | Hydrogen storage alloy and its production | |
JP2004504699A (en) | Nickel metal hydride battery, electrochemical hydrogen storage alloy for fuel cell and method for producing the same | |
CA2377952C (en) | Hydrogen absorbing alloy powder, and process for producing the same | |
JP3054477B2 (en) | Hydrogen storage alloy electrode | |
JP4721597B2 (en) | Method for producing Mg-based hydrogen storage alloy | |
JP2004059961A (en) | Hydrogen occluding alloy and its producing method | |
JP2560567B2 (en) | Method for producing hydrogen storage alloy | |
JPH1180865A (en) | Hydrogen storage alloy excellent in durability and its production | |
JP2560566B2 (en) | Method for producing hydrogen storage alloy | |
EP1117500B8 (en) | Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures | |
JP4235721B2 (en) | Hydrogen storage alloy, hydrogen storage alloy electrode, and method for producing hydrogen storage alloy | |
JPH1180801A (en) | Production of polycrystal hydrogen storage alloy grain | |
JP3318197B2 (en) | Method for producing hydrogen storage alloy powder | |
JP2002053926A (en) | Hydrogen storage alloy powder and on-vehicle hydrogen storage tank | |
JP2004192965A (en) | Manufacturing method of hydrogen storage alloy electrode, electrode, and secondary battery | |
JP2023082634A (en) | LOW-Co HYDROGEN STORAGE ALLOYS | |
JP3394088B2 (en) | ZrNi-based hydrogen storage alloy and method for producing the same | |
JPH10140201A (en) | Production of hydrogen storage alloy powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050629 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080708 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140708 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |