JP2000264743A - Easily sinterable basic irregular refractory material and kiln using the same - Google Patents

Easily sinterable basic irregular refractory material and kiln using the same

Info

Publication number
JP2000264743A
JP2000264743A JP11066586A JP6658699A JP2000264743A JP 2000264743 A JP2000264743 A JP 2000264743A JP 11066586 A JP11066586 A JP 11066586A JP 6658699 A JP6658699 A JP 6658699A JP 2000264743 A JP2000264743 A JP 2000264743A
Authority
JP
Japan
Prior art keywords
weight
mgo
cao
sio
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11066586A
Other languages
Japanese (ja)
Inventor
Kiyoshi Goto
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11066586A priority Critical patent/JP2000264743A/en
Publication of JP2000264743A publication Critical patent/JP2000264743A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an irregular refractory material which can be sintered at <1300 deg.C and develops its strength. SOLUTION: This basic irregular refractory material contains 50 to 98 wt.% of MgO component and the balance of two or more kinds of other components selected from Al2O3, B2O3, CaO, FeO, MgO, MnO, P2O5 and SiO2, and an inevitable impurity component. A part or the whole of the magnesia intergranular region produces a liquid phase at 500 to 1400 deg.C. Further, the irregular refractory material contains zirconia, zircon, carbon, carbide, boride, nitride or metals. Other components consists of, by weight ratio, SiO2:CaO=35:55 to 80:20, Al2O3: CaO=60:30 to 30:60, SiO2:Al2O3=85:15 to 50:50, FeO:SiO2=100:0 to 35:55. MnO: SiO2=80:20 to 50:50, P2O5:CaO=100:0 to 50:50, P2O5:Al2O3=80:20 to 70:30 and P2O5:SiO2=100:0 to 5:95, and are included in total by 2 to 30 wt.%. Or, the material contains B2O3 and SiO2 in total by 2 to 30 wt.% in a weight ratio, of B2O3:SiO2=100:0 to 5:95, and contains 70 to 98 wt.% of MgO. The obtd. basic irregular refractory material is used for the kiln.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属精錬用等の窯炉
に使用される不定形耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous refractory used in a kiln for metal refining and the like.

【0002】[0002]

【従来の技術】不定形耐火物であるスタンプ材、ラミン
グ材、モルタルは広く様々な部位で使用される。スタン
プ材やラミング材は窯炉のウエアライニングのみなら
ず、隙間の充填、またその可縮性を利用して膨張代の充
填材などとして幅広く使用される。施工は水分を加えず
に乾式で、あるいは数重量%程度の水などの結合剤を添
加した湿式で施工される。モルタルは主にれんがなどの
定形耐火物の目地の充填に使用されるが、スタンプ材と
同様に隙間の充填や、膨張代の充填材としても使用され
る。施工は水分を加えずに乾式あるいは湿式で施工され
る。
2. Description of the Related Art Stamp materials, ramming materials, and mortars, which are irregular refractories, are widely used in various places. Stamping materials and ramming materials are widely used not only as wear linings for kilns but also as fillers for expansion allowances due to filling gaps and their shrinkability. The work is performed by a dry method without adding moisture or by a wet method to which a binder such as water of about several weight% is added. Mortar is mainly used for filling joints of fixed refractories such as bricks, but is also used for filling gaps and as a filler for expansion like the stamp material. The work is carried out dry or wet without adding moisture.

【0003】一方、プラスチック耐火物、パッチング
材、鏝塗材、流し込み材などの不定形耐火物も充填材等
として使用される場合がある。
On the other hand, irregular-shaped refractories such as plastic refractories, patching materials, trowel coating materials, and cast materials are sometimes used as fillers.

【0004】[0004]

【発明が解決しようとする課題】不定形耐火物を隙間の
充填や膨脹代の充填材として使用した場合、その隙間や
膨脹代に何らかのガスが流れ込むと、ガス気流により不
定形耐火物が運び去られたり、あるいは窯炉の傾動等に
より移動して消失し、隙間や膨脹代が空洞になり、耐火
物ライニングが緩み、れんがの脱落などの原因となる。
またガスが空洞を通してウエアれんがの目地などから吹
き出し、穴があくこともある。また、ウエアライニング
に炭素含有耐火物が使用されている場合、不定形耐火物
が消失して空洞が生じると、炭素含有耐火物が背面側か
ら酸化されることがある。このような現象は、RH設備
などの真空槽のウエアれんがとパーマれんがの間の空隙
を不定形耐火物で充填した場合にしばしば見られ、特に
乾式で施工した場合に顕著である。なおこの場合のこれ
らの不定形耐火物の主成分はマグネシア(ペリクレス)
である。
When an amorphous refractory is used as a filler for filling gaps or expanding allowances, if any gas flows into the gaps or expansion allowance, the amorphous refractories are carried away by the gas flow. It is lost or moved by the tilting of the kiln, etc., and disappears, leaving gaps and expansion allowance hollow, loosening the refractory lining and causing bricks to fall off.
In addition, gas may be blown out from the joints of the wear bricks through the cavities, resulting in holes. Further, when a carbon-containing refractory is used for the wear lining, if the amorphous refractory disappears and a cavity is formed, the carbon-containing refractory may be oxidized from the back side. Such a phenomenon is often seen when the gap between the wear brick and the permanent brick in a vacuum tank such as an RH facility is filled with an amorphous refractory, and is particularly remarkable when the work is performed in a dry manner. The main component of these amorphous refractories in this case is magnesia (pericles)
It is.

【0005】不定形耐火物の消失の直接原因はガス気流
や傾動であるが、不定形耐火物の強度が十分でなく、粒
子がばらばらになりやすい点にも問題がある。RH設備
の真空槽のウエアれんがとパーマれんがの間の充填材の
場合を例に取ると、れんがを一段施工する毎に10〜2
0mmの空隙に充填施工することが多い。充填材には流
動性が求められるため、スタンプ材やラミング材の場合
は乾式あるいは少量(5重量%以下)の結合剤を添加し
て、またモルタルの場合はそのまま、あるいは数重量%
の粘土を加えて乾式で充填、あるいは水を10〜30重
量%程度添加して流し込む場合が多い。流し込み材の場
合も水を3〜20重量%添加して流し込む。
[0005] The direct cause of the disappearance of the amorphous refractory is gas flow and tilting. However, there is also a problem that the strength of the amorphous refractory is not sufficient and the particles are apt to fall apart. Taking the case of the filler between the wear brick and the perm brick of the vacuum tank of the RH equipment as an example, every time the brick is constructed in one step, 10 to 2 is required.
In many cases, the filling work is performed in a gap of 0 mm. Fillers are required to have fluidity, so dry or small amounts (5% by weight or less) of a binder are added for stamping materials and ramming materials, and mortar is used as it is or several% by weight.
Is often added in a dry manner by adding clay, or water is added at about 10 to 30% by weight and poured. In the case of a casting material, water is added by adding 3 to 20% by weight of water.

【0006】ところでウエアれんがとパーマれんがの境
界付近の温度は、ウエアれんがの残寸にもよるが、50
0〜1400℃となる。マグネシアは難焼結性で、この
温度域では容易に焼結しない。また結合剤もこの温度域
では強度が低下するため、これらの不定形耐火物はガス
気流や傾動により消失する。本発明は、1400℃以下
で焼結し、高強度の得られる不定形耐火物を提供するこ
とを目的とする。
[0006] The temperature near the boundary between the wear brick and the permanent brick depends on the remaining size of the wear brick.
0 to 1400 ° C. Magnesia is difficult to sinter and does not easily sinter in this temperature range. Further, since the strength of the binder also decreases in this temperature range, these irregular refractories disappear due to gas flow or tilting. An object of the present invention is to provide an amorphous refractory which sinters at 1400 ° C. or lower and has a high strength.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に研究と開発を進めた結果、本発明を得た。すなわち本
発明の要旨とするところは、下記(1)〜(5)のとお
りである。 (1)MgO成分を50〜98重量%含有し、残部は他
の成分としてAl2 3 、B2 3 、CaO、FeO、
MgO、MnO、P2 5 及びSiO2 の2種以上、及
び不可避的不純成分からなる不定形耐火物であって、マ
グネシア粒界の一部または全部が500〜1400℃で
液相を生じることを特徴とする易焼結性塩基性不定形耐
火物。
[MEANS FOR SOLVING THE PROBLEMS]
As a result of further research and development, the present invention was obtained. Ie book
The gist of the invention is as follows (1) to (5).
It is. (1) 50 to 98% by weight of MgO component, the remainder being other
Al as a component ofTwoO Three, BTwoOThree, CaO, FeO,
MgO, MnO, PTwoOFiveAnd SiOTwoTwo or more
And refractory made of inevitable impurities.
Some or all of the gnesian grain boundaries are at 500-1400 ° C
Easily sinterable, basic amorphous, resistant to liquid phase
Fire.

【0008】(2)他の成分が重量比でSiO2 :Ca
Oが45:55〜80:20、Al 2 3 :CaOが6
0:40〜40:60、SiO2 :Al2 3 が85:
15〜50:50、FeO:SiO2 が100:0〜4
5:55、MnO:SiO2が80:20〜50:5
0、P2 5 :CaOが100:0〜50:50、P2
5 :Al2 3 が80:20〜70:30及びP2
5 :SiO2 が100:0〜5:95の1種又は2種以
上からなり、その合計量が2〜30重量%であることを
特徴とする(1)記載の易焼結性塩基性不定形耐火物。
(2) Other components are SiO 2 in a weight ratio.Two: Ca
O is 45:55 to 80:20, Al TwoOThree: CaO is 6
0: 40-40: 60, SiOTwo: AlTwoOThreeIs 85:
15-50: 50, FeO: SiOTwoIs 100: 0-4
5:55, MnO: SiOTwoIs 80:20 to 50: 5
0, PTwoOFive: CaO is 100: 0 to 50:50, PTwo
OFive: AlTwoOThreeIs 80: 20-70: 30 and PTwoO
Five: SiOTwoIs one or more of 100: 0 to 5:95
And that the total amount is 2 to 30% by weight
The easily sinterable basic amorphous refractory according to (1), which is characterized in that:

【0009】(3)他の成分が重量比でB2 3 :Si
2 が100:0〜5:95で、その合計量が2〜30
重量%で、MgOを70〜98重量%含有する(1)記
載の易焼結性塩基性不定形耐火物。 (4)さらにジルコニア、ジルコン、炭素、炭化物、硼
化物、窒化物及び金属の一種又は二種以上を合計で0〜
40重量%含むことを特徴とする(1)〜(3)のいず
れかに記載の易焼結性不定形耐火物。
(3) Other components are B 2 O 3 : Si in weight ratio.
O 2 is 100: 0-5: 95, the total amount thereof 2-30
The easily sinterable basic amorphous refractory according to (1), containing 70 to 98% by weight of MgO by weight. (4) Further, one or more of zirconia, zircon, carbon, carbide, boride, nitride and metal are used in total of 0 to 0.
The sinterable amorphous refractory according to any one of (1) to (3), which contains 40% by weight.

【0010】(5)(1)〜(4)のいずれかに記載の
易焼結性塩基性不定形耐火物を使用した窯炉。本明細書
ではMgO、SiO2 、CaOなどの元素記号で表記し
たものは化学成分名を表す。またマグネシア、シリカ、
カルシアなどの片仮名で表記したものは物質名を表す。
(5) A kiln using the easily sinterable basic amorphous refractory according to any one of (1) to (4). In this specification, those represented by element symbols such as MgO, SiO 2 and CaO represent chemical component names. Also magnesia, silica,
Those written in katakana such as calcia indicate substance names.

【0011】[0011]

【発明の実施の形態】本発明の不定形耐火物は主にマグ
ネシアからなる。これを真空槽のウエアれんがとパーマ
れんがの間に充填施工した場合の作用について以下に説
明する。本発明の不定形耐火物は500〜1400℃の
比較的低温で液相を生じ、充填材として使用した場合に
は焼結が進行し、強度が発現する。このためガス気流や
傾動により消失することがなく、また炭素含有耐火物が
背面側から酸化されることもなく、耐火物ライニングは
健全に保たれる。
BEST MODE FOR CARRYING OUT THE INVENTION The amorphous refractory of the present invention mainly comprises magnesia. The operation when filling the space between the wear brick and the permanent brick in the vacuum chamber will be described below. The amorphous refractory of the present invention generates a liquid phase at a relatively low temperature of 500 to 1400 ° C., and when used as a filler, sintering proceeds and the strength is developed. For this reason, the refractory lining is kept healthy without being lost by the gas flow or tilting, and the carbon-containing refractory is not oxidized from the back side.

【0012】本発明の不定形耐火物は50重量%以上の
MgO成分を含有する。マグネシアがMgO成分の殆ど
をなす。使用するマグネシアは電融品と焼結品のいずれ
でも問題ない。また焼結品の場合は天然品と合成品のい
ずれも使用可能である。しかし耐食性や強度などの観点
から、マグネシアの純度は85重量%以上とすることが
望ましい。
The amorphous refractory of the present invention contains at least 50% by weight of an MgO component. Magnesia makes up most of the MgO component. There is no problem with the magnesia to be used, either an electrofused product or a sintered product. In the case of a sintered product, either a natural product or a synthetic product can be used. However, from the viewpoint of corrosion resistance and strength, the purity of magnesia is desirably 85% by weight or more.

【0013】本発明の易焼結性不定形耐火物の特徴は5
00〜1400℃で液相を生じ、液相焼結を起こすこと
にある。これは、出発物質が1400℃以下で共和融解
あるいは非共和融解を起こす、すなわち他の物質と共存
した場合に液相を生じるか、あるいは融点1400℃以
下の物質が含まれているからである。本発明の易焼結性
不定形耐火物は50〜98重量%のMgOを含有し、主
にマグネシアからなる。このマグネシアが耐火物の骨格
をなし、さらに生じた液相が接着剤の役目を果たす。耐
火物が変形あるいはばらばらにならないように健全に保
つには骨格と接着剤の量比の制御が重要である。骨格の
量を適正にするためにMgO成分は50〜98重量%と
する必要がある。また、接着剤である液相は、マグネシ
ア粒界のような部分に生じる。このように局部的にMg
O成分が少ない、特にMgO成分が30重量%以下の部
分で1400℃以下で液相が生じるような不定形耐火物
としておくと、マグネシア粒界に液相が生じ、うまく骨
格と接着剤を配置することができる。なお、液相は高温
下で生じ、温度が低下すると固相に変化するので、本発
明の耐火物を常温で調査した場合、接着剤の役割を果た
しているのは、液相から生じた固相である。従って厳密
には接着剤の役目を果たしているのは、液相あるいはそ
れから生じた固相である。
The feature of the easily sinterable amorphous refractory of the present invention is 5
A liquid phase is formed at a temperature of from 00 to 1400 ° C., and liquid phase sintering is caused. This is because the starting material undergoes reconciliation melting or non-refractory melting at 1400 ° C. or lower, that is, a liquid phase is formed when coexisting with another substance, or a substance having a melting point of 1400 ° C. or lower is contained. The sinterable amorphous refractory of the present invention contains 50 to 98% by weight of MgO and is mainly composed of magnesia. The magnesia forms the skeleton of the refractory, and the resulting liquid phase serves as an adhesive. It is important to control the ratio of the skeleton and the adhesive in order to keep the refractory healthy so that it does not deform or fall apart. In order to make the amount of the skeleton proper, the MgO component needs to be 50 to 98% by weight. Further, the liquid phase as the adhesive is generated in a portion such as a magnesia grain boundary. In this way, Mg
If the refractory is made such that a liquid phase is generated at a temperature of 1400 ° C. or less in a portion where the O component is small, particularly in a portion where the MgO component is 30% by weight or less, a liquid phase is generated at a magnesia grain boundary, and the skeleton and the adhesive are arranged well. can do. Since the liquid phase is generated at a high temperature and changes to a solid phase when the temperature decreases, when the refractory of the present invention is examined at room temperature, the role of the adhesive is played by the solid phase generated from the liquid phase. It is. Therefore, strictly speaking, the liquid phase or the solid phase formed therefrom plays the role of the adhesive.

【0014】液相が生じる温度が極端に低いと、混合あ
るいは混練中の摩擦熱で固まりが生じたり、あるいは高
温で異常に焼結が進行して、施工体が収縮するなどの問
題が生じることがある。このため、液相が生じる温度は
500℃以上、1400℃以下とすべきである。液相生
成温度は加熱装置で試料を加熱しながら観察できる顕微
鏡により調べることができる。
If the temperature at which the liquid phase is generated is extremely low, problems may occur, such as agglomeration due to frictional heat during mixing or kneading, or abnormal sintering at high temperatures, causing shrinkage of the work piece. There is. For this reason, the temperature at which the liquid phase occurs should be 500 ° C. or higher and 1400 ° C. or lower. The liquid phase generation temperature can be examined with a microscope that allows observation while heating the sample with a heating device.

【0015】冷却後に本発明の耐火物を調査すると、他
の物質と共存した場合に1400℃以下で液相を生じる
物質や融点1400℃以下の物質が検出される場合もあ
るが、反応によりすべて融点の高い物質に変化する場合
もある。本発明の代表的な系における作用について説明
する。MgO−SiO2 −CaO系においては、耐火物
の組成は重量比でSiO2 :CaOが45:55〜8
0:20で、SiO2 とCaOの合計量が2〜30重量
%、望ましくは10〜30重量%、さらに望ましくは1
5〜30重量%で、MgO含有量は50〜98重量%と
する。この組成からMgO成分を25〜5重量%に減じ
ると、CaO・MgO・2SiO2 (ディオプサイ
ド)、2CaO・MgO・2SiO2 (アカマナイト)
などの融点の低い物質を含む集合体となり、1400℃
以下で液相を生じ、液相焼結を起こす。耐火物はMgO
成分を減じない状態で使用するのであるが、SiO2
分とCaO成分は所々でMgO成分と液相を生じ、これ
が焼結を促進する。この結果、耐火物のミクロ組織は、
骨格であるマグネシアを、生じた液相が接合した組織と
なる。SiO2 とCaOの合計量を2〜30重量%と
し、MgO含有量を50〜98重量%とするのは、液相
が少なすぎて焼結しない、あるいは液相が多量に生じて
耐火物自体が極度に軟化するのを防ぐためである。上記
の耐火物組成を満足するには、様々な原料の組み合わせ
が考えられる。マグネシアについては前述の通りであ
る。SiO2 源としてはたとえば珪石、フリット、シリ
カフラワーなどが、またCaO源としてはたとえば生石
灰、消石灰、炭酸カルシウム、ドロマイトなどが使用可
能である。また、SiO2 とCaOの化合物として、ポ
ルトランドセメント、CaO・SiO2 (ウォラストナ
イト)、高炉スラグなども選択可能である。なお、この
耐火物の場合は、1400℃で3時間熱処理した場合、
SiO2 源とCaO源は反応して消失し、マグネシアと
CaO・MgO・SiO2 (モンチセライト)と、2M
gO・SiO2 (フォルステライト)もしくは3CaO
・MgO・2SiO2 (メルビナイト)に変化するが、
未反応部分が残る場合もある。
When the refractory of the present invention is examined after cooling, a substance which forms a liquid phase at 1400 ° C. or lower or a substance having a melting point of 1400 ° C. or lower when coexisting with other substances may be detected. It may change to a substance with a high melting point. The operation in a typical system of the present invention will be described. In MgO-SiO 2 -CaO-based, SiO 2 in the composition of the refractory weight ratio: CaO 45: 55-8
At 0:20, the total amount of SiO 2 and CaO is 2 to 30% by weight, preferably 10 to 30% by weight, and more preferably 1 to 30% by weight.
The content is 5 to 30% by weight, and the MgO content is 50 to 98% by weight. Is subtracted from the composition of the MgO component in 25-5 wt%, CaO · MgO · 2SiO 2 ( diopside), 2CaO · MgO · 2SiO 2 ( Akamanaito)
Becomes an aggregate containing a substance having a low melting point, such as 1400 ° C.
A liquid phase is generated below, and liquid phase sintering occurs. Refractory is MgO
Although the components are used in a state where the components are not reduced, the SiO 2 component and the CaO component sometimes form a liquid phase with the MgO component, which promotes sintering. As a result, the refractory microstructure
A structure in which magnesia as a skeleton is joined to the resulting liquid phase. The total amount of SiO 2 and CaO is set to 2 to 30% by weight and the content of MgO is set to 50 to 98% by weight because the liquid phase is too small to be sintered or a large amount of liquid phase is generated and the refractory itself is formed. In order to prevent the excessive softening. To satisfy the refractory composition described above, various combinations of raw materials can be considered. Magnesia is as described above. As the SiO 2 source, for example, silica stone, frit, silica flour and the like can be used, and as the CaO source, for example, quick lime, slaked lime, calcium carbonate, dolomite and the like can be used. Further, as the compound of SiO 2 and CaO, Portland cement, CaO.SiO 2 (wollastonite), blast furnace slag, and the like can be selected. In the case of this refractory, when heat-treated at 1400 ° C. for 3 hours,
The SiO 2 source and the CaO source react and disappear, and magnesia and CaO.MgO.SiO 2 (Monticelite) and 2M
gO.SiO 2 (forsterite) or 3CaO
・ It changes to MgO.2SiO 2 (Merbinite),
An unreacted portion may remain.

【0016】MgO−Al2 3 −CaO系の場合につ
いては、重量比でAl2 3 :CaOが60:40〜4
0:60で、Al2 3 とCaOの合計量が2〜30重
量%、望ましくは10〜30重量%で、MgOを50〜
98重量%とする。この組成からMgO成分を10重量
%以下に減じると、12CaO・7Al2 3 を含む集
合体となり、1400℃以下で共融して液相を生じる。
耐火物はMgO成分を減じない状態で使用するのである
が、Al2 3 成分とCaO成分は所々でMgO成分と
液相を生じ、これが焼結を促進する。この結果、耐火物
のミクロ組織は、骨格であるマグネシアを、生じた液相
が接合した組織となる。なおAl2 3とCaOの合計
量を2〜30重量%とし、MgO含有量を50〜98重
量%とするのは、液相が少なすぎて焼結しない、あるい
は液相が多量に生じて耐火物自体が極度に軟化するのを
防ぐためである。上記の耐火物組成を満足するには、様
々な原料の組み合わせが考えられる。マグネシアについ
ては前述の通りであり、Al2 3 源として例えば合成
アルミナ、ボーキサイトなどが、またCaO源としては
たとえば生石灰、消石灰、炭酸カルシウム、ドロマイト
などが使用可能である。また、Al2 3 とCaOの化
合物として、たとえばアルミナセメントが使用できる。
また製鋼用副原料として市販されている12CaO・7
Al2 3 を含むAl2 3 −CaO系物質なども使用
可能である。なお、この耐火物の場合は、1400℃で
3時間熱処理した場合、12CaO・7Al2 3 はマ
グネシアと共存して残留する。
In the case of the MgO--Al 2 O 3 --CaO system, the weight ratio of Al 2 O 3 : CaO is 60: 40-4.
At 0:60, the total amount of Al 2 O 3 and CaO is 2 to 30% by weight, preferably 10 to 30% by weight, and MgO is 50 to 50% by weight.
98% by weight. When the MgO component is reduced to 10% by weight or less from this composition, an aggregate containing 12CaO.7Al 2 O 3 is formed, and a eutectic is formed at 1400 ° C. or less to produce a liquid phase.
The refractory is used without reducing the MgO component, but the Al 2 O 3 component and the CaO component sometimes generate a liquid phase with the MgO component, which promotes sintering. As a result, the microstructure of the refractory is a structure in which magnesia as a skeleton is joined to the generated liquid phase. The reason that the total amount of Al 2 O 3 and CaO is set to 2 to 30% by weight and the MgO content is set to 50 to 98% by weight is that the liquid phase is too small to be sintered or a large amount of liquid phase is generated. This is to prevent the refractory itself from being extremely softened. To satisfy the refractory composition described above, various combinations of raw materials can be considered. The magnesia is as described above. For example, synthetic alumina, bauxite and the like can be used as the Al 2 O 3 source, and quick lime, slaked lime, calcium carbonate, dolomite and the like can be used as the CaO source. As the compound of Al 2 O 3 and CaO, for example, alumina cement can be used.
12CaO.7 which is commercially available as an auxiliary material for steelmaking
Al 2 O 3 -CaO-based substances including Al 2 O 3 can also be used. In the case of this refractory, when heat-treated at 1400 ° C. for 3 hours, 12CaO · 7Al 2 O 3 remains together with magnesia.

【0017】MgO−SiO2 −Al2 3 系の場合に
ついては、重量比でSiO2 :Al 2 3 が85:15
〜50:50で、SiO2 とAl2 3 の合計量が2〜
30重量%、望ましくは10〜30重量%で、MgOを
50〜98重量%とする。この組成からMgOを30〜
10重量%に減じると、2MgO・2Al2 3 ・5S
iO2 (コーディエライト)を含む集合体となり、14
00℃以下で液相を生じる。耐火物はMgO成分を減じ
ない状態で使用するのであるが、SiO2 成分とAl2
3 成分は所々でMgO成分と液相を生じ、これが焼結
を促進する。この結果、耐火物のミクロ組織は、骨格で
あるマグネシアを、生じた液相が接合した組織となる。
なおSiO2 とAl2 3 の合計量を2〜30重量%と
し、MgO含有量を50〜98重量%とするのは、液相
が少なすぎて焼結しない、あるいは液相が多量に生じて
耐火物自体が極度に軟化するのを防ぐためである。上記
の耐火物組成を満足するには、様々な原料の組み合わせ
が考えられる。マグネシア、SiO2 源、Al2 3
については前述の通りである。また、SiO2 とAl2
3 の化合物である3Al2 3 ・2SiO2 (ムライ
ト)、MgOとSiO2 とAl2 3 の化合物である2
MgO・2Al2 3 ・5SiO2 (コーディエライ
ト)も使用可能である。なお、この耐火物の場合、14
00℃で3時間熱処理すると、SiO2 源とAl2 3
源は反応して消失し、マグネシアと2MgO・SiO2
(フォルステライト)とMgO・Al2 3 (スピネ
ル)になるが、未反応部分が残ることもある。
MgO-SiOTwo-AlTwoOThreeIn the case of a system
About the weight ratio of SiOTwo: Al TwoOThreeIs 85:15
~ 50: 50, SiOTwoAnd AlTwoOThreeThe total amount of
30% by weight, desirably 10 to 30% by weight of MgO
50 to 98% by weight. From this composition, MgO
When reduced to 10% by weight, 2MgO.2AlTwoOThree・ 5S
iOTwo(Cordierite), and it becomes 14
A liquid phase is formed below 00 ° C. Refractories reduce MgO content
It is used without anyTwoComponents and AlTwo
OThreeIn some parts, a liquid phase occurs with the MgO component, which is
To promote. As a result, the microstructure of the refractory
A magnesia forms a structure in which the resulting liquid phases are joined.
Note that SiOTwoAnd AlTwoOThreeAnd the total amount of 2 to 30% by weight
The reason why the MgO content is set to 50 to 98% by weight is that the liquid phase
Is too small to sinter, or too much liquid phase
This is to prevent the refractory itself from being extremely softened. the above
In order to satisfy the refractory composition of the various combinations of raw materials
Can be considered. Magnesia, SiOTwoSource, AlTwoOThreesource
Is as described above. In addition, SiOTwoAnd AlTwo
OThree3Al which is a compound ofTwoOThree・ 2SiOTwo(Murai
G), MgO and SiOTwoAnd AlTwoOThree2 which is a compound of
MgO · 2AlTwoOThree・ 5SiOTwo(Cody Eli
G) can also be used. In the case of this refractory, 14
After heat treatment at 00 ° C. for 3 hours, SiO 2TwoSource and AlTwoOThree
The source reacts and disappears, and magnesia and 2MgO.SiOTwo
(Forsterite) and MgO / AlTwoOThree(Spine
), But an unreacted portion may remain.

【0018】以上、主要な系について説明したが、他の
MgO−FeO−SiO2 系、MgO−MnO−SiO
2 系、MgO−B2 3 −SiO2 系、MgO−P2
5 −CaO系、MgO−P2 5 −Al2 3 系、Mg
O−P2 5 −SiO2 系についても同様である。なお
FeO源としては鉄鋼の圧延工程などで発生するミルス
ケール、MnO−SiO2 源としてはマンガン鉱石など
が使用できる。B2 3 源としては硼酸や硼珪酸ガラス
などが利用できる。またP2 5 源としては燐鉱石、燐
酸系ガラス、五酸化燐などが使用できる。
The main system has been described above.
MgO-FeO-SiOTwoSystem, MgO-MnO-SiO
TwoSystem, MgO-BTwoOThree-SiOTwoSystem, MgO-PTwoO
Five-CaO-based, MgO-PTwoOFive-AlTwoOThreeSystem, Mg
OPTwoOFive-SiOTwoThe same is true for the system. Note that
Mills generated in the steel rolling process, etc., as the FeO source
Kale, MnO-SiOTwoSources include manganese ore
Can be used. BTwoO ThreeBoric acid or borosilicate glass as source
Etc. are available. Also PTwoOFiveSources are phosphate ore, phosphorus
Acid-based glass, phosphorus pentoxide, and the like can be used.

【0019】また、本発明の易焼結性不定形耐火物に
は、さらにジルコニア、ジルコン、炭素、炭化物、硼化
物、窒化物及び金属の一種又は二種以上を合計で0〜4
0重量%含むことができる。含有量が40重量%を越え
ると、マグネシアと液相の量のバランスが崩れ、耐火物
の耐用性が損なわれる。本発明の不定形耐火物は、スタ
ンプ材、ラミング材、モルタルとして、乾式あるいは結
合剤を添加して使用することができる。また、結合材を
増量して可塑性を付与して鏝塗材やパッチング材とし
て、あるいは水やゾルや樹脂とその溶媒を添加して流し
込み材として使用することもできる。施工方法は通常採
られている方法で差し支えない。
The easily sinterable amorphous refractory of the present invention further comprises one or more of zirconia, zircon, carbon, carbide, boride, nitride, and metal in a total amount of 0-4.
0% by weight. If the content exceeds 40% by weight, the balance between the amounts of magnesia and the liquid phase will be lost, and the durability of the refractory will be impaired. The amorphous refractory of the present invention can be used as a stamp material, a ramming material, and a mortar, either dry or with a binder added. Further, it can be used as a trowel coating material or a patching material by increasing the amount of a binder to impart plasticity, or as a pouring material by adding water, a sol, a resin and a solvent thereof. The construction method may be a commonly used method.

【0020】[0020]

【実施例】〔実施例1〕純度95重量%の焼結マグネシ
アを粒径0.3mm以下に整粒し、これに粒径0.1m
m以下に粉砕した珪石(純度96重量%)10重量%と
ポルトランドセメント(SiO2 =23重量%、CaO
=64重量%)10重量%を混合して、MgO=76重
量%、SiO2 =12重量%、CaO=6重量%のモル
タルとした。
[Example 1] Sintered magnesia having a purity of 95% by weight was sized to a particle size of 0.3 mm or less, and the particle size was adjusted to 0.1 m.
10% by weight of silica stone (purity 96% by weight) pulverized to less than 100 m and Portland cement (SiO 2 = 23% by weight, CaO
= 64% by weight) to obtain a mortar of MgO = 76% by weight, SiO 2 = 12% by weight and CaO = 6% by weight.

【0021】これを300tRHの下部槽側壁のパーマ
れんがとウエアれんがの間の15mmの空隙に施工し
た。パーマれんがはマグクロ質、ウエアれんがはMgO
−C質であった。施工方法は、まずパーマれんが施工し
た後、ウエアれんがを一段築造するごとに、その背面と
パーマれんがの空隙にモルタルを鉄棒で突き入れて乾式
施工した。
This was applied to a gap of 15 mm between the permanent brick and the wear brick on the side wall of the lower tank at 300 tRH. Perm brick is made of magcro, wear brick is made of MgO
-C quality. As for the construction method, first, after the perm brick was constructed, the mortar was inserted into the gap between the back brick and the perm brick with an iron bar and dry-constructed each time the wear brick was built one step.

【0022】築炉が完了した下部槽は、乾燥、昇熱を経
て通常通り使用し、510ch使用後に耐火物ライニン
グとモルタルの状況を調査した。ウエアれんがの残寸は
90〜70mmで、顕著な緩みや異常はなかった。また
モルタルは焼結し、消失している部分は認められず、健
全であった。またMgO−Cれんがの背面は殆ど酸化さ
れていかなった。なお、実施例5で説明する方法で試料
を作成し測定したこのモルタルの強度は3MPaであっ
た。
The completed lower furnace was used as usual after drying and heating, and after using 510 ch, the condition of the refractory lining and mortar was examined. The remaining size of the wear brick was 90 to 70 mm, and there was no noticeable loosening or abnormality. In addition, the mortar was sintered and no disappeared portion was observed, and the mortar was sound. The back of the MgO-C brick was almost oxidized. The strength of this mortar measured by preparing a sample by the method described in Example 5 was 3 MPa.

【0023】また、1350℃でマグネシア粒界に液相
が生じ、1400℃でのマグネシア粒界における液相の
生成率は50%であった。なおこの実施例1に記載のモ
ルタル中で起こった作用は、前述のMgO−SiO2
CaO系の作用に基づくと考えられる。 〔実施例2〕純度95重量%の焼結マグネシアを粒径3
mm以下に整粒し、アルミナセメント(Al2 3 =4
2重量%、CaO=37重量%)30重量%を混合し
て、MgO=67重量%、Al2 3 =13重量%、C
aO=11重量%の乾式スタンプ材とした。
At 1350 ° C., a liquid phase was formed at the magnesia grain boundary, and at 1400 ° C., the generation rate of the liquid phase at the magnesia grain boundary was 50%. The effect that occurred in the mortar described in Example 1 was due to the above-mentioned MgO—SiO 2
It is thought to be based on the action of the CaO system. [Example 2] Sintered magnesia having a purity of 95% by weight
mm or less, and alumina cement (Al 2 O 3 = 4)
2% by weight, CaO = 37% by weight), 30% by weight, MgO = 67% by weight, Al 2 O 3 = 13% by weight, C
A dry stamp material of aO = 11% by weight was used.

【0024】これを300tRHの下部槽側壁のパーマ
れんがとウエアれんがの間の15mmの空隙に施工し
た。パーマれんがはマグクロ質、ウエアれんがはMgO
−C質であった。施工方法は、まずパーマれんが施工し
た後、ウエアれんがを一段築造するごとに、その背面と
パーマれんがの空隙にスタンプ材を鉄棒で突き入れて乾
式施工した。
This was installed in a gap of 15 mm between the permanent brick and the wear brick on the side wall of the lower tank of 300 tRH. Perm brick is made of magcro, wear brick is made of MgO
-C quality. After the perm brick was constructed, the stamp material was inserted into the gap between the back brick and the perm brick with an iron bar and dry-constructed every time the wear brick was built.

【0025】築炉が完了した下部槽は、乾燥、昇熱を経
て通常通り使用し、535ch使用後に耐火物ライニン
グとスタンプ材の状況を調査した。ウエアれんがの残寸
は100〜70mmで、顕著な緩みや異常はなかった。
またスタンプ材は焼結し、消失している部分は認められ
ず、健全であった。またMgO−Cれんがの背面は殆ど
酸化されていかなった。なお、実施例5で説明する方法
で試料を作成し測定したこのスタンプ材の強度は5MP
aであった。ただし添加水分量は3重量%とした。
The lower tank after the completion of the furnace construction was used as usual after drying and heating, and after using 535 channels, the conditions of the refractory lining and the stamp material were examined. The remaining size of the wear brick was 100 to 70 mm, and there was no noticeable loosening or abnormality.
The stamp material was sintered and no disappeared part was observed, and the stamp material was sound. The back of the MgO-C brick was almost oxidized. The strength of this stamp material measured and prepared by the method described in Example 5 was 5MPa.
a. However, the amount of added water was 3% by weight.

【0026】また、1350℃でマグネシア粒界に液相
が生じ、1400℃でのマグネシア粒界における液相の
生成率は100%であった。なおこの実施例2に記載の
スタンプ材中で起こった作用は、前述のMgO−Al2
3 −CaO系の作用に基づくと考えられる。 〔実施例3〕純度95重量%の焼結マグネシアを粒径1
mm以下に整粒し、粒径0.5mm以下のコーディエラ
イト(SiO2 =48重量%、Al2 3 =33重量
%、MgO=8重量%)23重量%を混合して、MgO
=75重量%、Al2 3 =8重量%、SiO2 =11
重量%の流し込み材とした。
At 1350 ° C., a liquid phase was formed at the magnesia grain boundary, and at 1400 ° C., the generation rate of the liquid phase at the magnesia grain boundary was 100%. The effect that occurred in the stamp material described in Example 2 was due to the above-described MgO—Al 2
O 3 is considered to be based on the action of the -CaO system. Example 3 Sintered magnesia having a purity of 95% by weight was prepared with a particle size of 1
mm, and 23% by weight of cordierite (SiO 2 = 48% by weight, Al 2 O 3 = 33% by weight, MgO = 8% by weight) having a particle size of 0.5 mm or less are mixed.
= 75% by weight, Al 2 O 3 = 8% by weight, SiO 2 = 11
A weight% of the casting material was used.

【0027】これを300tRHの下部槽側壁のパーマ
れんがとウエアれんがの間の15mmの空隙に施工し
た。パーマれんがはマグクロ質、ウエアれんがはMgO
−C質であった。施工方法は、まずパーマれんが施工し
た後、ウエアれんがを一段築造するごとに、その背面と
パーマれんがの空隙に水分25重量%を添加して混練し
たものを流し込んだ。
This was installed in a gap of 15 mm between the permanent brick and the wear brick on the lower tank side wall of 300 tRH. Perm brick is made of magcro, wear brick is made of MgO
-C quality. The construction method was as follows. After the perm brick was constructed, 25% by weight of water was added and kneaded into the gap between the back brick and the perm brick every time the wear brick was built one step.

【0028】築炉が完了した下部槽は、乾燥、昇熱を経
て通常通り使用し、542ch使用後に耐火物ライニン
グと流し込み材の状況を調査した。ウエアれんがの残寸
は90〜60mmで、顕著な緩みや異常はなかった。ま
た流し込み材は焼結し、消失している部分は認められ
ず、健全であった。またMgO−Cれんがの背面は殆ど
酸化されていかなった。なお、実施例5で説明する方法
で試料を作成し測定したこの流し込み材の強度は5MP
aであった。
The completed lower furnace was used as usual after drying and heating, and after using 542 channels, the condition of the refractory lining and the pouring material was examined. The remaining size of the wear brick was 90 to 60 mm, and there was no noticeable loosening or abnormality. The cast material was sintered, and no disappeared part was observed, and it was sound. The back of the MgO-C brick was almost oxidized. The strength of the casting material measured and prepared by the method described in Example 5 was 5MPa.
a.

【0029】また、1350℃でマグネシア粒界に液相
が生じ、1400℃でのマグネシア粒界における液相の
生成率は40%であった。なおこの実施例3に記載の流
し込み材中で起こった作用は、前述のMgO−−SiO
2 −Al2 3 系の作用に基づくと考えられる。 〔実施例4〕純度95重量%の焼結マグネシアを粒径
0.5mm以下に整粒し、これに粘土(SiO2 =55
重量%、Al2 3 =28重量%)20重量%と粒径
0.1mm以下の炭酸カルシウム(純度95重量%)7
重量%と水を混合して混練し、MgO=69重量%、S
iO2 =11重量%、Al2 3 =6重量%、CaO=
4重量%のプラスチック耐火物とした。
At 1350 ° C., a liquid phase was formed at the magnesia grain boundary, and the generation rate of the liquid phase at the magnesia grain boundary at 1400 ° C. was 40%. Note that the action that occurred in the casting material described in Example 3 was the same as that of the aforementioned MgO--SiO
It is thought to be based on the action of the 2- Al 2 O 3 system. Example 4 Sintered magnesia having a purity of 95% by weight was sized to a particle size of 0.5 mm or less, and clay (SiO 2 = 55) was added thereto.
% By weight, Al 2 O 3 = 28% by weight) 20% by weight and calcium carbonate having a particle size of 0.1 mm or less (purity: 95% by weight) 7
Wt. And water are mixed and kneaded, and MgO = 69 wt.
iO 2 = 11% by weight, Al 2 O 3 = 6% by weight, CaO =
It was 4% by weight of a plastic refractory.

【0030】これを300tRHの下部槽側壁のパーマ
れんがとウエアれんがの間の15mmの空隙に施工し
た。パーマれんがはマグクロ質、ウエアれんがはMgO
−C質であった。施工方法は、まずパーマれんが施工し
た後、プラスチック耐火物を15mmよりもやや厚く、
ウエアれんが一段の高さ分施工し、ウエアれんがを突き
当てて15mmに圧縮した。
This was applied to a gap of 15 mm between the permanent brick and the wear brick on the side wall of the lower tank at 300 tRH. Perm brick is made of magcro, wear brick is made of MgO
-C quality. The construction method, first, after perm brick construction, plastic refractories are slightly thicker than 15 mm,
Wear bricks were constructed at a height of one step, and the wear bricks were pressed against each other and compressed to 15 mm.

【0031】築炉が完了した下部槽は、乾燥、昇熱を経
て通常通り使用し、523ch使用後に耐火物ライニン
グとプラスチック耐火物の状況を調査した。ウエアれん
がの残寸は90〜60mmで、顕著な緩みや異常はなか
った。またプラスチック耐火物は焼結し、消失している
部分は認められず、健全であった。またMgO−Cれん
がの背面は殆ど酸化されていかなった。なお、実施例5
で説明する方法で試料を作成し測定したこのプラスチッ
ク耐火物の強度は5MPaであった。なお試料の作成に
当たっては、更なる水分の添加はせず、プラスチック耐
火物を型に押し込んで成形した。
After completion of the furnace construction, the lower tank was used as usual after drying and heating, and after using 523 channels, the condition of the refractory lining and the plastic refractory was examined. The remaining size of the wear brick was 90 to 60 mm, and there was no noticeable loosening or abnormality. Further, the plastic refractory sintered and no disappeared part was observed, and was sound. The back of the MgO-C brick was almost oxidized. Example 5
The strength of this plastic refractory, which was prepared and measured by the method described in the above section, was 5 MPa. In the preparation of the sample, the plastic refractory was pressed into a mold and molded without adding any additional water.

【0032】また、1350℃でマグネシア粒界に液相
が生じ、1400℃でのマグネシア粒界における液相の
生成率は70%であった。なおこの実施例4に記載のプ
ラスチック耐火物中で起こった作用は、前述のMgO−
SiO2 −Al2 3 系あるいはMgO−SiO2 −C
aO系あるいはMgO−Al2 3 −CaO系の作用に
基づくと考えられる。
At 1350 ° C., a liquid phase was formed at the magnesia grain boundary, and the generation rate of the liquid phase at the magnesia grain boundary at 1400 ° C. was 70%. The effect that occurred in the plastic refractory described in Example 4 was due to the aforementioned MgO-
SiO 2 —Al 2 O 3 or MgO—SiO 2 —C
aO system or considered based on the effect of MgO-Al 2 O 3 -CaO based.

【0033】〔実施例5〕表1の原料を組み合わせて表
2のモルタルを試作し評価した。原料の粒径はすべて
0.3mm以下であった。ポリビニールアルコールを添
加した25重量%の水を添加して混練し、40×40×
40mmの型に流し込み、そのまま常温で24時間養生
し、脱型後110℃で24時間乾燥し、さらに1400
℃で3時間熱処理した。その後、常温で圧縮強度を測定
した。
[Example 5] A mortar shown in Table 2 was prepared and evaluated by combining the raw materials shown in Table 1. The particle diameters of all the raw materials were 0.3 mm or less. 25% by weight of water to which polyvinyl alcohol is added is added and kneaded, and 40 × 40 ×
Pour into a 40 mm mold, cure as it is at room temperature for 24 hours, remove from mold and dry at 110 ° C. for 24 hours.
Heat-treated at 3 ° C. for 3 hours. Thereafter, the compressive strength was measured at room temperature.

【0034】本発明品の強度は比較品と比較して3倍以
上であり、本発明の効果が確認できた。また、A〜Fに
おけるマグネシア粒界で液相が生成する温度と1400
℃でのマグネシア粒界における液相の生成率を併せて表
2に示す。比較例Aにおいては、1500℃では液相が
生じなかった。
The strength of the product of the present invention was at least three times that of the comparative product, and the effect of the present invention was confirmed. In addition, the temperature at which a liquid phase is formed at the magnesia grain boundary in A to F and 1400
Table 2 also shows the generation rate of the liquid phase at the magnesia grain boundary at ℃. In Comparative Example A, no liquid phase was formed at 1500 ° C.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明により窯炉の耐火物ライニングを
構造的に安定させ、また酸化を抑制し、窯炉の操業を安
定させ、かつ延命することができる。最終的には鉄鋼な
どの製造コストを引き下げることができる。
According to the present invention, the refractory lining of the kiln can be structurally stabilized, oxidation can be suppressed, the operation of the kiln can be stabilized, and the life can be prolonged. Eventually, the cost of manufacturing steel and the like can be reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 1/00 F27D 1/00 K Fターム(参考) 4G033 AA01 AA02 AA03 AA04 AA06 AA07 AA12 AA14 AA16 AA18 AB08 BA01 BA05 BA06 4K002 AA01 AA02 BC03 4K013 CE01 CE09 CF12 CF18 CF19 4K051 AA00 AA02 AA05 BB03 BB08 BD05 BE03 BF03 GA01 LB04──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F27D 1/00 F27D 1/00 K F Term (Reference) 4G033 AA01 AA02 AA03 AA04 AA06 AA07 AA12 AA14 AA16 AA18 AB08 BA01 BA05 BA06 4K002 AA01 AA02 BC03 4K013 CE01 CE09 CF12 CF18 CF19 4K051 AA00 AA02 AA05 BB03 BB08 BD05 BE03 BF03 GA01 LB04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 MgO成分を50〜98重量%含有し、
残部は他の成分としてAl2 3 、B2 3 、CaO、
FeO、MgO、MnO、P2 5 及びSiO2 の2種
以上、及び不可避的不純成分からなる不定形耐火物であ
って、マグネシア粒界の一部または全部が500〜14
00℃で液相を生じることを特徴とする易焼結性塩基性
不定形耐火物。
Claims 1. An MgO component containing 50 to 98% by weight,
The rest is Al 2 O 3 , B 2 O 3 , CaO,
An amorphous refractory comprising two or more of FeO, MgO, MnO, P 2 O 5 and SiO 2 and an unavoidable impurity component, wherein a part or all of a magnesia grain boundary is 500 to 14
An easily sinterable basic amorphous refractory which forms a liquid phase at 00 ° C.
【請求項2】 他の成分が重量比でSiO2 :CaOが
45:55〜80:20、Al2 3 :CaOが60:
40〜40:60、SiO2 :Al2 3 が85:15
〜50:50、FeO:SiO2 が100:0〜45:
55、MnO:SiO2 が80:20〜50:50、P
2 5 :CaOが100:0〜50:50、P2 5
Al2 3 が80:20〜70:30及びP2 5 :S
iO2が100:0〜5:95の一種あるいは二種以上
からなり、その合計量が2〜30重量%であることを特
徴とする請求項1記載の易焼結性塩基性不定形耐火物。
2. Other components in weight ratio of SiO 2 : CaO of 45:55 to 80:20 and Al 2 O 3 : CaO of 60:
40 to 40:60, 85:15 for SiO 2 : Al 2 O 3
~50: 50, FeO: SiO 2 is 100: 0 to 45:
55, MnO: SiO 2 is 80:20 to 50:50, P
2 O 5 : CaO is 100: 0 to 50:50, P 2 O 5 :
Al 2 O 3 is 80:20 to 70:30 and P 2 O 5 : S
2. The easily sinterable basic amorphous refractory according to claim 1, wherein iO2 is composed of one or more of 100: 0 to 5:95, and the total amount is 2 to 30% by weight. .
【請求項3】 他の成分が重量比でB2 3 :SiO2
が100:0〜5:95で、その合計量が2〜30重量
%で、MgOを70〜98重量%含有する請求項1記載
の易焼結性塩基性不定形耐火物。
3. The composition according to claim 2 , wherein the other components are B 2 O 3 : SiO 2 by weight.
2. The easily sinterable basic amorphous refractory according to claim 1, wherein the content is 100: 0 to 5:95, the total amount is 2 to 30% by weight, and 70 to 98% by weight of MgO is contained.
【請求項4】 さらにジルコニア、ジルコン、炭素、炭
化物、硼化物、窒化物及び金属の一種又は二種以上を合
計で0〜40重量%含むことを特徴とする請求項1〜3
のいずれか1項に記載の易焼結性不定形耐火物。
4. The method according to claim 1, further comprising a total of 0 to 40% by weight of one or more of zirconia, zircon, carbon, carbide, boride, nitride and metal.
The easily sinterable amorphous refractory according to any one of the above.
【請求項5】 請求項1〜4のいずれか1項に記載の易
焼結性塩基性不定形耐火物を使用した窯炉。
5. A kiln using the easily sinterable basic amorphous refractory according to any one of claims 1 to 4.
JP11066586A 1999-03-12 1999-03-12 Easily sinterable basic irregular refractory material and kiln using the same Withdrawn JP2000264743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11066586A JP2000264743A (en) 1999-03-12 1999-03-12 Easily sinterable basic irregular refractory material and kiln using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11066586A JP2000264743A (en) 1999-03-12 1999-03-12 Easily sinterable basic irregular refractory material and kiln using the same

Publications (1)

Publication Number Publication Date
JP2000264743A true JP2000264743A (en) 2000-09-26

Family

ID=13320206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11066586A Withdrawn JP2000264743A (en) 1999-03-12 1999-03-12 Easily sinterable basic irregular refractory material and kiln using the same

Country Status (1)

Country Link
JP (1) JP2000264743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095729A (en) * 2001-09-25 2003-04-03 Itochu Ceratech Corp Calcia clinker, and refractory obtained by using the clinker
JP2017518943A (en) * 2014-04-15 2017-07-13 リフラクトリー・インテレクチュアル・プロパティー・ゲー・エム・ベー・ハー・ウント・コ・カーゲー Refractory ceramic batches, the use of such batches and metallurgical melters
CN108178641A (en) * 2018-01-13 2018-06-19 江苏嘉耐高温材料有限公司 A kind of tundish dry material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095729A (en) * 2001-09-25 2003-04-03 Itochu Ceratech Corp Calcia clinker, and refractory obtained by using the clinker
JP2017518943A (en) * 2014-04-15 2017-07-13 リフラクトリー・インテレクチュアル・プロパティー・ゲー・エム・ベー・ハー・ウント・コ・カーゲー Refractory ceramic batches, the use of such batches and metallurgical melters
CN108178641A (en) * 2018-01-13 2018-06-19 江苏嘉耐高温材料有限公司 A kind of tundish dry material and preparation method thereof
CN108178641B (en) * 2018-01-13 2021-04-13 江苏嘉耐高温材料股份有限公司 Tundish dry material and preparation method thereof

Similar Documents

Publication Publication Date Title
Lee et al. Evolution of in situ refractories in the 20th century
RU2587194C2 (en) Method of making lining in industrial furnace of large volume, as well as industrial furnace with lining, refractory brick for such lining
JPH0420871B2 (en)
US10227260B2 (en) Refractories and use thereof
US20230312418A1 (en) Dry material mixture for a backfill, preferably a refractory concrete backfill, for producing a heavy-clay refractory non-basic product, refractory concrete backfill and such a product, method for producing same, lining, and industrial furnace, channel transport system or mobile transport vessel
AU2008333636B2 (en) Fireproof ceramic mix, fireproof ceramic molded body formed of said mix, and the use thereof
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
US3972722A (en) Alumina-zircon bond for refractory grains
US5888586A (en) Use of a water-containing fire-resistant ceramic casting material
JP2000264743A (en) Easily sinterable basic irregular refractory material and kiln using the same
JP7302543B2 (en) monolithic refractories
JP2001302364A (en) Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JPH082975A (en) Refractory for casting application
Pilli Study on the alumina-silicon carbide-carbon based trough castable
JP3212856B2 (en) Irregular cast refractories and their moldings
JPH0952169A (en) Refractory for tuyere of molten steel container
JP2000007447A (en) Basic monolithic refractory
JP2003246683A (en) Monolithic refractory
Biswas et al. Refractories for Iron and Steel Plant
JP2004307293A (en) Monolithic refractory composition
Banerjee Thermal and Corrosion Properties of Monolithic Refractories for Iron and Steel Applications
JP2003112978A (en) Monolithic refractory for casting construction
JP3140855B2 (en) Basic amorphous refractories containing lactic acid and phosphate
JPH08325068A (en) Refrractory for casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606