JP2000264739A - PRODUCTION OF SINTERED POWDER AND AlN-BN REFRACTORY MATERIAL - Google Patents

PRODUCTION OF SINTERED POWDER AND AlN-BN REFRACTORY MATERIAL

Info

Publication number
JP2000264739A
JP2000264739A JP11066226A JP6622699A JP2000264739A JP 2000264739 A JP2000264739 A JP 2000264739A JP 11066226 A JP11066226 A JP 11066226A JP 6622699 A JP6622699 A JP 6622699A JP 2000264739 A JP2000264739 A JP 2000264739A
Authority
JP
Japan
Prior art keywords
powder
weight
aln
sintered
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11066226A
Other languages
Japanese (ja)
Inventor
Hiroaki Nishio
浩明 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11066226A priority Critical patent/JP2000264739A/en
Publication of JP2000264739A publication Critical patent/JP2000264739A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered powder having a specified low porosity, a specified composition consisting of AlN, BN and B4C and packing property by heating a filled body or a compact of a powdery mixture containing a powdery source of Al and B4C powder to a specified temperature in an atmosphere of N2 and comminuting the resulting sintered compact. SOLUTION: The sintered powder contains >=80 wt.%, in total, of 2-95 wt.% AlN, 4-73 wt.% BN and 1-25 wt. % B4C and has <=30% porosity. A powdery source of Al and B4C powder are prepared and mixed. The powdery source of Al may be metal Al or an Al alloy and may contain Mg and Si as alloying elements. The powdery mixture is filled into a graphite vessel to form a filled body or it is compacted to form a compact having shape retentivity. The filled body or the compact is heated to 1,300-2,300 deg.C under 0-10 kg/cm2 pressure of nitrogen. By the progress of nitriding, A/N and BN are formed and the porosity of the resulting sintered compact can be controlled to <=30% because of high density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結粉末、及び特
に溶融金属,溶融スラグ等の溶融物に対する耐食性に優
れたAlN−BN系耐火材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered powder and, particularly, an AlN-BN refractory material having excellent corrosion resistance to molten materials such as molten metal and molten slag.

【0002】[0002]

【従来の技術】周知の如く、六方晶の窒化ホウ素(B
N)は高い熱伝導度、優れた電気絶縁性及び優れた潤滑
性を有し、鉄、銅、ニッケル、亜鉛、ガリウム、砒素、
ガラス、氷晶石等の溶融物と反応せず、化学的に安定な
材料として知られている。前記窒化ホウ素は、空気中で
は900℃まで、不活性ガス中では2200℃まで安定
であり、ヤング率が低いので容易に弾性変形し熱衝撃に
も強い。また、前記窒化ホウ素は硬度が低いので、金属
と同様に、切削及び研削等の機械加工が容易にできると
いう特徴を有している。
2. Description of the Related Art As is well known, hexagonal boron nitride (B
N) has high thermal conductivity, excellent electrical insulation and excellent lubricity, and is composed of iron, copper, nickel, zinc, gallium, arsenic,
It is known as a chemically stable material that does not react with molten materials such as glass and cryolite. The boron nitride is stable up to 900 ° C. in air and up to 2200 ° C. in an inert gas, and has a low Young's modulus so that it is easily elastically deformed and resistant to thermal shock. Further, since boron nitride has a low hardness, it has a feature that, like metal, machining such as cutting and grinding can be easily performed.

【0003】一方、窒化アルミニウム(AlN)も、上
述の窒化ホウ素と同様に、高い熱伝導度を有し、溶鋼に
代表される各種溶融金属に対する耐食性に優れた材料と
して知られている。また、窒化アルミニウムは、軟らか
い窒化ホウ素と異なり、剛性、硬度が比較的高いので耐
磨耗性に優れている。
[0003] On the other hand, aluminum nitride (AlN) is also known as a material having high thermal conductivity and excellent corrosion resistance to various molten metals typified by molten steel, similarly to the above-mentioned boron nitride. Also, aluminum nitride is different from soft boron nitride in that it has relatively high rigidity and hardness, and thus has excellent wear resistance.

【0004】従って、窒化ホウ素と窒化アルミニウムを
組み合わせると、耐熱衝撃性と機械加工性と耐磨耗性を
併せ持ち、かつ溶融金属、溶融スラグに対する耐食性に
優れた複合材料が得られる。このように、AlN−BN
複合材料は各種の鋳造用耐火物としての用途が知られて
いる。
[0004] Therefore, when boron nitride and aluminum nitride are combined, a composite material having both thermal shock resistance, machinability and abrasion resistance and excellent corrosion resistance to molten metal and molten slag can be obtained. Thus, AlN-BN
Composite materials are known for use as various refractories for casting.

【0005】例えば、特開昭63−84750号公報は
鋼の連続鋳造用ノズルに係わり、窒化ホウ素20〜70
重量部、窒化アルミニウム10〜40重量部及び黒鉛1
0〜30重量部を配合したことを特徴とする連続鋳造用
ノズルを開示している。そして、発明の効果として、窒
化ホウ素、窒化アルミニウム及び黒鉛を所定の割合で配
合したノズルは溶鋼に対する濡れ性が小さいのでノズル
内面への介在物付着を防止できることを挙げている。
[0005] For example, Japanese Patent Application Laid-Open No. 63-84750 relates to a nozzle for continuous casting of steel.
Parts by weight, 10 to 40 parts by weight of aluminum nitride and graphite 1
A nozzle for continuous casting characterized by mixing 0 to 30 parts by weight is disclosed. As an effect of the invention, it is stated that a nozzle in which boron nitride, aluminum nitride and graphite are blended in a predetermined ratio has a low wettability to molten steel, so that it is possible to prevent inclusions from adhering to the inner surface of the nozzle.

【0006】一方、特開平6−238409号公報は連
続鋳造用のセラミックモールドに係わり、溶鋼と接触す
る内壁面のうち、少なくとも溶鋼の凝固点近傍をAlN
含有量が30重量%以上のAlN−BN焼結体で構成す
ることによって長期間に渡って表面状態が良好な鋼材が
鋳造できるNi−Cr−Fe系鋼材の連続鋳造用ノズル
を開示している。
On the other hand, Japanese Patent Application Laid-Open No. Hei 6-238409 relates to a ceramic mold for continuous casting, in which at least the solidification point of molten steel on the inner wall surface which comes into contact with molten steel is AlN.
Disclosed is a nozzle for continuous casting of a Ni-Cr-Fe-based steel material, which can be cast over a long period of time by using a sintered AlN-BN having a content of 30% by weight or more to form a steel material having a good surface condition. .

【0007】また、前記AlN−BN焼結体の製造方法
として、フェノール樹脂等の熱硬化性有機バインダーを
加えて焼成し残留炭素より原料粒子間の結合を図る方法
もよく知られている。この方法を適用すると、焼結後、
AlN、BNの粒子は炭素によって結合されることにな
る。この炭素は非晶質で反応性に富み、空気に触れると
350℃位から酸化が始まる。そして、この酸化によっ
てバインダーが消失し、焼結体の組織は崩壊する。従
来、この対策として、金属Si、Al、SiC等の酸化
防止剤を添加することが知られている。しかし、これら
の酸化防止剤は炭素バインダーの消失を遅らせることは
できても、防止することはできない。これが熱硬化性バ
インダーの欠点である。
As a method of manufacturing the AlN-BN sintered body, a method of adding a thermosetting organic binder such as a phenol resin and baking to bond the raw material particles from residual carbon is well known. By applying this method, after sintering,
The AlN and BN particles are bonded by carbon. This carbon is amorphous and rich in reactivity, and starts oxidizing at about 350 ° C. when exposed to air. Then, the binder disappears due to this oxidation, and the structure of the sintered body collapses. Conventionally, it has been known to add an antioxidant such as metal Si, Al, or SiC as a countermeasure for this. However, although these antioxidants can delay the loss of the carbon binder, they cannot. This is a disadvantage of thermosetting binders.

【0008】更に、AlN粉末、BN粉末を主原料とし
てこれにY2 3 等の焼結助剤を加えて成形、焼結する
方法が知られている。例えば、特開平1−246178
号公報は溶鋼用耐火物の製造方法に係わり、20〜70
重量%のBN粉末と30〜80重量%のAlN粉末と
0.1〜8重量%のY2 3 粉末を混合、成形、非酸化
性雰囲気で焼成して連続鋳造用ノズル等を製造すること
を開示している。
Further, a method is known in which AlN powder and BN powder are used as main raw materials, and a sintering aid such as Y 2 O 3 is added thereto to form and sinter. For example, JP-A-1-246178
Japanese Patent Publication No. JP-A-2005-64131 relates to a method for manufacturing a refractory for molten steel,
Mixed weight% of BN powder and 30 to 80 wt% of AlN powder and 0.1 to 8% by weight of Y 2 O 3 powder, molding, to produce a continuous casting nozzle such as by baking in a non-oxidizing atmosphere Is disclosed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、主原料
のAlN、BN粉末はコストが高いため、AlN−BN
系耐火材料は高価である。このため、AlN−BN系耐
火材料は優れた特性を有しているにもかかわらず、実用
に供されることは少ない。
However, since AlN and BN powders as main raw materials are expensive, AlN-BN powder is required.
Based refractory materials are expensive. For this reason, AlN-BN refractory materials are rarely put to practical use despite having excellent properties.

【0010】本発明は、こうした事情を考慮してなされ
たもので、高価なAlN粉末、BN粉末を使用すること
なく、安価なAl粉末、B4 C粉末を使用して窒化反応
を伴う焼結によりAlN−BN−B4 Cを主成分とする
充填性のよい焼結粉末を得ることを目的とする。
The present invention has been made in view of such circumstances, and does not use expensive AlN powder or BN powder, but uses inexpensive Al powder or B 4 C powder and involves sintering accompanied by nitriding reaction. and to obtain a sintered powder good filling property mainly comprising AlN-BN-B 4 C by.

【0011】また、本発明は、焼結粉末にAl粉末を加
えて再度窒化を伴う焼結を実施して得ることにより、従
来と比べAlN−BN系耐火材料を安価に製造し得るA
lN−BN系耐火材料の製造方法を提供することを目的
とする。
Further, according to the present invention, by adding an Al powder to a sintered powder and performing sintering accompanied by nitridation again, it is possible to produce an AlN-BN refractory material at a lower cost than before.
An object of the present invention is to provide a method for producing an 1N-BN refractory material.

【0012】[0012]

【課題を解決するための手段】本発明は、AlNを2〜
95重量%、BNを4〜73重量%、B4 Cを1〜25
重量%、かつAlNとBNとB4 Cを合計で80重量%
以上含み、気孔率が30%以下であることを特徴とする
焼結粉末を提供する。
According to the present invention, AlN is reduced to 2 to 2.
95% by weight, BN 4 to 73% by weight, B 4 C 1 to 25
80% by weight of AlN, BN and B 4 C in total
The present invention provides a sintered powder containing the above, and having a porosity of 30% or less.

【0013】第2に、Al源粉末とB4 C粉末を含む混
合粉末の充填体または成形体を窒素雰囲気で1300〜
2300℃の温度まで加熱して焼結体とした後、この焼
結体を粉砕してなることを特徴とする焼結粉末を提供す
る。
[0013] Second, a filled or molded body of a mixed powder containing an Al source powder and a B 4 C powder is placed in a nitrogen atmosphere at 1300 to 1300.
The present invention provides a sintered powder obtained by heating to a temperature of 2300 ° C. to form a sintered body, and then pulverizing the sintered body.

【0014】第3に、2〜95重量%のAlNと4〜7
3重量%のBNと1〜25重量%のB4 Cを合計で80
重量%以上含み、かつ気孔率が30%以下である焼結体
を鋳造用耐火物として使用した後、回収し粉砕してなる
ことを特徴とする焼結粉末を提供する。
Third, 2 to 95% by weight of AlN and 4 to 7%
3% by weight of BN and 1 to 25% by weight of B 4 C
A sintered powder characterized by being obtained by using a sintered body containing not less than 30% by weight and having a porosity of not more than 30% as a refractory for casting, and then collecting and pulverizing it.

【0015】第4に、2〜95重量%のAlNと4〜7
3重量%のBNと1〜25重量%のB4 Cを合計で80
重量%以上含み、かつ気孔率が30%以下である焼結体
を浸漬ノズルとして使用した後、回収し粉砕してなるこ
とを特徴とする焼結粉末を提供する。
Fourth, 2 to 95% by weight of AlN and 4 to 7
3% by weight of BN and 1 to 25% by weight of B 4 C
A sintered powder characterized by being obtained by using a sintered body containing not less than 30% by weight and having a porosity of not more than 30% as an immersion nozzle, and then collecting and pulverizing it.

【0016】第5に、前述した焼結粉末を30重量%以
上含む原料粉末とバインダーの混合物の充填体又は成形
体を非酸化性雰囲気で加熱して焼結することを特徴とす
るAlN−BN系耐火材料の製造方法を提供する。
Fifthly, the AlN-BN is characterized in that the filler or the compact of the mixture of the raw material powder and the binder containing 30% by weight or more of the sintered powder is heated and sintered in a non-oxidizing atmosphere. A method for producing a refractory material is provided.

【0017】第6に、金属分95重量部以上のAl源粉
末を10〜40重量%と請求項1〜4記載の焼結粉末を
30重量%以上含み、かつ前記Al源粉末と焼結粉末を
合計で70重量%含む混合粉末の充填体又は成形体を窒
素雰囲気で加熱してAlNを生成することを特徴とする
AlN−BN系耐火材料の製造方法を提供する。
Sixth, 10 to 40% by weight of the Al source powder having a metal content of 95 parts by weight or more and 30% by weight or more of the sintered powder of claim 1 to 4, and the Al source powder and the sintered powder Of a mixed powder containing 70% by weight in total in a nitrogen atmosphere to produce AlN, thereby producing an AlN-BN refractory material.

【0018】[0018]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において、焼結粉末を構成する粒子はAlNとB
NとB4 Cの3成分を合計で80重量%以上含むことが
望ましい。ここで、AlNは溶融金属に対する耐食性と
溶融金属の流動による磨耗に対する耐性を、BNは耐熱
衝撃性と溶融スラグに対する耐食性をAlN−BN系耐
火材料に付与する。また、B4 Cは450℃以上で酸化
してB2 3 の融液を生成して気孔を塞ぎそれ以上の焼
結体の酸化の進行を防止する。なお、B4 CはBNの焼
結を促進する効果もあり、結果的に焼結粉末の強度を高
める働きをする。従って、上記3成分はAlN−BN系
耐火材料の前述した基本特性を構成するのに不可欠であ
り、少なくとも合計で80重量%以上含むことが好まし
い。更に、上記3成分のそれぞれの特徴が最も効果的に
発揮されるには、2〜95重量%のAlNと4〜73重
量%のBNと1〜25重量%のB4 Cとなるように組成
を制約することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, the particles constituting the sintered powder are AlN and B
It is desirable that the total of the three components of N and B 4 C be 80% by weight or more. Here, AlN imparts corrosion resistance to the molten metal and resistance to abrasion due to the flow of the molten metal, and BN imparts thermal shock resistance and corrosion resistance to the molten slag to the AlN-BN refractory material. In addition, B 4 C is oxidized at 450 ° C. or higher to generate a B 2 O 3 melt to close the pores and prevent further oxidation of the sintered body. Note that B 4 C also has the effect of promoting the sintering of BN, and as a result, functions to increase the strength of the sintered powder. Therefore, the above three components are indispensable for constituting the above-mentioned basic characteristics of the AlN-BN refractory material, and it is preferable that the total of the three components is at least 80% by weight or more. Further, the respective features of the three components is most effectively exhibited, the composition such that 2 to 95% by weight of AlN and 4-73% by weight of BN and 1 to 25 wt% of B 4 C Is preferably restricted.

【0019】前記3成分は合計で100重量%であって
もよいし、また、20重量%未満であれば他の化合物が
配合されていてもよい。他の化合物としては、例えば、
AlON、SiAlON、Al2 3 、MgAl
2 4 、3Al2 3 ・2SiO2、9Al2 3 ・2
2 3 の中から選ばれた一種又は複数の化合物、Ti
2、ZrO2 、Cr2 3 、SiO2 、Y2 3 、C
eO2 、Sc2 3 の中から選択された1種又は複数の
酸化物、これらの酸化物の中の少なくとも一つを含む複
合酸化物が入ってもよい。
The above three components may be added in a total amount of 100% by weight, and if less than 20% by weight, other compounds may be blended. As other compounds, for example,
AlON, SiAlON, Al 2 O 3 , MgAl
2 O 4, 3Al 2 O 3 · 2SiO 2, 9Al 2 O 3 · 2
One or more compounds selected from B 2 O 3 , Ti
O 2 , ZrO 2 , Cr 2 O 3 , SiO 2 , Y 2 O 3 , C
One or more oxides selected from eO 2 and Sc 2 O 3 , and a composite oxide containing at least one of these oxides may be included.

【0020】また、MgB2 、CaB6 、TiB2 、Z
rB2 、AlB2 の中から選択された1種または複数の
ホウ化物が入ってもよい。更に、TiC、ZrC、Cr
3 2 、Al4 3 、SiCの中から選択された1種又
は複数の炭化物が入っていてもよい。更には、TiN、
ZrN、Cr2 N、Si3 4 、Mg3 4 の中から選
択された1種または複数の窒化物が入ってもよい。ま
た、Si2 2 Oに代表される酸窒化物が入ってもよ
い。金属Al、金属Siは、焼結体に侵入する酸素を吸
収してAl2 3 に代わり気孔を塞ぎ酸素の内部への侵
入を防止するので好ましい。炭素Cは耐熱衝撃性に優れ
ているので入ってもよい。
In addition, MgBTwo, CaB6, TiBTwo, Z
rBTwo, AlBTwoOne or more selected from
Borides may enter. Furthermore, TiC, ZrC, Cr
ThreeC Two, AlFourCThreeOr one selected from SiC
May contain a plurality of carbides. Furthermore, TiN,
ZrN, CrTwoN, SiThreeNFour, MgThreeNFourChoose from
One or more selected nitrides may be included. Ma
The SiTwoNTwoOxynitrides typified by O may enter
No. Metal Al and metal Si absorb oxygen invading the sintered body.
AlTwoOThreeInstead of closing the pores and invading oxygen inside.
This is preferable because it prevents entry. Carbon C has excellent thermal shock resistance
You may enter.

【0021】また、焼結粉末の気孔率は30%以下であ
ることが好ましい。この理由は、気孔率が30%を超え
ると、粉末が脆弱なため、前記焼結粉末を含む原料粉末
を焼結して製造されるAlN−BN系耐火材料の強度が
低下するためである。
The porosity of the sintered powder is preferably 30% or less. The reason for this is that if the porosity exceeds 30%, the powder is brittle, and the strength of the AlN-BN refractory material produced by sintering the raw material powder including the sintered powder is reduced.

【0022】ところで、前記焼結粉末を製造するには、
まずAl源粉末とB4 C粉末を含む混合粉末を用意す
る。ここで、混合粉末はAl源粉末とB4 C粉末のみで
構成してもよいし、前記焼結粉末の組成に関する制約条
件を満足する範囲内で前記の他の化合物を混合してもよ
い。前記Al源粉末はAl単体であってもアルミニウム
合金であってもよい。合金元素としては、例えばMg、
Siが入ってもよい。前記Al源粉末の金属分は、酸化
物、窒化物等の非金属を含むと窒化に伴う結合力が低下
するので、金属分95重量%以上であることが好まし
い。
Incidentally, in order to produce the sintered powder,
First, a mixed powder containing an Al source powder and a B 4 C powder is prepared. Here, the mixed powder may be composed of only the Al source powder and the B 4 C powder, or the other compound may be mixed within a range satisfying the constraint on the composition of the sintered powder. The Al source powder may be Al alone or an aluminum alloy. As an alloy element, for example, Mg,
Si may enter. When the metal content of the Al source powder contains nonmetals such as oxides and nitrides, the bonding force due to nitridation is reduced. Therefore, the metal content is preferably 95% by weight or more.

【0023】前記混合粉末を例えば黒鉛製の容器に充填
して充填体とするか、または加圧して保形性を有する成
形体とする。充填体または成形体は内部への窒素の浸透
を阻害しない範囲で密度の高い方が好ましいが、得られ
る焼結体の気孔率は30%以下になるように調節する。
The mixed powder is filled into a container made of, for example, graphite to form a filled body, or is pressed to form a molded body having shape retention. It is preferable that the density of the filled body or the molded body is high as long as the penetration of nitrogen into the inside is not hindered. However, the porosity of the obtained sintered body is adjusted to be 30% or less.

【0024】充填体または焼結体は、窒素圧0〜10k
g/cm2 (ゲージ圧)で1300〜2300℃の温度
まで加熱することが好ましい。この理由は、1300℃
未満ではB4 Cの窒化が進みにくく、2300℃を超え
ると窒化反応に伴う発熱によりB4 Cが溶融し窒化が阻
害されるからである。進行する反応は、次の通りであ
る。
The filled or sintered body is subjected to a nitrogen pressure of 0 to 10 k.
It is preferable to heat to a temperature of 1300 to 2300 ° C. at g / cm 2 (gauge pressure). The reason is 1300 ° C
If it is less than 3 , nitriding of B 4 C is difficult to proceed, and if it exceeds 2300 ° C., heat generated by the nitriding reaction melts B 4 C to inhibit nitriding. The reactions that proceed are as follows.

【0025】Al+1/2N2 →AlN B4 C+2N2 →4BN+C なお、Cの一部は未反応のB4 Cに固溶してもよい。ま
た、Al4 3 等の炭化物を生成してもよい。
Al + 1 / 2N 2 → AlNB 4 C + 2N 2 → 4BN + C A part of C may be dissolved in unreacted B 4 C. Further, a carbide such as Al 4 C 3 may be generated.

【0026】市販の窒化ホウ素粉末は極めて嵩高でタッ
プ密度は0.2〜0.5g/cm3と著しく小さいこと
が知られている。このため、市販の窒化ホウ素粉末を配
合すると混合粉末の充填密度は低くなり、焼結体の密度
は低くならざるを得ない。これに対して、前記の反応を
伴う焼結を適用すると、AlNとB4 Cの焼結促進作用
によって、焼結体の気孔率を30%以下に抑制すること
が可能となる。この結果、焼結体を粉砕して得られる焼
結粉末はBNを多量に含む条件を選択してもタップ密度
は1g/cm3 以上となり、市販の窒化ホウ素粉末に比
べて、極めて充填性がよく焼結体製造原料として好適で
ある。
It is known that commercially available boron nitride powder is extremely bulky and has a tap density as extremely small as 0.2 to 0.5 g / cm 3 . For this reason, when commercially available boron nitride powder is blended, the packing density of the mixed powder is reduced, and the density of the sintered body must be reduced. On the other hand, when the sintering accompanied by the above reaction is applied, the porosity of the sintered body can be suppressed to 30% or less by the sintering promoting action of AlN and B 4 C. As a result, the sintered powder obtained by pulverizing the sintered body has a tap density of 1 g / cm 3 or more even when a condition containing a large amount of BN is selected, and has extremely high filling properties as compared with commercially available boron nitride powder. It is well suited as a raw material for producing sintered bodies.

【0027】焼結体を粉砕する粉砕機としては、例えば
ジョークラッシャー、ボールミル、ロールミルが適用で
きる。焼結粉末の粒度は、最終製品となる焼結体、即ち
AlN−BN系耐火材料に要求される特性に応じて選択
され、例えば1mm以下となる。
As a pulverizer for pulverizing the sintered body, for example, a jaw crusher, a ball mill, and a roll mill can be applied. The particle size of the sintered powder is selected according to the characteristics required for the sintered body as the final product, that is, the AlN-BN refractory material, and is, for example, 1 mm or less.

【0028】前記焼結粉末の焼結には、バインダーとし
てフェノール樹脂に代表される熱硬化性樹脂を適用して
もよい。この場合、前述のように、CO、H2 、N2
Ar等のガスを主成分とする非酸化性雰囲気でバインダ
ーの熱分解を図り残留する炭素による結合を発現させ
る。また、金属Alをバインダーとして使用してもよ
い。この場合、前述のように、窒化によりAlN結合を
発現させる。いずれの場合にも焼結粉末を30重量%以
上含む原料粉末とバインダーの混合物の充填体または成
形体を非酸化性雰囲気で加熱して焼結させることによ
り、AlN−BN系耐火材料を製造する。
For the sintering of the sintered powder, a thermosetting resin represented by a phenol resin may be applied as a binder. In this case, as described above, CO, H 2 , N 2 ,
The binder is thermally decomposed in a non-oxidizing atmosphere containing a gas such as Ar as a main component, and the bond by the remaining carbon is developed. Further, metal Al may be used as a binder. In this case, as described above, the AlN bond is developed by nitriding. In any case, an AlN-BN refractory material is manufactured by heating and sintering a filled body or a molded body of a mixture of a raw material powder containing 30% by weight or more of a sintered powder and a binder in a non-oxidizing atmosphere. .

【0029】前記2種類のバインダーの中では金属Al
をバインダーとして使用する反応焼結がより好ましい。
この理由は、金属Alの窒化により生成するAlNによ
る接合は、熱硬化性樹脂によるC結合に比べて、耐酸化
性においても溶融金属に対する耐食性の点でも格段に優
れているからである。即ち、主要な構成成分のAlN、
BN、B4 Cのいずれも外部から侵入する酸素を酸化に
より焼結体表層で吸収し、内部への侵入を防止するので
酸化による損集を受けにくい。
Among the two kinds of binders, metal Al
Reaction sintering using as a binder is more preferable.
The reason for this is that bonding with AlN generated by nitriding metal Al is much better in oxidation resistance and corrosion resistance to molten metal than C bonding with thermosetting resin. That is, the main constituent component AlN,
Both BN and B 4 C absorb oxygen invading from the outside by oxidation at the surface layer of the sintered body and prevent intrusion into the inside, so that they are not easily damaged by oxidation.

【0030】前記焼結粉末30〜90重量%に前記Al
源粉末を10〜40重量%加えて、かつ焼結粉末とAl
源粉末を合計で70重量%以上含む混合粉末により、前
記と同様に、充填体または成形体を作り、Alを窒化さ
せ、生成するAlNを結合力として焼結体にする。
The Al is added to the sintered powder in an amount of 30 to 90% by weight.
10 to 40% by weight of the source powder, and the sintered powder and Al
In the same manner as described above, a filled body or a molded body is formed from a mixed powder containing a total of 70% by weight or more of the source powder, and Al is nitrided, and the generated AlN is used as a bonding force to form a sintered body.

【0031】焼結体に強度を発現させるには、Al源粉
末を10重量%以上とすることが好ましい。従って、焼
結粉末は90重量%以下に制約される。一方、Al源粉
末を40重量%を超えて配合すると、耐熱衝撃性が低下
するので好ましくない。また、BNの特徴を生かすには
焼結粉末は30重量%以上とすることが好ましい。更
に、焼結粉末とAl源粉末を合計で100重量%であっ
てもよいし、また30重量%未満であれば前記の他の化
合物を配合してされに多様な特性を具現してもよい。
In order to give strength to the sintered body, it is preferable that the Al source powder is 10% by weight or more. Therefore, the content of the sintered powder is limited to 90% by weight or less. On the other hand, if the Al source powder is added in an amount exceeding 40% by weight, the thermal shock resistance is undesirably reduced. Further, in order to take advantage of the characteristics of BN, the content of the sintered powder is preferably 30% by weight or more. Further, the total amount of the sintering powder and the Al source powder may be 100% by weight, or if it is less than 30% by weight, the other compounds may be blended to realize various characteristics. .

【0032】次に、図1を参照して本発明の実施の太陽
を説明する。まず、Al源粉末とB4 C粉末を所定の配
合で混合する。つづいて、この混合物を成形型に供給し
て所定の不可を加えて成形する。この後、成形体を炉に
配設して窒素雰囲気で加熱する。その結果、AlとB4
Cの窒化が進行してAlとBNと未反応のB4 Cを主成
分とする焼結体が生成する。更に、この焼結体を冷却し
た後、焼結体を所定の粒度に粉砕する。こうして、Al
N−BN−B4 C焼結粉末が得られる。
Next, the sun according to the embodiment of the present invention will be described with reference to FIG. First, an Al source powder and a B4 C powder are mixed in a predetermined mixture. Subsequently, the mixture is supplied to a molding die, and molding is performed by adding a predetermined factor. Thereafter, the compact is placed in a furnace and heated in a nitrogen atmosphere. As a result, Al and B 4
As the nitriding of C proceeds, a sintered body mainly composed of B 4 C which has not reacted with Al and BN is generated. Further, after cooling the sintered body, the sintered body is pulverized to a predetermined particle size. Thus, Al
N-BN-B 4 C sintered powder.

【0033】次に、前記焼結粉末とAl源粉末を所定の
配合で混合する。つづいて、この混合物を振動を加えな
がら浸漬ノズルのキャビティを有する黒鉛型に充填す
る。更に、この充填体を炉に配設して窒素雰囲気で加熱
する。その結果、Alの窒化が進行してAlが生成し、
これがバインダーとなってAlとBNと未反応のB4
を主成分とする焼結体,即ちAlN結合のAlN−BN
−B4 C焼結浸漬ノズルが型内に出来上がる。ここで、
第2段の焼結は、バインダーとしてフェノール樹脂等の
熱硬化性の有機バインダーを適用してもよい。この場
合、C結合のAlN−BN−B4 C焼結浸漬ノズルが出
来る。
Next, the sintering powder and the Al source powder are mixed in a predetermined composition. Subsequently, the mixture is filled into a graphite mold having a cavity of a submerged nozzle while applying vibration. Further, the packing is placed in a furnace and heated in a nitrogen atmosphere. As a result, the nitridation of Al progresses to produce Al,
This serves as a binder and unreacted B 4 C with Al and BN.
Sintered body containing Al as a main component, that is, AlN-BN with AlN bond
-B 4 C sintered immersion nozzle is completed in the mold. here,
In the second stage sintering, a thermosetting organic binder such as a phenol resin may be used as the binder. In this case, C bond of AlN-BN-B 4 C sintered immersion nozzle can.

【0034】このような2段階の焼結工程を経て、2〜
95重量%のAlNと4〜73重量%のBNと1〜25
重量%のB4 Cを含み、該3成分の合計が80重量%以
上で、かつ気孔率が30%以下である焼結体を得ること
ができ、かかる焼結体を浸漬ノズルに代表される鋳造用
耐火物として使用する。
After the two-stage sintering process,
95% by weight of AlN and 4 to 73% by weight of BN and 1 to 25
It is possible to obtain a sintered body containing B 4 C in an amount of 80% by weight or more and having a porosity of 30% or less. Used as a refractory for casting.

【0035】次に、図2と図3を参照して本発明の第2
の実施の態様を説明する。図3に示すAlN−BN−B
4 C焼結浸漬ノズル1は、公知の方法により表面に断熱
材を施して実機使用される。前記浸漬ノズル1の内孔に
は上部入口2より1530〜1600℃の溶鋼が流入
し、吐出孔3よりモールド(図示せず)内へ流出する。
浸漬ノズル1の外面の吐出孔3の直上部はモールドパウ
ダーの溶融した溶融スラグと接触する。かかる実機使用
の過程で内外面には地金と条件によっては非金属介在物
が残留し、外面にはスラグも付着する。
Next, the second embodiment of the present invention will be described with reference to FIGS.
An embodiment will be described. AlN-BN-B shown in FIG.
The 4 C sintering immersion nozzle 1 is used on an actual machine with a surface provided with a heat insulating material by a known method. Molten steel at 1530 to 1600 ° C. flows into the inner hole of the immersion nozzle 1 from the upper inlet 2, and flows out of the discharge hole 3 into a mold (not shown).
Immediately above the discharge hole 3 on the outer surface of the immersion nozzle 1 is in contact with the molten slag of the mold powder. In the process of using the actual machine, metal and nonmetallic inclusions remain on the inner and outer surfaces depending on conditions, and slag also adheres to the outer surface.

【0036】使用後、前記浸漬ノズル1を回収し、図2
に示すように断熱材、異物を取り除いてから所定の粒度
に粉砕し、AlN−BN−B4 C焼結粉末が再生され
る。つづいて、この焼結粉末とAl源粉末を所定の割合
で混合し、混合物を得る。この後、この混合物を振動を
加えながら浸漬ノズルのキャビティを有する黒鉛型に充
填し、充填体を得る。この後、この充填体を炉に配設し
て窒素雰囲気で加熱する。この結果、Alの窒化が進行
してAlNが生成し、これがバインダーとなってAlN
とBNと未反応のB4 Cを主成分とする焼結体、即ちA
lN−BN−B4C焼結浸漬ノズルが型内に出来上が
る。ここで、第2段の焼結はバインダーとしてフェノー
ル樹脂等の熱硬化性の有機バインダーを適用してもよ
い。この場合、C結合のAlN−BN−B4 C焼結浸漬
ノズルが出来る。
After use, the immersion nozzle 1 was recovered, and FIG.
Heat insulating material as shown in, the foreign matter was pulverized after the predetermined particle size removed, AlN-BN-B 4 C sintered powder is played. Subsequently, the sintered powder and the Al source powder are mixed at a predetermined ratio to obtain a mixture. Thereafter, the mixture is filled into a graphite mold having a cavity of a dipping nozzle while applying vibration to obtain a filled body. Thereafter, the packing is placed in a furnace and heated in a nitrogen atmosphere. As a result, the nitridation of Al proceeds to generate AlN, which serves as a binder to form AlN.
And BN and a sintered body containing B 4 C as a main component, ie, A
lN-BN-B 4 C sintered immersion nozzle is completed in the mold. Here, in the second-stage sintering, a thermosetting organic binder such as a phenol resin may be used as a binder. In this case, C bond of AlN-BN-B 4 C sintered immersion nozzle can.

【0037】図7は従来の浸漬ノズルを示すが、該ノズ
ルの性能は本発明になるAlN−BN−B4 C焼結材料
を部分的に適用することによって向上する。図7におい
て、ノズル本体11はAl2 3 −SiO2 −Cを主成
分とするC結合のAG材により構成され、溶融スラグ接
触部位12は耐食性が比較的よいZrO2 −SiC−C
を主成分とするC結合のZG材により構成される。図4
は、AlN−BN−B 4 C焼結材料からなる直管部13
をノズル本体11の内孔に配置したものである。これに
より、直管部13への地金、アルミナ等の非金属介在物
の付着が抑制される。
FIG. 7 shows a conventional immersion nozzle.
Performance of the present invention is AlN-BN-BFourC sintered material
Is partially applied. Figure 7
The nozzle body 11 is made of AlTwoOThree-SiOTwoMainly -C
Made of C-bonded AG material,
The contact portion 12 is made of ZrO having relatively good corrosion resistance.Two-SiC-C
And a C-bonded ZG material whose main component is FIG.
Is AlN-BN-B FourStraight tube part 13 made of C sintered material
Are arranged in the inner hole of the nozzle body 11. to this
Non-metallic inclusions such as ingots and alumina
Is suppressed.

【0038】図5は、AlN−BN−B4 C焼結材料か
らなる直管部14をノズル本体11の内孔に吐出孔3の
まわりまで達するように配置したものである。この場
合、溶鋼と接触する内孔壁全体に渡ってAlN−BN−
4 C焼結材料が適用された内孔壁がさらに徹底して地
金、アルミナ等の非金属介在物の付着を抑制できる。
FIG. 5 shows a configuration in which a straight pipe portion 14 made of an AlN-BN-B 4 C sintered material is arranged so as to reach the inner hole of the nozzle body 11 around the discharge hole 3. In this case, the AlN-BN-
The inner wall to which the B 4 C sintered material is applied can further thoroughly prevent nonmetallic inclusions such as metal and alumina from adhering.

【0039】図6は、AlN−BN−B4 C焼結材料か
らなる溶融スラグ接触部位15をノズル本体11の外周
部に配置した例を示す。この場合、溶融スラグによる侵
食が抑制され、浸漬ノズルの寿命を向上できる。
FIG. 6 shows an example in which a molten slag contact portion 15 made of an AlN-BN-B 4 C sintered material is arranged on the outer peripheral portion of the nozzle body 11. In this case, erosion by the molten slag is suppressed, and the life of the immersion nozzle can be improved.

【0040】ところで、図4〜図6に示した実施態様で
は製造方法についていくつかの選択枝がある。一つは、
AlN−BN−B4 C材料部分を予めAlN結合で製作
して成形型内に組み込んでおいて、フェノール樹脂を添
加した原料粉末を出発原料として充填、成形、非酸化性
雰囲気焼結を施して、C結合を発現するものである。ま
た、AlN−BN−B4 C材料部分を含め、全体をC結
合とすることもできる。
In the embodiments shown in FIGS. 4 to 6, there are several options for the manufacturing method. one,
Keep incorporated into AlN-BN-B 4 C material portions fabricated by a mold in advance AlN bond, filling the raw material powder obtained by adding phenol resin as a starting material, the molding is subjected to a non-oxidizing atmosphere sintering , C-bonds. Also, including the AlN-BN-B 4 C material portion may be the entire and C bonds.

【0041】[0041]

【実施例】以下、本発明の実施例について説明する。 (実施例1)本実施例1は、Al源粉末とB4 C粉末を
原料としてAlN−BN−B4 C焼結粉末を製造する例
を示す。まず、105μm以下が100重量%、37μ
m以上が20重量%の粒度で金属Al分99.97重量
%のAlアトマイズ粉末と、44μm以下が98.5重
量%の粒度でB4 C分96.7重量%のB4 C粉末を、
それぞれ28重量%と72重量%の割合で混合し、混合
粉末を得た。次に、この混合粉末を成形型に充填して成
形圧120kg/cm2 で加圧成形した。得られた成形
体は嵩密度1.58g/cm3 であった。更に、前記成
形体を窒素圧力9.1kg/cm2 の加圧窒素下で19
00℃まで昇温し、4時間保持後、放冷した。
Embodiments of the present invention will be described below. (Example 1) In this Example 1, an example of manufacturing the AlN-BN-B 4 C sintered powder of Al source powder and B 4 C powder as a raw material. First, 105 μm or less is 100% by weight,
and Al atomized powder metals Al content 99.97 wt% or more m is 20% by weight of the particle size, the B 4 C content 96.7 wt% of B 4 C powder below 98.5% by weight of particle size 44 .mu.m,
Each was mixed at a ratio of 28% by weight and 72% by weight to obtain a mixed powder. Next, the mixed powder was filled in a mold and molded under pressure at a molding pressure of 120 kg / cm 2 . The obtained molded body had a bulk density of 1.58 g / cm 3 . Further, the compact was heated under a nitrogen pressure of 9.1 kg / cm 2 at a pressure of 19 kg / cm 2.
The temperature was raised to 00 ° C., kept for 4 hours, and allowed to cool.

【0042】得られた焼結体は窒化により66.6重量
%の重量増加が生じ、体積膨張も観察された。前記焼結
体の嵩密度は1.91g/cm3 、気孔率は開気孔率表
示で19.0%であった。また、組成は、26.1重量
%AlN、52.7重量%BN、14.9重量%B
4 C、6.4重量%Cであった。この焼結体をジョーク
ラッシャーで3.35mm以下に粉砕し焼結粉末を得
た。この焼結粉末の粒度は、1〜3.35mmが37.
7重量%、0.25〜1mmが26.3重量%、0.2
5mm以下が36.0重量%であった。
In the obtained sintered body, a weight increase of 66.6% by weight was caused by nitriding, and volume expansion was also observed. The bulk density of the sintered body was 1.91 g / cm 3 , and the porosity was 19.0% in terms of open porosity. The composition was 26.1% by weight AlN, 52.7% by weight BN, 14.9% by weight B
4 C, 6.4% by weight C. This sintered body was ground to 3.35 mm or less with a jaw crusher to obtain a sintered powder. The particle size of this sintered powder is 1 to 3.35 mm.
7% by weight, 0.25 to 1 mm is 26.3% by weight, 0.2
56.0 mm or less was 36.0% by weight.

【0043】下記表1は、実施例1及び後述する実施例
2における、原料粉末の配合割合、形状付与、窒化条
件、焼結体の嵩密度,気孔率及び組成、焼結粉末の粒
度、タップ密度を示す。
Table 1 below shows the mixing ratio of the raw material powder, the shape imparting, the nitriding conditions, the bulk density, the porosity and the composition of the sintered body, the particle size of the sintered powder, and the tap in Example 1 and Example 2 described later. Indicates the density.

【0044】[0044]

【表1】 [Table 1]

【0045】このように実施例1によれば、前記焼結粉
末はBNを52.7重量%と多く含むにもかかわらず、
タップ密度は1.24g/cm3 と高く、充填性は良好
であった。これに対し、市販の窒化ホウ素粉末は極めて
嵩高でタップ密度は0.2〜0.5g/cm3 と著しく
小さいことが知られている。このため、市販の窒化ホウ
素粉末を配合すると混合粉末の充填密度は低くなり、焼
結体の密度は低くならざるを得ない。
Thus, according to Example 1, although the sintered powder contains BN as much as 52.7% by weight,
The tap density was as high as 1.24 g / cm 3 , and the filling property was good. On the other hand, it is known that commercially available boron nitride powder is extremely bulky and has a tap density of as small as 0.2 to 0.5 g / cm 3 . For this reason, when commercially available boron nitride powder is blended, the packing density of the mixed powder is reduced, and the density of the sintered body must be reduced.

【0046】(実施例2)まず、105μm以下が10
0重量%、37μm以上が20重量%の粒度で金属Al
分99.97重量%のAlアトマイズ粉末と、44μm
以下が98.5重量%の粒度でB4 C分96.7重量%
のB4 C粉末を、それぞれ5重量%と95重量%の割合
で混合し、混合粉末を得た。次に、この混合粉末を成形
型に充填して成形圧120kg/cm2 で加圧成形し
た。得られた成形体は嵩密度1.55g/cm3 であっ
た。更に、前記成形体を窒素圧力9.1kg/cm2
加圧窒素下で1900℃まで昇温し、4時間保持後、放
冷した。
(Embodiment 2) First, 105 μm or less
0% by weight, particle size of 20% by weight of 37μm or more
99.97% by weight of Al atomized powder and 44 μm
The following are 98.5% by weight with a particle size of 98.5% by weight and a B 4 C content of 96.7% by weight.
Of B 4 C powders were mixed at a ratio of 5% by weight and 95% by weight, respectively, to obtain a mixed powder. Next, the mixed powder was filled in a mold and molded under pressure at a molding pressure of 120 kg / cm 2 . The obtained molded body had a bulk density of 1.55 g / cm 3 . Further, the molded body was heated to 1900 ° C. under pressurized nitrogen at a nitrogen pressure of 9.1 kg / cm 2 , held for 4 hours, and allowed to cool.

【0047】得られた焼結体は窒化により60.4重量
%の重量増加が生じ、体積膨張も観察された。前記焼結
体の嵩密度は1.68g/cm3 、気孔率は開気孔率表
示で23.1%であった。また、組成は、4.7重量%
AlN、64.3重量%BN、23.2重量%B4 C、
7.8重量%Cであった。この焼結体をジョークラッシ
ャーで3.35mm以下に粉砕し焼結粉末を得た。この
焼結粉末の粒度は、1〜3.35mmが35.2重量
%、0.25〜1mmが19.6重量%、0.25mm
以下が45.2重量%であった。
The obtained sintered body was increased in weight by 60.4% by weight due to nitriding, and volume expansion was also observed. The bulk density of the sintered body was 1.68 g / cm 3 , and the porosity was 23.1% in terms of open porosity. The composition was 4.7% by weight.
AlN, 64.3% by weight BN, 23.2% by weight B 4 C,
It was 7.8% by weight C. This sintered body was ground to 3.35 mm or less with a jaw crusher to obtain a sintered powder. The particle size of the sintered powder is 35.2% by weight for 1 to 3.35 mm, 19.6% by weight for 0.25 to 1 mm, 0.25 mm.
The following was 45.2% by weight.

【0048】上記実施例2によれば、前記焼結粉末はB
Nを64.3重量%と多く含むにもかかわらず、タップ
密度は1.09g/cm3 と高く、充填性は良好であっ
た。
According to the second embodiment, the sintered powder is B
Despite containing as much as 64.3% by weight of N, the tap density was as high as 1.09 g / cm 3 and the filling property was good.

【0049】(実施例3)まず、105μm以下が10
0重量%、37μm以上が20重量%の粒度で金属Al
分99.97重量%のAlアトマイズ粉末と、実施例2
で得られた焼結粉末をそれぞれ15重量%と85重量%
の割合で混合し、混合粉末を得た。次に、この混合粉末
をスラブ製造連続鋳造用浸漬ノズルの形状のキャビティ
を有する黒鉛型に充填し振動して充填体を得た。ここ
で、混合粉末の充填密度は1.48g/cm3 であっ
た。更に、前記充填体を窒素圧力9.1kg/cm2
加圧窒素下で1900℃まで昇温し、4時間保持後、放
冷した。
(Embodiment 3) First, 105 μm or less
0% by weight, particle size of 20% by weight of 37μm or more
99.97% by weight of Al atomized powder and Example 2
15% by weight and 85% by weight of the sintered powder obtained in
To obtain a mixed powder. Next, this mixed powder was filled into a graphite mold having a cavity in the shape of a immersion nozzle for continuous casting of slab production and vibrated to obtain a filled body. Here, the packing density of the mixed powder was 1.48 g / cm 3 . Further, the temperature of the above-mentioned filled body was raised to 1900 ° C. under pressurized nitrogen at a nitrogen pressure of 9.1 kg / cm 2 , kept for 4 hours, and allowed to cool.

【0050】前記浸漬ノズルから採取した試料の嵩密度
は、1.70g/cm3 、気孔率は開気孔率表示で2
8.7%であった。また、組成は、24.0重量%Al
N、50.9重量%BN、18.4重量%B4 C、6.
2重量%Cであった。更に、4点曲げ強さは1.70k
g/mm2 であった。
The bulk density of the sample collected from the immersion nozzle was 1.70 g / cm 3 , and the porosity was 2 in open porosity.
It was 8.7%. The composition was 24.0% by weight Al
N, 50.9 wt% BN, 18.4 wt% B 4 C, 6.
It was 2% by weight C. Furthermore, the 4-point bending strength is 1.70k
g / mm 2 .

【0051】下記表2は、実施例3における、原料粉末
の配合割合、形状付与、窒化条件、焼結体の嵩密度,気
孔率及び組成、焼結粉末の粒度、4点曲げ強さを示す。
Table 2 below shows, in Example 3, the mixing ratio of the raw material powder, the shape imparting, the nitriding conditions, the bulk density, the porosity and the composition of the sintered body, the grain size of the sintered powder, and the four-point bending strength. .

【0052】[0052]

【表2】 [Table 2]

【0053】事実、上記浸漬ノズルを実機に配設して5
00Tの溶鋼を通過させてスラブ製造に供した。浸漬ノ
ズルを回収して観察したところ、ノズル内面へのアルミ
ナの付着はほとんどなく、また外面の溶融スラグによる
侵食も軽微であった。このように、上記浸漬ノズルは製
品の品質射悪影響を与える介在物の付着を抑制でき、さ
らに多量の溶鋼の処理も期待できるものであった。
In fact, the above immersion nozzle was arranged on an actual machine and 5
It passed through 00T molten steel and was used for slab production. When the immersion nozzle was recovered and observed, there was little adhesion of alumina to the inner surface of the nozzle, and erosion by molten slag on the outer surface was slight. As described above, the immersion nozzle was able to suppress the adhesion of inclusions that adversely affect the quality of the product, and could be expected to treat a large amount of molten steel.

【0054】(実施例4)まず、実施例3で実機で使用
した後回収した浸漬ノズルから断熱材を除去し、地金、
スラグ等の異物を取り除いた。次に、小片に砕き、ジョ
ークラッシャーにより3.35mm以下に粉砕し、再生
焼結粉末を得た。つづいて、前記再生焼結粉末、実施例
2で得た焼結粉末、及びAlアトマイズ粉末をそれぞれ
65重量%、20重量%、15重量%の割合で混合し、
混合粉末を得た。次いで、この混合粉末を、スラブ製造
連続鋳造用浸漬ノズルの形状のキャビティを有する黒鉛
型に充填し振動して充填体を得た。ここで、混合粉末の
充填密度は1.56g/cm 3 であった。更に、前記充
填体を窒素圧力9.1kg/cm2 の加圧窒素下で19
00℃まで昇温し、4時間保持後、放冷した。
(Embodiment 4) First, in Embodiment 3, used in actual machine
After removing the insulation material from the collected immersion nozzle,
Foreign matter such as slag was removed. Next, crush into small pieces and
-Pulverized to less than 3.35mm by crusher and regenerated
A sintered powder was obtained. Subsequently, the regenerated sintered powder,
The sintered powder obtained in Step 2 and the Al atomized powder were
65% by weight, 20% by weight and 15% by weight are mixed,
A mixed powder was obtained. Next, this mixed powder is used for slab production.
Graphite with a cavity in the shape of a submerged nozzle for continuous casting
The mold was filled and vibrated to obtain a filled body. Where the mixed powder
The packing density is 1.56 g / cm ThreeMet. In addition, the charge
Filled with nitrogen pressure 9.1kg / cmTwo19 under pressurized nitrogen
The temperature was raised to 00 ° C., kept for 4 hours, and allowed to cool.

【0055】前記浸漬ノズルから採取した試料の嵩密度
は、1.82g/cm3 、気孔率は開気孔率表示で2
7.7%であった。また、組成は、35.1重量%Al
N、43.0重量%BN、15.5重量%B4 C、5.
3重量%Cであった。更に、4点曲げ強さは1.96k
g/mm2 であった。
The bulk density of the sample collected from the immersion nozzle was 1.82 g / cm 3 , and the porosity was 2 in open porosity.
7.7%. The composition was 35.1% by weight Al
N, 43.0 wt% BN, 15.5 wt% B 4 C, 5.
It was 3% by weight C. Furthermore, the 4-point bending strength is 1.96k
g / mm 2 .

【0056】下記表3は、実施例4における、原料粉末
の配合割合、形状付与、窒化条件、焼結体の嵩密度,気
孔率及び組成、焼結粉末の粒度、4点曲げ強さを示す。
Table 3 below shows the compounding ratio of the raw material powder, shape imparting, nitriding conditions, bulk density, porosity and composition of the sintered body, grain size of the sintered powder, and four-point bending strength in Example 4. .

【0057】[0057]

【表3】 [Table 3]

【0058】事実、上記浸漬ノズルを実機に配設して5
00Tの溶鋼を通過させてスラブ製造に供した。浸漬ノ
ズルを回収して観察したところ、ノズル内面へのアルミ
ナの付着はほとんどなく、また外面の溶融スラグによる
侵食も軽微であった。このように、上記浸漬ノズルは製
品の品質射悪影響を与える介在物の付着を抑制でき、さ
らに多量の溶鋼の処理も期待できるものであった。
In fact, the above immersion nozzle was arranged on an actual machine and 5
It passed through 00T molten steel and was used for slab production. When the immersion nozzle was recovered and observed, there was little adhesion of alumina to the inner surface of the nozzle, and erosion by molten slag on the outer surface was slight. As described above, the immersion nozzle was able to suppress the adhesion of inclusions that adversely affect the quality of the product, and could be expected to treat a large amount of molten steel.

【0059】[0059]

【発明の効果】以上詳述したように、本発明によれば、
高価なAlN粉末、BN粉末を使用することなく、安価
なAl粉末、B4 C粉末を使用して窒化反応を伴う焼結
によりAlN−BN−B4 Cを主成分とする充填性のよ
い焼結粉末を得ることができる。
As described in detail above, according to the present invention,
Sintering accompanied by nitridation reaction using inexpensive Al powder and B 4 C powder without using expensive AlN powder and BN powder, and sintering with good filling properties containing AlN-BN-B 4 C as a main component. A sintered powder can be obtained.

【0060】また、こうした焼結粉末にAl粉末を加え
て再度窒化を伴う焼結を実施して得られる焼結体は鋳造
用耐火物として優れた性能を有するので、高性能ではあ
るが効果であった従来のAlN−BN系耐火材料を安価
に製造できる。
A sintered body obtained by adding Al powder to such a sintered powder and performing sintering with nitridation again has excellent performance as a refractory for casting. A conventional AlN-BN refractory material can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の態様に係るAlN−BN−B
4 C焼結浸漬ノズルの製造方法のフローチャートを示
す。
FIG. 1 shows an AlN-BN-B according to an embodiment of the present invention.
4 shows a flow chart of a C sintering immersion method of manufacturing a nozzle.

【図2】本発明の他の実施の態様に係るAlN−BN−
4 C焼結浸漬ノズルの製造方法のフローチャートを示
す。
FIG. 2 shows an AlN-BN- according to another embodiment of the present invention.
1 shows a flowchart of a method for manufacturing a B 4 C sintered immersion nozzle.

【図3】AlN−BN−B4 C焼結浸漬ノズルの断面図
を示す。
FIG. 3 shows a cross-sectional view of an AlN-BN-B 4 C sintered immersion nozzle.

【図4】AlN−BN−B4 C焼結材料からなる直管部
をノズル本体の内孔に配置した浸漬ノズルの断面図を示
す。
FIG. 4 is a sectional view of an immersion nozzle in which a straight pipe portion made of an AlN-BN-B 4 C sintered material is disposed in an inner hole of a nozzle body.

【図5】AlN−BN−B4 C焼結材料からなる直管部
をノズル本体の内孔に吐出孔のまわりまで達するように
配置した浸漬ノズルの断面図を示す。
FIG. 5 is a sectional view of an immersion nozzle in which a straight pipe portion made of an AlN-BN-B 4 C sintered material is arranged in an inner hole of the nozzle body so as to reach around a discharge hole.

【図6】AlN−BN−B4 C焼結材料からなる溶融ス
ラグ接触部位をノズル本体の外周部に配置した浸漬ノズ
ルの断面図を示す。
FIG. 6 is a sectional view of an immersion nozzle in which a molten slag contact portion made of an AlN-BN-B 4 C sintered material is arranged on an outer peripheral portion of the nozzle body.

【図7】従来の浸漬ノズルの断面図を示す。FIG. 7 shows a sectional view of a conventional immersion nozzle.

【符号の説明】[Explanation of symbols]

1…焼結浸漬ノズル、 2…上部入口、 3…吐出孔、 11…ノズル本体、 12…溶融スラグ接触部位、 13、14…直管部。 DESCRIPTION OF SYMBOLS 1 ... Sintering immersion nozzle, 2 ... Upper entrance, 3 ... Discharge hole, 11 ... Nozzle main body, 12 ... Melt slag contact part, 13, 14 ... Straight pipe part.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA23 BA33 BA36 BA60 BA63 BB23 BB33 BB36 BB60 BC13 BC45 BC52 BC71 BD07 BD14 BD37 BE31 BE33 4G030 AA46 AA50 AA51 AA60 BA25 BA27 BA30 BA33 CA07 GA03 GA13 GA24  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G001 BA23 BA33 BA36 BA60 BA63 BB23 BB33 BB36 BB60 BC13 BC45 BC52 BC71 BD07 BD14 BD37 BE31 BE33 4G030 AA46 AA50 AA51 AA60 BA25 BA27 BA30 BA33 CA07 GA03 GA13 GA24

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 AlNを2〜95重量%、BNを4〜7
3重量%、B4 Cを1〜25重量%、かつAlNとBN
とB4 Cを合計で80重量%以上含み、気孔率が30%
以下であることを特徴とする焼結粉末。
1. An AlN content of 2 to 95% by weight and a BN content of 4 to 7%.
3% by weight, 1 to 25% by weight of B 4 C, and AlN and BN
And B 4 C in total of 80% by weight or more and a porosity of 30%
A sintered powder characterized by the following.
【請求項2】 Al源粉末とB4 C粉末を含む混合粉末
の充填体または成形体を窒素雰囲気で1300〜230
0℃の温度まで加熱して焼結体とした後、この焼結体を
粉砕してなることを特徴とする焼結粉末。
2. A packed or molded body of a mixed powder containing an Al source powder and a B 4 C powder is placed in a nitrogen atmosphere at 1300 to 230
A sintered powder obtained by heating to a temperature of 0 ° C. to form a sintered body, and then pulverizing the sintered body.
【請求項3】 2〜95重量%のAlNと4〜73重量
%のBNと1〜25重量%のB4 Cを合計で80重量%
以上含み、かつ気孔率が30%以下である焼結体を鋳造
用耐火物として使用した後、回収し粉砕してなることを
特徴とする焼結粉末。
3. A total of 80% by weight of 2 to 95% by weight of AlN, 4 to 73% by weight of BN and 1 to 25% by weight of B 4 C.
A sintered powder characterized by being obtained by using a sintered body containing the above and having a porosity of 30% or less as a refractory for casting, and then collecting and pulverizing it.
【請求項4】 2〜95重量%のAlNと4〜73重量
%のBNと1〜25重量%のB4 Cを合計で80重量%
以上含み、かつ気孔率が30%以下である焼結体を浸漬
ノズルとして使用した後、回収し粉砕してなることを特
徴とする焼結粉末。
4. A total of 80% by weight of 2-95% by weight of AlN, 4-73% by weight of BN and 1-25% by weight of B 4 C.
A sintered powder characterized by being obtained by using a sintered body containing the above and having a porosity of 30% or less as an immersion nozzle, and then collecting and pulverizing the sintered body.
【請求項5】 請求項1〜4記載の焼結粉末を30重量
%以上含む原料粉末とバインダーの混合物の充填体又は
成形体を非酸化性雰囲気で加熱して焼結することを特徴
とするAlN−BN系耐火材料の製造方法。
5. A method for heating and sintering a filled or molded body of a mixture of a raw material powder and a binder containing 30% by weight or more of the sintered powder according to claim 1 in a non-oxidizing atmosphere. A method for producing an AlN-BN refractory material.
【請求項6】 金属分95重量部以上のAl源粉末を1
0〜40重量%と請求項1〜4記載の焼結粉末を30重
量%以上含み、かつ前記Al源粉末と焼結粉末を合計で
70重量%含む混合粉末の充填体又は成形体を窒素雰囲
気で加熱してAlNを生成することを特徴とするAlN
−BN系耐火材料の製造方法。
6. An Al source powder having a metal content of 95 parts by weight or more
A filled or molded body of a mixed powder containing 0 to 40% by weight, 30% by weight or more of the sintered powder according to claims 1 to 4, and 70% by weight in total of the Al source powder and the sintered powder. Characterized in that AlN is generated by heating in
-A method for producing a BN-based refractory material.
JP11066226A 1999-03-12 1999-03-12 PRODUCTION OF SINTERED POWDER AND AlN-BN REFRACTORY MATERIAL Pending JP2000264739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11066226A JP2000264739A (en) 1999-03-12 1999-03-12 PRODUCTION OF SINTERED POWDER AND AlN-BN REFRACTORY MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11066226A JP2000264739A (en) 1999-03-12 1999-03-12 PRODUCTION OF SINTERED POWDER AND AlN-BN REFRACTORY MATERIAL

Publications (1)

Publication Number Publication Date
JP2000264739A true JP2000264739A (en) 2000-09-26

Family

ID=13309725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11066226A Pending JP2000264739A (en) 1999-03-12 1999-03-12 PRODUCTION OF SINTERED POWDER AND AlN-BN REFRACTORY MATERIAL

Country Status (1)

Country Link
JP (1) JP2000264739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213796A (en) * 2011-04-01 2012-11-08 Shinagawa Refractories Co Ltd Nozzle for continuous casting and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213796A (en) * 2011-04-01 2012-11-08 Shinagawa Refractories Co Ltd Nozzle for continuous casting and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6788669B2 (en) Aluminum and aluminum alloy powder molding method
US5608911A (en) Process for producing finely divided intermetallic and ceramic powders and products thereof
US7138190B2 (en) Composite containing reinforcing fibers comprising carbon
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
US5382405A (en) Method of manufacturing a shaped article from a powdered precursor
JP2905517B2 (en) Method of forming metal matrix composite
CN109182802B (en) Preparation method of carbon material reinforced copper/aluminum-based composite material
JP4720981B2 (en) Magnesium matrix composite
JP4686690B2 (en) Magnesium-based composite powder, magnesium-based alloy material, and production method thereof
WO2013175988A1 (en) Method for manufacturing boron-containing aluminum plate material
US5520880A (en) Method for forming bodies by reactive infiltration
US20040202883A1 (en) Metal-ceramic composite material and method for production thereof
PL156408B1 (en) A method of ceramic composite structure production
US5303763A (en) Directional solidification of metal matrix composites
JP2000264739A (en) PRODUCTION OF SINTERED POWDER AND AlN-BN REFRACTORY MATERIAL
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
CN1185067C (en) Casting with in-situ generated surface cermet layer and its productino process
JPH0764643B2 (en) Manufacturing method of self-supporting ceramic containing body
JP3194344B2 (en) Boron nitride-containing material and method for producing the same
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
JPH11302080A (en) Powdery boron nitride mixture and its production
CN109136605A (en) A kind of self-propagating synthesis of copper-based composite granule and its application
CN109136606A (en) A kind of enhanced self-lubricating Cu-base composites and its preparation method and application
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP2009527456A (en) Intermetallic compound-containing composite and method for producing the same