JP2000264738A - Production of aluminum nitride sintered compact - Google Patents

Production of aluminum nitride sintered compact

Info

Publication number
JP2000264738A
JP2000264738A JP11066639A JP6663999A JP2000264738A JP 2000264738 A JP2000264738 A JP 2000264738A JP 11066639 A JP11066639 A JP 11066639A JP 6663999 A JP6663999 A JP 6663999A JP 2000264738 A JP2000264738 A JP 2000264738A
Authority
JP
Japan
Prior art keywords
aluminum nitride
containing material
silica
mullite
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11066639A
Other languages
Japanese (ja)
Other versions
JP3106186B2 (en
Inventor
Koji Watari
渡利  広司
E Burito Manuel
イー. ブリト マヌエル
Motohiro Toriyama
素弘 鳥山
Shuzo Kanzaki
修三 神崎
Fumio Ueno
文雄 上野
Akihiro Horiguchi
昭宏 堀口
Mitsuo Kasori
光男 加曽利
Hiroyasu Sumino
裕康 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toshiba Corp filed Critical Agency of Industrial Science and Technology
Priority to JP11066639A priority Critical patent/JP3106186B2/en
Publication of JP2000264738A publication Critical patent/JP2000264738A/en
Application granted granted Critical
Publication of JP3106186B2 publication Critical patent/JP3106186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dense aluminum nitride sintered compact having high strength and high heat conductivity by adding a yttrium-containing material, a calcium-containing material and a silicon-containing material to aluminum nitride powder and carrying out sintering. SOLUTION: The aluminum nitride powder is preferably high purity fine aluminum nitride powder but commercially available powder may be used. Any material may be applied as the silicon-containing material if it can form SiO2 at high temperature, but since the heat conductivity of aluminum nitride is liable to lower remarkably when excess SiO2 enters into solid solution, a small amount of silica or an SiO2-Al2O3 compound such as mullite is suitable for use as the silicon-containing material. The preferred amount is 100 ppm to 1 wt.% in the case of silica and 5,000 ppm to 5 wt.% in the case of mullite. The yttrium-containing material is 1-5 wt.% (expressed in terms of Y2O3) yttrium oxide. The calcium-containing material is 0.1-1 wt.% (expressed in terms of CaO) calcium carbonate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
焼結体の製造方法に関し、詳しくは、高熱伝導性と高強
度とを兼ね備え、半導体回路基板やプリント配線基板な
どを製造するための電気絶縁材料や高熱伝導性及び高強
度を要する軸受け等の機械部品を製造するための構造材
料としての使用に適した高い強度を有する窒化アルミニ
ウム焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum nitride sintered body, and more particularly, to an electric insulating material having high thermal conductivity and high strength for manufacturing a semiconductor circuit board or a printed wiring board. The present invention relates to a method for producing a high strength aluminum nitride sintered body suitable for use as a structural material for producing mechanical parts such as bearings requiring high heat conductivity and high strength.

【0002】[0002]

【従来の技術】窒化アルミニウムは、高い熱伝導性及び
珪素に近い熱膨張率並びに高い電気絶縁性を有するため
に、半導体実装用放熱性基板材料として注目され、更な
る改良が研究されている。例えば、Journal of Materia
ls Science Letter, vol.11, 1508(1992)には、窒化ア
ルミニウムの焼結性及び熱伝導特性の向上を図るため
に、窒化アルミニウム粉末に少量のイットリア、希土類
酸化物又はアルカリ土類金属酸化物を添加して焼結する
方法が記載されている。これにおいては、酸化物の添加
量は数%であり、焼成は1800℃以上で数時間行われ
る。
2. Description of the Related Art Aluminum nitride has attracted attention as a heat-dissipating substrate material for semiconductor mounting because of its high thermal conductivity, thermal expansion coefficient close to that of silicon, and high electrical insulation, and further improvements are being studied. For example, Journal of Materia
In ls Science Letter, vol. 11, 1508 (1992), a small amount of yttria, rare earth oxide or alkaline earth metal oxide was added to aluminum nitride powder in order to improve the sinterability and thermal conductivity of aluminum nitride. And sintering is described. In this case, the addition amount of the oxide is several percent, and the calcination is performed at 1800 ° C. or more for several hours.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、得られ
る焼結体の強度は低く、例えば、前述の従来方法で得ら
れる焼結体の強度は概して200〜350MPaである
(例えば、Journal of American Ceramics Society, 7
8, 2335(1995)参照)。このようなことから、窒化アル
ミニウム焼結体は構造部品用材料としては普及されてい
ない。
However, the strength of the obtained sintered body is low, for example, the strength of the sintered body obtained by the above-mentioned conventional method is generally 200 to 350 MPa (for example, the Journal of American Ceramics Society). , 7
8, 2335 (1995)). For these reasons, aluminum nitride sintered bodies have not been widely used as structural component materials.

【0004】本発明は、これらの状況に鑑みて成された
もので、高強度を有する緻密な窒化アルミニウム焼結体
を提供することを目的としている。
[0004] The present invention has been made in view of these circumstances, and has as its object to provide a dense aluminum nitride sintered body having high strength.

【0005】[0005]

【課題を解決するための手段】本発明に係る窒化アルミ
ニウム焼結体の製造方法は、窒化アルミニウム粉末に、
イットリウム含有物質、カルシウム含有物質及び珪素含
有物質を添加して焼結することを要旨とする。
The method for producing an aluminum nitride sintered body according to the present invention comprises the steps of:
The gist of the present invention is to add an yttrium-containing substance, a calcium-containing substance, and a silicon-containing substance and sinter them.

【0006】上記窒化アルミニウム粉末に添加される珪
素含有物質は、100ppm〜1重量%のシリカ、又
は、5000ppm〜5重量%のムライトとすることが
できる。
The silicon-containing substance added to the aluminum nitride powder may be 100 ppm to 1% by weight of silica or 5000 ppm to 5% by weight of mullite.

【0007】上記焼結温度は1400〜1800℃とす
ることができる。
[0007] The sintering temperature can be 1400 to 1800 ° C.

【0008】[0008]

【発明の実施の形態】窒化アルミニウム焼結体の強度に
影響を及ぼす要因には様々なものが考えられ、窒化アル
ミニウム焼結体の強度向上について種々の条件で試みた
ところ、窒化アルミニウム粉末にシリカ又はムライト
を、特に微量のシリカ又はムライトを添加した場合に得
られる高熱伝導率を保持したまま焼結体の強度が向上さ
せられるという知見が得られた。シリカ及びムライトが
どの様な作用をするかは定かではないが、これらを添加
した焼結体においては窒化アルミニウム粒子径が小さく
なる傾向を示しており、焼結体の強度が粒子径によって
影響されることを考慮すると、シリカ及びムライトなど
のの添加によりSiO2 成分が窒化アルミニウム粒子に
固溶し焼結体の窒化アルミニウム粒子の微細化を進める
作用を有し、これにより焼結体の強度が向上すると考え
られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various factors affecting the strength of an aluminum nitride sintered body can be considered. Various attempts have been made to improve the strength of the aluminum nitride sintered body under various conditions. Alternatively, it has been found that the strength of a sintered body can be improved while maintaining the high thermal conductivity obtained when mullite, particularly a small amount of silica or mullite, is added. It is not clear how silica and mullite work, but in sintered bodies to which these are added, the aluminum nitride particle size tends to decrease, and the strength of the sintered body is affected by the particle size. Considering that, the addition of silica and mullite causes the SiO 2 component to form a solid solution in the aluminum nitride particles, which has the effect of promoting the miniaturization of the aluminum nitride particles of the sintered body, thereby reducing the strength of the sintered body. It is thought to improve.

【0009】この様なことを踏まえて研究を重ねた結
果、本発明では、高強度の窒化アルミニウムを提供する
ために、シリカ、ムライト等の珪素含有物質を添加した
窒化アルミニウム粉末を焼結する窒化アルミニウム焼結
体の製造方法を提案する。この方法によって、得られる
窒化アルミニウム焼結体の強度を向上させ、高い強度及
び高い熱伝導性を両有する窒化アルミニウム焼結体を製
造することが可能となる。
As a result of repeated studies in view of the above, according to the present invention, in order to provide a high-strength aluminum nitride, the aluminum nitride powder to which a silicon-containing substance such as silica or mullite is added is sintered. A method for manufacturing an aluminum sintered body is proposed. According to this method, the strength of the obtained aluminum nitride sintered body can be improved, and an aluminum nitride sintered body having both high strength and high thermal conductivity can be manufactured.

【0010】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0011】本発明の高強度窒化アルミニウム焼結体の
製造においては、まず、窒化アルミニウム粉末に珪素含
有物質を添加する。原料の窒化アルミニウム粉末は、で
きる限り高純度で粒子が微細な方が望ましいが、通常用
いられている市販の粉末で充分である。本発明において
添加する珪素含有物質は、高温での焼結過程において窒
化アルミニウム粒子にSiO2 成分を固溶して粒子を微
細化するものであるので、高温においてSiO2 成分を
生じ得る珪素含有物質であれば如何なるものでも適用可
能である。但し、SiO2 成分が過度に固溶すると、窒
化アルミニウムの熱伝導率が著しく低下する場合がある
ので、少量のシリカ、高温でも比較的安定でSiO2
分を過度に生じないSiO2 −Al23 化合物(例え
ば、ムライト(2SiO2 ・3Al23 ))、あるい
は窒化アルミニウムとSiO2 との反応生成物であるポ
リタイポイドなどを使用するのが好適である。また、S
iO2 の前駆体となりうる珪素含有アルコキシド(メチ
ルシリケート、エチルシリケート等)を有機溶剤に溶解
した溶液での添加も可能である。シリカ及びムライトに
ついては、一般的に使用されるものから適宜選択して用
いることができるが、ムライトは粒子の細かいもの、特
に粒径1μm以下の微粉末を用いるのが好ましい。シリ
カ及びムライトの添加による効果は特に添加量が少ない
場合に顕著であり、シリカの場合は含有量が100pp
m〜1重量%、ムライトの場合は5000ppm〜5重
量%であるのが好ましい。より好ましくは、シリカの場
合は100〜2000ppm、ムライトの場合は500
0ppm〜3重量%とする。シリカを用いる場合に添加
量が微量で制御が難しい時には、例えばシリカの含有量
を数100〜1000ppmとするような時には、メチ
ルシリケートなどのアルコキシドを溶媒に溶かした溶液
で添加することができる。あるいはムライトを用いるこ
ともできる。1000〜5000ppmの含有量にする
時は、市販のシリカ粉末を用いて好適に添加量を制御で
きる。但し、シリカの含有量が3000ppmを越える
と、窒化アルミニウム焼結体の熱伝導率が低下する傾向
にあり、この様に添加量を多くする必要がある場合には
シリカに代えてムライトを用いるとよい。
In the production of the high-strength aluminum nitride sintered body of the present invention, first, a silicon-containing substance is added to aluminum nitride powder. It is desirable that the raw material aluminum nitride powder has as high a purity as possible and fine particles, but a commercially available powder generally used is sufficient. The silicon-containing substance to be added in the present invention is a substance which dissolves the SiO 2 component in the aluminum nitride particles during the sintering process at a high temperature to make the particles finer, so that the silicon-containing substance capable of generating the SiO 2 component at a high temperature Anything is applicable. However, if the SiO 2 component is excessively dissolved, the thermal conductivity of aluminum nitride may be significantly reduced. Therefore, a small amount of silica, SiO 2 —Al 2 which is relatively stable even at a high temperature and does not excessively generate the SiO 2 component. It is preferable to use an O 3 compound (for example, mullite (2SiO 2 · 3Al 2 O 3 )) or a polytypoid which is a reaction product of aluminum nitride and SiO 2 . Also, S
It is also possible to add a solution in which a silicon-containing alkoxide (methyl silicate, ethyl silicate, or the like) that can be a precursor of iO 2 is dissolved in an organic solvent. Silica and mullite can be appropriately selected from commonly used ones, and it is preferable to use mullite having a fine particle, particularly a fine powder having a particle size of 1 μm or less. The effect of the addition of silica and mullite is particularly remarkable when the addition amount is small, and in the case of silica, the content is 100 pp.
It is preferable that the amount be from m to 1% by weight, and in the case of mullite be from 5000 ppm to 5% by weight. More preferably, 100 to 2000 ppm for silica and 500 for mullite.
0 ppm to 3% by weight. When silica is used and the amount of addition is very small and control is difficult, for example, when the content of silica is set to several hundred to 1,000 ppm, it can be added as a solution in which an alkoxide such as methylsilicate is dissolved in a solvent. Alternatively, mullite can be used. When the content is set to 1000 to 5000 ppm, the addition amount can be suitably controlled by using a commercially available silica powder. However, when the content of silica exceeds 3000 ppm, the thermal conductivity of the aluminum nitride sintered body tends to decrease, and when it is necessary to increase the amount of addition, mullite is used instead of silica. Good.

【0012】窒化アルミニウム粉末には助剤として更に
イットリウム含有物質及びカルシウム含有物質が添加さ
れる。このイットリウム含有物質は、焼結時に酸化イッ
トリウムと同等の効果が得られる物質であり、酸化イッ
トリウム、加熱により酸化イットリウムを生成する化合
物などである。カルシウム含有化合物は、焼結時に酸化
カルシウムと同等の効果が得られる物質であり、酸化カ
ルシウム、加熱により酸化カルシウムを生成する化合物
などである。実際に使用する代表的な化合物として、酸
化イットリウム、炭酸カルシウム(1000℃以上の温
度で酸化カルシウムを生成する)が挙げられる。イット
リウム含有化合物の添加量は、酸化イットリウム換算で
1〜10重量%、カルシウム含有化合物の添加量は、酸
化カルシウム換算で0.1〜3重量%となるように調整
するのが好ましい。より好ましくは、酸化イットリウム
換算で1〜5重量%、酸化カルシウム換算で0.1〜1
重量%とする。
The aluminum nitride powder is further added with an yttrium-containing substance and a calcium-containing substance as auxiliaries. This yttrium-containing substance is a substance that can provide the same effect as yttrium oxide during sintering, such as yttrium oxide and a compound that generates yttrium oxide when heated. The calcium-containing compound is a substance that has the same effect as calcium oxide during sintering, and includes calcium oxide, a compound that generates calcium oxide when heated, and the like. Typical compounds actually used include yttrium oxide and calcium carbonate (which generates calcium oxide at a temperature of 1000 ° C. or higher). It is preferable to adjust the amount of the yttrium-containing compound to be 1 to 10% by weight in terms of yttrium oxide and the amount of the calcium-containing compound to be 0.1 to 3% by weight in terms of calcium oxide. More preferably, it is 1 to 5% by weight in terms of yttrium oxide, and 0.1 to 1% in terms of calcium oxide.
% By weight.

【0013】上述の添加物は窒化アルミニウム粉末に均
一に混合する。この際にエタノール、プロパノールなど
のアルコールや他の溶剤を分散媒として用いてボールミ
ルのような混合手段によって混合することができ、粉末
が均一に混合されたら適宜乾燥して分散媒を除去すれば
よい。
The above additives are uniformly mixed with the aluminum nitride powder. At this time, ethanol, alcohol such as propanol and other solvents can be mixed as a dispersion medium by a mixing means such as a ball mill, and after the powder is uniformly mixed, the dispersion medium may be removed by appropriately drying. .

【0014】混合粉は、所望の形状に予備成形する。成
形は、一軸加圧や冷間等方圧プレス(CIP)のような
圧縮成形、ドクターブレード法などのテープ成形等の方
法を適宜用いて行えばよい。
The mixed powder is preformed into a desired shape. The molding may be appropriately performed by a method such as compression molding such as uniaxial pressing or cold isostatic pressing (CIP), or tape molding such as a doctor blade method.

【0015】予備成形した成形体は加熱して焼結する。
焼結は、1400〜1800℃程度、好ましくは160
0〜1800℃程度の温度で、窒素雰囲気のような非酸
化性雰囲気中で行う。
The preformed compact is heated and sintered.
Sintering is performed at about 1400 to 1800 ° C., preferably 160
This is performed at a temperature of about 0 to 1800 ° C. in a non-oxidizing atmosphere such as a nitrogen atmosphere.

【0016】上述に従って窒化アルミニウム焼結体を製
造すると、シリカ含有量が1200ppm程度の場合、
147W/mK前後の高い熱伝導性と400MPa程度
の高い強度を有する焼結体を得ることができる。又、ム
ライト含有量が1重量%であると、154W/mK程度
の高い熱伝導性と520MPa程度の高い強度を有する
焼結体を得ることができる。従来法による窒化アルミニ
ウム焼結体の熱伝導率は100〜250W/mKである
が、強度は200〜350MPa程度であるので、本発
明によって得られる焼結体の強度の向上が顕著なもので
あることが容易に理解される。
When an aluminum nitride sintered body is manufactured according to the above, when the silica content is about 1200 ppm,
A sintered body having high thermal conductivity of about 147 W / mK and high strength of about 400 MPa can be obtained. When the mullite content is 1% by weight, a sintered body having high thermal conductivity of about 154 W / mK and high strength of about 520 MPa can be obtained. Although the thermal conductivity of the aluminum nitride sintered body according to the conventional method is 100 to 250 W / mK, but the strength is about 200 to 350 MPa, the improvement of the strength of the sintered body obtained by the present invention is remarkable. It is easily understood.

【0017】又、窒化アルミニウム焼結体基板に関して
は、従来は、基板の信頼性を確保するために2〜4mm程
度の厚さのものが製造がされていたが、本発明によって
窒化アルミニウム焼結体の強度を向上させることができ
るので、基板の厚さを薄くすることができ、電子部品等
の小型化を図る上で有効であるなどの利点がある。更
に、基板材料以外の用途においても、高強度化により構
造用部品材料として窒化アルミニウム焼結体の利用価値
を飛躍的に高めることが可能である。
Further, as for the aluminum nitride sintered body substrate, a substrate having a thickness of about 2 to 4 mm has been conventionally manufactured in order to secure the reliability of the substrate. Since the strength of the body can be improved, the thickness of the substrate can be reduced, and there are advantages such as being effective in reducing the size of electronic components and the like. Furthermore, even in applications other than the substrate material, the use value of the aluminum nitride sintered body as a structural component material can be dramatically increased by increasing the strength.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいて具体的に説
明するが、本発明は以下の実施例によって何等限定され
るものではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples.

【0019】(試料1)シリカ換算で210 ppm(0.
021wt%)に相当する量のメチルシリケートをエタノ
ールに溶解し、これに窒化アルミニウム粉末(トクヤマ
社製、比表面積:3m2 /g)96.95重量%、イッ
トリア粉末(北興化学工業社製)2.29重量%及びカ
ルシア換算で0.76重量%に相当する量の炭酸カルシ
ウム粉末(和光純薬工業社製)を添加して、プラスチッ
ク製ボールとポットとを用いて6時間混合を行った。得
られたスラリーを減圧雰囲気中で約60℃に加熱して攪
拌・乾燥を行った後、再び窒素雰囲気中で600℃に加
熱して2時間仮焼を行って混合粉末を得た。
(Sample 1) 210 ppm (0.
0. 21% by weight of methyl silicate was dissolved in ethanol, and 96.95% by weight of aluminum nitride powder (manufactured by Tokuyama Corporation, specific surface area: 3 m 2 / g) and yttria powder (manufactured by Hokuko Chemical Industry Co., Ltd.) 2 Calcium carbonate powder (manufactured by Wako Pure Chemical Industries, Ltd.) in an amount of .29% by weight and 0.76% by weight in terms of calcia was added, and the mixture was mixed for 6 hours using a plastic ball and a pot. The obtained slurry was heated to about 60 ° C. in a reduced-pressure atmosphere and stirred and dried, and then heated again to 600 ° C. in a nitrogen atmosphere and calcined for 2 hours to obtain a mixed powder.

【0020】得られた混合粉末を、縦9mm、横10mm、
長さ45mmの角柱状に予備成形した後、200MPaの
圧力で冷間等方圧成形して、窒素雰囲気中で1700℃
に加熱して3時間焼成した。
The obtained mixed powder is 9 mm long, 10 mm wide,
After preforming into a prism having a length of 45 mm, it was cold isostatically pressed at a pressure of 200 MPa, and was heated to 1700 ° C. in a nitrogen atmosphere.
And baked for 3 hours.

【0021】得られた窒化アルミニウム焼結体の熱伝導
率を、密度、レーザフラッシュ法により測定される熱拡
散率及び比熱から求めた。更に、3点曲げ試験によって
強度を測定した。得られた熱伝導率及び強度を表1に示
す。
The thermal conductivity of the obtained aluminum nitride sintered body was determined from the density, the thermal diffusivity measured by a laser flash method, and the specific heat. Further, the strength was measured by a three-point bending test. Table 1 shows the obtained thermal conductivity and strength.

【0022】(試料2〜5)用いたメチルシリケートの
量を、シリカ換算で0.030重量%(試料2)、0.
049重量%(試料3)、0.070重量%(試料4)
又は0.125重量%(試料5)に相当する量に変更し
たこと以外は試料1と同様の操作を繰り返して窒化アル
ミニウム焼結体を製造し、熱伝導率及び強度を求めた。
得られた結果を表1に示す。
(Samples 2 to 5) The amount of methyl silicate used was 0.030% by weight in terms of silica (sample 2).
049% by weight (sample 3), 0.070% by weight (sample 4)
Alternatively, the same operation as in Sample 1 was repeated except that the amount was changed to 0.125% by weight (Sample 5) to produce an aluminum nitride sintered body, and the thermal conductivity and strength were determined.
Table 1 shows the obtained results.

【0023】(試料6)市販のムライト微粉末0.5重
量%、窒化アルミニウム粉末(トクヤマ社製、比表面
積:3m2 /g)96.95重量%、イットリア粉末
(北興化学工業社製)2.29重量%及びカルシア換算
で0.76重量%に相当する量の炭酸カルシウム粉末
(和光純薬工業社製)をエタノールに添加し、プラスチ
ック製ボールとポットとを用いて6時間混合した。得ら
れたスラリーを減圧雰囲気中で約60℃に加熱して攪拌
・乾燥を行った後、再び窒素雰囲気中で600℃に加熱
して2時間仮焼を行って混合粉末を得た。
(Sample 6) Commercially available mullite fine powder 0.5% by weight, aluminum nitride powder (manufactured by Tokuyama Corp., specific surface area: 3 m 2 / g) 96.95% by weight, yttria powder (manufactured by Hokuko Chemical Industry Co., Ltd.) 2 Calcium carbonate powder (manufactured by Wako Pure Chemical Industries, Ltd.) in an amount of .29% by weight and 0.76% by weight in terms of calcia was added to ethanol, and mixed for 6 hours using a plastic ball and a pot. The obtained slurry was heated to about 60 ° C. in a reduced-pressure atmosphere and stirred and dried, and then heated again to 600 ° C. in a nitrogen atmosphere and calcined for 2 hours to obtain a mixed powder.

【0024】得られた混合粉末を、縦9mm、横10mm、
長さ45mmの角柱状に予備成形した後、200MPaの
圧力で冷間等方圧成形して、窒素雰囲気中で1700℃
に加熱して3時間焼成した。
The obtained mixed powder was 9 mm long, 10 mm wide,
After preforming into a prism having a length of 45 mm, it was cold isostatically pressed at a pressure of 200 MPa, and was heated to 1700 ° C. in a nitrogen atmosphere.
And baked for 3 hours.

【0025】得られた窒化アルミニウム焼結体の熱伝導
率及び強度を試料1と同様の方法で測定した。得られた
熱伝導率及び強度を表1に示す。
The thermal conductivity and strength of the obtained aluminum nitride sintered body were measured in the same manner as in Sample 1. Table 1 shows the obtained thermal conductivity and strength.

【0026】(試料7〜8)用いたムライト微粉末の量
を、1重量部(試料7)又は2重量部(試料8)に変更
したこと以外は試料6と同様の操作を繰り返して窒化ア
ルミニウム焼結体を製造し、熱伝導率及び強度を求め
た。得られた結果を表1に示す。
(Samples 7 and 8) The same operation as in Sample 6 was repeated except that the amount of the mullite fine powder used was changed to 1 part by weight (Sample 7) or 2 parts by weight (Sample 8). A sintered body was manufactured, and the thermal conductivity and strength were determined. Table 1 shows the obtained results.

【0027】(試料9)ムライト微粉末を用いなかった
こと以外は試料6と同様の操作を繰り返して窒化アルミ
ニウム焼結体を製造し、熱伝導率及び強度を求めた。得
られた結果を表1に示す。
(Sample 9) The same operation as in Sample 6 was repeated except that no mullite fine powder was used to produce an aluminum nitride sintered body, and the thermal conductivity and strength were determined. Table 1 shows the obtained results.

【0028】(試料10〜11)焼結温度を1750℃
(試料10)又は1800℃(試料11)に変更したこ
と以外は試料9と同様の操作を繰り返して窒化アルミニ
ウム焼結体を製造し、熱伝導率及び強度を求めた。得ら
れた結果を表1に示す。
(Samples 10 to 11) The sintering temperature was 1750 ° C.
The same operation as in Sample 9 was repeated except that the temperature was changed to (Sample 10) or 1800 ° C. (Sample 11) to produce an aluminum nitride sintered body, and the thermal conductivity and strength were determined. Table 1 shows the obtained results.

【0029】[0029]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 焼結条件 焼結体中の 熱伝導率 強度 温度 時間 添加物量 (℃) (hr) (W/mK) (MPa) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 1700 3 シリカ 210ppm 161 285 2 1700 3 シリカ 300ppm 160 320 3 1700 3 シリカ 490ppm 160 360 4 1700 3 シリカ 700ppm 154 372 5 1700 3 シリカ 1250ppm 147 400 6 1700 3 ムライト 0.5wt% 155 480 7 1700 3 ムライト 1wt% 154 520 8 1700 3 ムライト 2wt% 150 518 9 1700 3 − 165 240 10 1750 3 − 178 250 11 1800 3 − 185 290 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 1 Sample sintering conditions Thermal conduction in sintered body----------------- Rate Strength Temperature Time Additive amount (° C) (hr) (W / mK) (MPa) -------------------------- ----------- 1 1700 3 silica 210 ppm 161 285 2 1700 3 silica 300 ppm 160 320 3 1700 3 silica 490 ppm 160 360 360 1700 3 silica 700 ppm 154 372 5 1700 3 silica 1250 ppm 147 400 5700 500 wt. 7 17003 Mullite 1 wt% 154 520 8 17003 Mullite 2 wt% 150 518 9 1700 3-165 240 10 1750 3-178 250 11 1800 3- 185 290 -------------------------------------------------------------------------

【0030】表1の結果から明らかなように、少量のシ
リカもしくはムライトを添加することにより、高い熱伝
導性と高強度とを有する緻密な窒化アルミニウム焼結体
が得られる。
As is clear from the results shown in Table 1, by adding a small amount of silica or mullite, a dense aluminum nitride sintered body having high thermal conductivity and high strength can be obtained.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、窒
化アルミニウム粉末に少量のシリカもしくはムライトを
添加して焼結することにより、高熱伝導性と高強度とを
両有する窒化アルミニウム焼結体の提供が可能となる。
従って、窒化アルミニウム焼結体を信頼性の高い構造材
として使用することができ、工業的価値は極めて大であ
る。
As described above, according to the present invention, by adding a small amount of silica or mullite to aluminum nitride powder and sintering, aluminum nitride having both high thermal conductivity and high strength is sintered. The body can be provided.
Therefore, the aluminum nitride sintered body can be used as a highly reliable structural material, and its industrial value is extremely large.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月26日(2000.4.2
6)
[Submission date] April 26, 2000 (200.4.2
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】上記窒化アルミニウム粉末に添加される珪
素含有物質は、5000重量ppm〜5重量%のムライ
トとすることができる。
[0006] The silicon-containing substance added to the aluminum nitride powder may be 5000 to 5 wt% mullite.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 マヌエル イー. ブリト 愛知県名古屋市千種区3−2−4,17− 302 (72)発明者 鳥山 素弘 愛知県春日井市中央台6−3−1 (72)発明者 神崎 修三 愛知県春日井市藤山台8−12−4 (72)発明者 上野 文雄 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 (72)発明者 堀口 昭宏 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 (72)発明者 加曽利 光男 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 (72)発明者 角野 裕康 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 Fターム(参考) 4G001 BA04 BA07 BA09 BA36 BA65 BA81 BA85 BB03 BB07 BB09 BB36 BC11 BC52 BD03 BD13 BD23 5F036 AA01 BB01 BD14  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Manuel E. Burito 3-2-4, 17-302, Chikusa-ku, Nagoya, Aichi Prefecture (72) Inventor Tomoyama Tomohiro 6-3-1, Chuodai, Kasugai-shi, Aichi Prefecture (72) Inventor Shuzo Kanzaki 8-12, Fujiyamadai, Kasugai-shi, Aichi Prefecture -4 (72) Inventor Fumio Ueno 1 Toshiba-cho, Komukai-shi, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba R & D Center (72) Inventor Akihiro Horiguchi 1 Toshiba-cho, Komukai-shishi-ku, Kawasaki-shi, Kanagawa Toshiba Corporation Inside the R & D Center (72) Inventor Mitsuo Kasori 1 Tokoba, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Toshiba R & D Center (reference) 4G001 BA04 BA07 BA09 BA36 BA65 BA81 BA85 BB03 BB07 BB09 BB36 BC11 BC52 BD03 BD13 BD23 5F036 AA01 BB01 BD14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム粉末に、イットリウム
含有物質、カルシウム含有物質及び珪素含有物質を添加
して焼結することを特徴とする窒化アルミニウム焼結体
の製造方法。
1. A method for producing an aluminum nitride sintered body, comprising adding an yttrium-containing substance, a calcium-containing substance, and a silicon-containing substance to aluminum nitride powder and sintering.
【請求項2】 前記窒化アルミニウム粉末に添加される
珪素含有物質が100ppm〜1重量%のシリカ、又
は、5000ppm〜5重量%のムライトである請求項
1記載の製造方法。
2. The method according to claim 1, wherein the silicon-containing substance added to the aluminum nitride powder is 100 ppm to 1% by weight of silica or 5000 ppm to 5% by weight of mullite.
【請求項3】 前記焼結温度は1400〜1800℃で
ある請求項1又は2に記載の製造方法。
3. The method according to claim 1, wherein the sintering temperature is 1400 to 1800 ° C.
JP11066639A 1999-03-12 1999-03-12 Manufacturing method of aluminum nitride sintered body Expired - Lifetime JP3106186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11066639A JP3106186B2 (en) 1999-03-12 1999-03-12 Manufacturing method of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11066639A JP3106186B2 (en) 1999-03-12 1999-03-12 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JP2000264738A true JP2000264738A (en) 2000-09-26
JP3106186B2 JP3106186B2 (en) 2000-11-06

Family

ID=13321685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11066639A Expired - Lifetime JP3106186B2 (en) 1999-03-12 1999-03-12 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP3106186B2 (en)

Also Published As

Publication number Publication date
JP3106186B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
US5529962A (en) Aluminum nitride sintered body and method of producing the same
KR101402501B1 (en) Sintered body of aluminium nitride using yttria nitrate as sintering aid and preparation method of the same
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body
JP2642184B2 (en) Method for producing aluminum nitride-hexagonal boron nitride sintered body
JPS6331434B2 (en)
JPS6221764A (en) Manufacture of aluminum nitride
JP3106160B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0515668B2 (en)
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JPH0627032B2 (en) Method for manufacturing aluminum nitride sintered body
EP0260865A1 (en) Process for preparation of aluminium nitride sintered material
RU2032642C1 (en) Mixture for articles of aluminium nitride having high heat conductivity and method for their production
JPH06166569A (en) Production of sintered silicon nitride
JPH0832593B2 (en) Manufacturing method of aluminum nitride sintered body
JPS62246867A (en) Manufacture of aluminum nitride sintered body
JPH04275980A (en) Production of aluminum nitride sintered body
JP2001139379A (en) Method of producing highly thermal conductive aluminum nitride sintered compact
JPH0579626B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term