JP2000263211A - Method for designing die for casting, die for casting and casting method - Google Patents

Method for designing die for casting, die for casting and casting method

Info

Publication number
JP2000263211A
JP2000263211A JP11064805A JP6480599A JP2000263211A JP 2000263211 A JP2000263211 A JP 2000263211A JP 11064805 A JP11064805 A JP 11064805A JP 6480599 A JP6480599 A JP 6480599A JP 2000263211 A JP2000263211 A JP 2000263211A
Authority
JP
Japan
Prior art keywords
mold
casting
pressure
die
designing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11064805A
Other languages
Japanese (ja)
Inventor
Haruyuki Mori
春幸 森
Kenji Usui
謙治 臼井
Nobuyuki Osawa
伸行 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11064805A priority Critical patent/JP2000263211A/en
Publication of JP2000263211A publication Critical patent/JP2000263211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the design of a casting die which is hardly develop a casting flash in a product by obtaining the residual gas quantity or the gas pressure in the casting when the filling of molten metal is completed, comparing the pressure caused by heat expansion of the residual gas developed in the heat exchange with the casting and the casting pressure and obtaining the opening force of the dies. SOLUTION: The residual gas quantity or the gas pressure in the casting when the filling of the molten metal is completed, is obtd. and the pressure caused by the heat expansion of the residual gas developed in the heat exchange with the casting is represented as a pressure parameter. This pressure parameter and the casting pressure are compared and the die opening force is obtd. from the pressure showing the larger value to design the die. Further, at least the die opening force among the die fastening force, thermal stress and the die opening force, is given to the die or a casting machine containing the die, and the die is designed so that the gap amount on the parting plane between the dies during casting becomes a prescribed value or lower, particularly <=0.05 mm. Further, the die opening force is given to a slide core stopper and the displacing amount is calculated, and the slide core stopper is designed so that the displacing amount becomes the prescribed value or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム合金
等の鋳物のダイカスト鋳造等に用いられる鋳造用金型の
設計方法及び鋳造用金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing a casting mold used for die casting of a casting such as an aluminum alloy, and a casting mold.

【0002】[0002]

【従来の技術】ダイカスト鋳造法は、鋳造部品を大量に
精度良く鋳造できる生産性の高い鋳造方法であるが、溶
湯を金型キャビティー内に高速で注入した後、数10M
Paの力で加圧するため、金型が変形して金型見切面に
隙間が生じ、金型キャビティー内の未凝固の溶湯が係る
隙間に入るという現象が発生する。係る隙間に入った溶
湯が凝固し、製品にいわゆる鋳バリが発生し、係る製品
の鋳バリを取り除くための工数が必要となり生産性を阻
害するという問題がある。金型製作後に係る問題の対策
を行うことは難しいため、金型設計段階で、金型の形状
を適正化しておく必要がある。
2. Description of the Related Art Die casting is a highly productive casting method capable of casting a large number of cast parts with high accuracy.
Since pressure is applied by the force of Pa, the mold is deformed and a gap is formed in the mold cutting surface, and a phenomenon occurs in which unsolidified molten metal in the mold cavity enters the gap. There is a problem that the molten metal that has entered the gap solidifies, so-called cast burrs are generated in the product, and man-hours for removing the cast burrs of the product are required, thereby hindering productivity. Since it is difficult to take measures against the problem after the mold is manufactured, it is necessary to optimize the shape of the mold at the stage of designing the mold.

【0003】まず、図面を参照しながらダイカスト鋳造
法について説明する。図1にダイカスト鋳造用金型の概
略図を示す。溶湯Mはスリーブ1に注湯され、プランジ
ャーチップ2が前進して溶湯は固定型3と可動型4を組
み合わせることにより形成されたキャビティー6に充填
される。その直後、重力鋳造でいうところの押し湯効果
を利かせるために、溶湯はプランジャーチップ2により
数10MPaまで加圧される。この力によりダイブロッ
ク5で支えられる可動型4がダイブロックを支点として
例えば図2に示すような形状に撓むこととなる。この時
に固定型3と可動型4で形成されたキャビティーの端部
である金型見切面に金型見切面隙間9が発生する。
[0003] First, the die casting method will be described with reference to the drawings. FIG. 1 shows a schematic view of a die casting die. The molten metal M is poured into the sleeve 1, the plunger tip 2 advances, and the molten metal is filled into the cavity 6 formed by combining the fixed mold 3 and the movable mold 4. Immediately thereafter, the molten metal is pressurized by the plunger tip 2 to several tens of MPa in order to make use of the hot water effect as referred to in gravity casting. This force causes the movable mold 4 supported by the die block 5 to bend into a shape as shown in FIG. 2 with the die block as a fulcrum. At this time, a mold parting surface gap 9 is generated in the parting surface of the mold, which is the end of the cavity formed by the fixed mold 3 and the movable mold 4.

【0004】鋳バリと金型見切面隙間の関係は財団法人
素形材センター研究調査報告454−2に記載してあ
り、平均的には金型見切面の隙間が0.05mm程度以
上にならないと鋳バリは発生しないとある。従って、鋳
造時の金型見切面に生じる隙間をある規定値以下、特に
0.05mm以下となるように可動型の厚さ、ダイブロ
ック間距離、配置及び形状等を設計すれば、鋳バリの生
じ難い金型を得ることができる。
[0004] The relationship between the casting burr and the mold parting surface gap is described in Research Report 454-2 of the Structural Material Center, and on average, the mold parting surface gap does not exceed about 0.05 mm. And that no casting burrs occur. Therefore, if the thickness of the movable mold, the distance between the die blocks, the arrangement, the shape, and the like are designed so that the gap generated on the parting surface of the mold during casting becomes a certain specified value or less, particularly 0.05 mm or less, the casting burr can be reduced. A mold that hardly occurs can be obtained.

【0005】従来は経験的、あるいは梁の撓み計算式で
金型の変形を計算し、鋳造圧力が作用した時の可動主型
の最大撓み量が0.05mm程度になるように設計して
いた。
Conventionally, the deformation of a mold has been calculated empirically or using a beam bending calculation formula, and a design has been made such that the maximum amount of deflection of the movable main mold when casting pressure acts is about 0.05 mm. .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、最近に
おいては、金型の大型化が進み、係る金型の設計経験が
無いため鋳バリのでない金型の最適形状が分からず、鋳
バリの生じる金型を製作してしまう、あるいは梁の撓み
計算式では金型が巨大になる、あるいは鋳バリが生じて
しまう等の問題が生じていた。
However, in recent years, the size of the mold has been increased, and since there is no experience in designing such a mold, the optimum shape of the mold without casting burrs is not known, and the mold with the casting burrs is not formed. There have been problems such as the production of a mold, the use of an equation for calculating the deflection of a beam, the use of a large mold, and the occurrence of casting burrs.

【0007】本発明は、上記従来技術の問題点を解決す
るためになされたものであって、新しい形状、大きさの
鋳造用金型であっても、製品に鋳バリが生じ難い新たな
鋳造用金型の設計方法及び鋳造用金型を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and a new casting method in which casting burrs are less likely to occur in products even if the casting mold has a new shape and size. An object of the present invention is to provide a method of designing a metal mold and a metal mold for casting.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係わる鋳造用金型の設計方法は、可動型と
固定型を具備した鋳造用金型において、溶湯充填完了時
の鋳物内残留ガス量あるいは圧力を求め、鋳物との熱交
換により生じる残留ガスの熱膨張による圧力を圧力パラ
メータAで表現し、係る圧力パラメータAと鋳造圧力を
比較し、大きな値を示す方の圧力から型開き力を求め、
金型を設計する。本発明において、「鋳造圧力」とは金
型内キャビティーに溶湯を充填した後に、加圧される圧
力をいい、「型開き力」とは鋳造中に組み合わされた金
型を開く、つまり金型見切り面の隙間を大きくする方向
に働く力をいう。
In order to achieve the above object, a method for designing a casting mold according to the present invention is directed to a casting mold having a movable mold and a fixed mold, which is used when casting of a molten metal is completed. Determine the amount or pressure of the residual gas inside, express the pressure due to the thermal expansion of the residual gas generated by heat exchange with the casting with the pressure parameter A, compare the pressure parameter A with the casting pressure, and calculate the pressure from the one showing the larger value. Find the mold opening force,
Design the mold. In the present invention, "casting pressure" refers to the pressure applied after filling the cavity in the mold with the molten metal, and "mold opening force" refers to opening the mold combined during casting, that is, the mold. The force acting in the direction to increase the clearance between the mold parting surfaces.

【0009】さらに、型締め力、熱応力及び型開き力の
うち、少なくとも型開き力を金型あるいは金型を含む鋳
造機に与えて、金型見切面隙間量を計算し、鋳造中の金
型見切面の隙間を既定値以下、特に0.05mm以下と
なるように鋳造用金型を設計するとよい。またスライド
中子とスライド中子ストッパを具備した鋳造用金型の場
合、型締め力、熱応力及び型開き力のうち、少なくとも
型開き力をスライド中子ストッパに与えて、スライド中
子ストッパの変位量を計算し、スライド中子ストッパの
変位量を既定値以下、特に0.05mm以下となるよう
にスライド中子ストッパの形状を設計すると良い。
Further, at least the mold opening force of the mold clamping force, the thermal stress and the mold opening force is given to the mold or a casting machine including the mold to calculate the gap amount at the mold cutting surface, and the mold during casting is subjected to the molding. It is advisable to design the casting mold so that the gap between the mold parting faces is less than a predetermined value, especially less than 0.05 mm. In the case of a casting mold having a slide core and a slide core stopper, at least the mold opening force of the mold clamping force, thermal stress and mold opening force is given to the slide core stopper, and It is preferable to calculate the displacement amount and design the shape of the slide core stopper so that the displacement amount of the slide core stopper is equal to or less than a predetermined value, particularly, 0.05 mm or less.

【0010】[0010]

【発明の実施の形態】本発明者らは、図3に示す金型を
用いて、鋳造時の金型の見切面隙間を決める要因を実験
的に調査し、金型の見切面隙間の計算方法について検討
を行った。図3は、図1に示す金型を可動型4を開いた
時に固定型3を見た状態を示す。固定型3には、スリー
ブ1に連通された分流子20を有し、溶湯は分流子20
から湯道21を経由してキャビティー6に充填される。
固定型3には、金型見切り面測定位置10に見切面の隙
間量測定センサ、鋳造圧力測定位置11に鋳造圧力セン
サ、温度測定位置12に温度センサが設けられており、
見切り面にはエアベント13も設けられている。固定型
3の操作側と反操作側とは、固定型3で製品を鋳造する
ときに製品を取り出すなどの操作を行う側を操作側とい
い、固定型3を挟んで反対側を反操作側という。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have experimentally investigated the factors that determine the parting surface gap of a mold during casting using the mold shown in FIG. 3 and calculated the parting surface clearance of the mold. The method was examined. FIG. 3 shows a state where the fixed mold 3 is seen when the movable mold 4 is opened in the mold shown in FIG. The fixed mold 3 has a shunt 20 connected to the sleeve 1, and the molten metal is connected to the shunt 20.
From the cavity 6 through the runner 21.
The fixed die 3 is provided with a gap measurement sensor for the parting surface at the mold parting surface measurement position 10, a casting pressure sensor at the casting pressure measurement position 11, and a temperature sensor at the temperature measurement position 12.
An air vent 13 is also provided on the parting surface. The operating side and the non-operating side of the fixed mold 3 are referred to as a side that performs an operation such as taking out a product when casting a product with the fixed mold 3, and an opposite side with the fixed mold 3 interposed therebetween is an opposite operating side. That.

【0011】本金型を用いて、本発明者らは鋳造中に金
型見切面の隙間を生じさせる、あるいは拡大させる要因
について、検討を行った。その結果、鋳造中に金型見切
面の隙間を生じさせる、あるいは拡大させる要因は、鋳
物内残留ガス、鋳造圧力(金型内キャビティーに溶湯を
充填した後に、加圧される圧力)、型締め力、熱応力で
あることを見出した。さらにそれらの要因のうち、特に
鋳造圧力と残留ガスの熱膨張により生じる圧力とを比較
した場合、ピーク値を示す時間には差があるため、これ
らの力を比較して大きな値を示す方から、鋳造中に組み
合わされた金型を開く、つまり金型見切り面の隙間を大
きくする方向に働く力である「型開き力」を求め、係る
型開き力と必要に応じて型締め力、熱応力を金型あるい
は金型を含む鋳造機に与えて、金型見切面に生じる隙間
を計算すれば、実際の鋳造中の金型見切り面の隙間に近
似出来ることが分かった。なお、鋳物内残留ガス量は、
ガス分析により測定し、ガス圧はエアベント13の先端
に設けた圧力センサにて測定した。圧力パラメータAと
鋳造圧力を比較し、大きな値を示す方の圧力から型開き
力を求める方法としては、大きな値を示す圧力に受圧面
積を単純にかける場合もあれば、それに1.5などの安
全係数などをかけて型開き力とする場合もある。
Using the present mold, the present inventors have studied the factors that create or enlarge the gap between the mold parting surfaces during casting. As a result, the factors that cause or enlarge the gap between the mold parting surfaces during casting are the residual gas in the casting, the casting pressure (the pressure applied after filling the melt in the cavity in the mold), and the mold. It was found that it was a fastening force and a thermal stress. Furthermore, among those factors, especially when comparing the casting pressure and the pressure caused by the thermal expansion of the residual gas, there is a difference in the time when the peak value is obtained. Open the combined mold during casting, that is, find the "mold opening force" which is a force acting in the direction of increasing the gap between the mold parting surfaces, and determine the mold opening force and, if necessary, the mold clamping force and heat. It was found that by applying the stress to the mold or the casting machine including the mold and calculating the gap generated in the mold parting plane, the gap can be approximated to the actual gap in the mold parting plane during casting. The amount of residual gas in the casting is
The gas pressure was measured by gas analysis, and the gas pressure was measured by a pressure sensor provided at the tip of the air vent 13. As a method of comparing the pressure parameter A with the casting pressure and obtaining the mold opening force from the pressure indicating the larger value, there are cases where the pressure receiving area is simply multiplied by the pressure indicating the larger value, and 1.5 or the like. In some cases, the mold opening force is multiplied by a safety factor.

【0012】図4に、プランジャーチップの射出速度が
1.0m/s(鋳物内残留ガス圧0.13MPa)の時
の金型見切面に生じる隙間量を示し、図5に射出速度
2.0m/s(鋳物内残留ガス圧0.15MPa)の時
の隙間量を示す。いずれの場合も鋳造圧力は70MPa
で、昇圧時間は0.05秒である。前者の場合において
金型見切面の隙間は鋳造圧力の昇圧完了時(0.05
秒)に最も大きくなっているのに対して、後者の場合に
おいては残留ガスが熱膨張して生じる圧力が最大となる
時期(約0.2秒)に隙間量が最大値を示している。
FIG. 4 shows the amount of a gap generated on the parting surface of the die when the injection speed of the plunger tip is 1.0 m / s (residual gas pressure in the casting is 0.13 MPa). The gap amount at 0 m / s (residual gas pressure in the casting: 0.15 MPa) is shown. In any case, the casting pressure is 70MPa
And the boosting time is 0.05 seconds. In the former case, the gap between the mold parting surfaces is at the completion of the increase of the casting pressure (0.05
In the latter case, the gap amount shows the maximum value at the time when the pressure generated by the thermal expansion of the residual gas becomes maximum (about 0.2 seconds).

【0013】従って、充填完了時の鋳物内残留ガス量あ
るいは圧力を求め、鋳物との熱交換により生じる残留ガ
スの熱膨張による圧力を圧力パラメータAで表現し、係
る圧力パラメータAと鋳造圧力を比較して、大きくなる
方を型開き力として金型あるいは金型を含む鋳造機に与
え、必要に応じて、型締め力、熱応力も与えて、金型の
見切面隙間量を計算して、見切面隙間量を規定値以下、
特に0.05mm以下となるように可動型の厚さ、ダイ
ブロック間距離、配置及び形状等を設計すれば、鋳バリ
の生じ難い金型とすることができる。特に金型見切面隙
間量あるいは変位量を規定値、特に0.05mm程度と
すれば鋳バリが生じ難い範囲内で軽量な金型を得ること
ができる。
Accordingly, the residual gas amount or pressure in the casting at the time of completion of filling is determined, and the pressure due to the thermal expansion of the residual gas generated by heat exchange with the casting is expressed by the pressure parameter A, and the pressure parameter A is compared with the casting pressure. Then, the larger one is given to the mold or the casting machine including the mold as the mold opening force, and if necessary, the mold clamping force and the thermal stress are also given to calculate the amount of the parting surface gap of the mold, The amount of clearance on the parting surface is below the specified value,
In particular, if the thickness of the movable mold, the distance between the die blocks, the arrangement, the shape, and the like are designed to be 0.05 mm or less, a mold in which casting burrs are unlikely to occur can be obtained. In particular, if the amount of gap or displacement of the die cutting surface is set to a specified value, especially about 0.05 mm, a light-weight die can be obtained within a range where casting burrs are unlikely to occur.

【0014】[0014]

【実施例】本発明の金型設計方法をアルミダイカスト金
型に適用した例について、以下に説明する。先ず、板
村、山本のガス圧解析式(鋳造工学68(1996)4
99)あるいは、背圧の計算できる湯流れ解析ソフトな
どを用いて溶湯充填完了時の鋳物内残留ガス圧を求め
る。鋳物内に残留したガスはプランジャーチップにより
加圧され、この鋳造圧力と等価のガス圧になるまで、押
しつぶされる。溶湯の熱がガスに伝わり、ガスは熱膨張
することとなる。係る圧力は湯口、金型見切面が閉塞し
ている場合は損失なく型開き力として作用する。しか
し、実際は湯口が凝固していない、あるいは金型製作時
に不可避的に生じた見切面にある初期隙間よりガスが抜
ける等の理由により圧力損失が考えられ、また鋳造圧力
も溶湯に伝わるときには溶湯の固相率の割合により異な
ることよりガスが圧縮された時のガス体積の評価が難し
いため残留ガスの熱膨張力による圧力を正しく評価する
ことが難しい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the mold design method of the present invention is applied to an aluminum die casting mold will be described below. First, Itamura and Yamamoto's gas pressure analysis formula (Casting Engineering 68 (1996) 4)
99) Alternatively, the residual gas pressure in the casting at the time of completion of the filling of the molten metal is obtained using molten metal flow analysis software capable of calculating the back pressure. The gas remaining in the casting is pressurized by the plunger tip and crushed until the gas pressure becomes equivalent to the casting pressure. The heat of the molten metal is transmitted to the gas, and the gas thermally expands. Such pressure acts as a mold opening force without loss when the gate and the mold parting surface are closed. However, in practice, pressure loss is considered because the gate is not solidified, or gas escapes from the initial gap on the parting surface inevitably generated during mold production.In addition, when casting pressure is transmitted to the molten metal, Since it is difficult to evaluate the gas volume when the gas is compressed because it differs depending on the ratio of the solid phase ratio, it is difficult to correctly evaluate the pressure due to the thermal expansion force of the residual gas.

【0015】そこで、残留ガスの熱膨張による圧力を圧
力パラメータAとして、係るAを与える式として例えば
次式を導入する。すなわち、A=k{a(p-0.101
3)}b(MPa)とし、係数k、a、bは実験等により決
める。pは溶湯充填直後の残留ガス圧である。残留ガス
圧の代わりにガス量を用いて上記式のような式を仮定し
て圧力パラメータAを決めてもよい。このように圧力パ
ラメータAを導入し、係るAと鋳造圧力を比較して、大
きな値を示す圧力と受圧面積を掛けた値を型開き力と定
義して、型開き力を求める。ここで、財団法人素形材セ
ンター研究調査報告454−2に記載の溶湯圧力センサ
と同様な圧力センサで溶湯に作用している圧力を測定し
て求めたものを鋳造圧力として用いても、鋳造機設定値
を用いてもよいが、前者の値を用いるとより正確な計算
結果となる。
Therefore, the following equation is introduced as an equation for giving the pressure A due to the thermal expansion of the residual gas as the pressure parameter A. That is, A = k {a (p−0.101)
3) Let} b (MPa), and coefficients k, a, and b are determined by experiments and the like. p is the residual gas pressure immediately after filling the molten metal. The pressure parameter A may be determined by assuming an equation such as the above equation using the gas amount instead of the residual gas pressure. As described above, the pressure parameter A is introduced, the A is compared with the casting pressure, and a value obtained by multiplying the pressure showing a large value by the pressure receiving area is defined as the mold opening force, and the mold opening force is obtained. Here, even when the pressure obtained by measuring the pressure acting on the molten metal with a pressure sensor similar to the molten metal pressure sensor described in the Research Report 454-2, is used as the casting pressure, Although the machine setting value may be used, a more accurate calculation result is obtained by using the former value.

【0016】次に、金型温度分布は凝固解析ソフトなど
により求め、係る温度分布を変換ソフトにより、構造解
析ソフトの金型モデルへ入力し、更に、上記式で求めた
型開き力を金型キャビティー部に、型締め力をダイブロ
ックのダイプレート側底面に与えて、金型の鋳造中の変
形をシミュレートする。構造解析用のモデルは、ダイブ
ロック付き可動型を一体ソリッドモデルとし、金型見切
面に接触面を形成して、対面にダイプレート側を固定し
た固定型を配置して図1に示すような金型モデルとす
る。
Next, the mold temperature distribution is determined by solidification analysis software or the like, and the temperature distribution is input to the mold model of the structural analysis software by the conversion software. A mold clamping force is applied to the bottom of the die block on the die plate side of the cavity to simulate deformation of the mold during casting. The model for structural analysis is a solid model with a movable mold with a die block, a contact surface is formed on the mold parting surface, and a fixed mold with the die plate side fixed on the opposite surface is arranged as shown in FIG. Mold model.

【0017】図3に示す金型で測定した金型見切面隙間
と、係る金型について上記計算方法で求めた隙間量とを
図6に比較する。溶湯充填完了時鋳物内ガス圧が(A)
の0.13MPaの場合においても、鋳物内ガス圧が
(B)の0.15MPaの鋳造の場合においても、測定隙
間量と計算で求めた隙間量は良く一致している。この場
合、鋳造圧力は直接溶湯圧力センサで測定した値70M
Paとし、実験で確定した値の一例としてk=0.6、a
=100、b=4を用いた。従って、上記計算方法によ
り金型見切面隙間を計算し、金型見切面隙間が0.05
mm以下となるように金型厚さ、ダイブロック間距離、
位置及び形状等を設計して、金型を製作すれば、鋳バリ
の生じ難い金型とすることができる。
FIG. 6 compares the mold parting surface gap measured with the mold shown in FIG. 3 and the gap amount obtained by the above calculation method for the mold. When the filling of the molten metal is completed, the gas pressure in the casting is (A)
The measured gap amount and the calculated gap amount are in good agreement both in the case of 0.13 MPa in the case of the casting and the case where the gas pressure in the casting is 0.15 MPa in the case (B). In this case, the casting pressure is 70 M directly measured by the molten metal pressure sensor.
Pa, k = 0.6, a
= 100, b = 4. Therefore, the mold parting surface gap is calculated by the above calculation method, and the mold parting surface gap is set to 0.05
mm, the thickness of the mold, the distance between the die blocks,
If the mold is manufactured by designing the position and the shape, etc., a mold in which casting burrs hardly occur can be obtained.

【0018】図7に可動型に鋳造圧力、型締め力を与え
たときの可動型表面の元位置(力を掛けないときの位
置)からの変位量を示す。型締め力を与えたときの見切
面の変形がこのように少ない場合には、型締め力を除
き、型開き力を金型へ与えて変形量(見切面隙間量)を
計算すれば良い。
FIG. 7 shows the amount of displacement from the original position of the movable mold surface (the position where no force is applied) when a casting pressure and a mold clamping force are applied to the movable mold. In the case where the deformation of the parting surface when the mold clamping force is applied is thus small, the amount of deformation (partition surface gap amount) may be calculated by excluding the mold clamping force and applying the mold opening force to the mold.

【0019】図8に可動型の金型見切面隙間量と金型厚
さ、ダイブロック間距離の関係の例を示す。設計時に
は、このような図より、隙間量0.05mmとなる金型
厚さ、ダイブロック間の距離8を選択すれば鋳バリの生
じ難い金型の設計が可能となる。ダイブロック間距離8
をできるだけ縮めて、隙間が0.05mmとなる金型厚
さを選べば、鋳バリが出難く、且つ軽量な金型を得るこ
とができる。
FIG. 8 shows an example of the relationship between the gap of the parting surface of the movable mold, the thickness of the mold, and the distance between the die blocks. At the time of designing, from such a figure, it is possible to design a mold in which casting burrs are less likely to occur by selecting a mold thickness that results in a gap amount of 0.05 mm and a distance 8 between die blocks. Die block distance 8
Is reduced as much as possible, and a mold having a gap of 0.05 mm is selected, so that a mold having less cast burr and light weight can be obtained.

【0020】図9には、可動型に熱応力を与えて、熱変
形をシミュレートした例を示す。対称である可動型の半
分を図示している。係る熱変形が大きい場合には、型開
き力、型締め力及び係る熱応力を金型に与えて見切面隙
間量を計算する必要がある。
FIG. 9 shows an example in which a thermal stress is applied to the movable mold to simulate thermal deformation. Figure 2 illustrates a movable half that is symmetric. When such thermal deformation is large, it is necessary to calculate the amount of gap of the parting surface by giving the mold opening force, the mold clamping force and the thermal stress to the mold.

【0021】図10を参照しながら、鋳造中のスライド
中子ストッパの変形の計算方法を説明する。すなわち、
キャビティー6に接するスライド中子17の面に本発明
方法で求めた型開き力が作用し、スライド中子を介して
スライド中子を押さえるスライド中子ストッパ19に係
る型開き力が作用する。係る型開き力をスライド中子ス
トッパの受力面に与えてストッパの変形を計算した結果
が図11である。ストッパの変位量を0.05mm以下
とすれば、スライド中子部への鋳バリ発生を抑制するこ
とができる。
A method of calculating the deformation of the slide core stopper during casting will be described with reference to FIG. That is,
The mold opening force determined by the method of the present invention acts on the surface of the slide core 17 in contact with the cavity 6, and the mold opening force of the slide core stopper 19 that presses the slide core through the slide core acts. FIG. 11 shows a result of calculating the deformation of the stopper by applying the mold opening force to the force receiving surface of the slide core stopper. If the amount of displacement of the stopper is 0.05 mm or less, it is possible to suppress the occurrence of casting burrs on the slide core.

【0022】[0022]

【発明の効果】本発明に係わる鋳造用金型設計方法によ
り金型を設計製作することにより鋳バリの出難い金型を
得ることができる。また、金型見切面隙間量あるいは変
位量を規定値、特に0.05mm程度とすれば鋳バリが
生じ難い範囲内で軽量な金型を得ることができる。
According to the present invention, by designing and manufacturing a mold by the method for designing a casting mold according to the present invention, it is possible to obtain a mold in which casting burrs hardly occur. Further, when the gap amount or displacement amount of the mold parting surface is set to a specified value, particularly about 0.05 mm, a lightweight mold can be obtained within a range in which casting burrs are unlikely to occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ダイカスト金型の概略図である。FIG. 1 is a schematic view of a die casting mold.

【図2】ダイカスト金型の鋳造圧力による変形の様子を
示す説明図である。
FIG. 2 is an explanatory view showing a state of deformation of a die casting mold due to casting pressure.

【図3】金型見切面隙間、鋳造圧力を測定した実験型の
説明図である。
FIG. 3 is an explanatory view of an experimental mold in which a die parting surface gap and a casting pressure are measured.

【図4】鋳物内残留ガス圧が0.13MPaの時の金型
見切面隙間測定結果を示す図である。
FIG. 4 is a view showing a measurement result of a mold parting surface gap when a residual gas pressure in a casting is 0.13 MPa.

【図5】鋳物内残留ガス圧が0.15MPaの時の金型
見切面隙間測定結果を示す図である。
FIG. 5 is a view showing a result of measuring a gap between a die cut surface when a residual gas pressure in a casting is 0.15 MPa.

【図6】金型見切面隙間の測定値と計算値を比較した図
である。
FIG. 6 is a diagram comparing a measured value and a calculated value of a mold parting surface gap.

【図7】可動型に鋳造圧力、型締め力を与えたときの可
動型の側面端部からキャビティー中央に至る部位の変位
量の計算例を示す説明図である。
FIG. 7 is an explanatory diagram showing a calculation example of a displacement amount of a portion from the side end of the movable die to the center of the cavity when a casting pressure and a mold clamping force are applied to the movable die.

【図8】金型見切面隙間と金型厚さ、ダイブロック間距
離の関係の例を示す説明図である。
FIG. 8 is an explanatory diagram showing an example of a relationship between a mold parting surface gap, a mold thickness, and a distance between die blocks.

【図9】可動型に熱応力を与えて、可動型の変形量を計
算した例を示す説明図である。
FIG. 9 is an explanatory diagram showing an example in which a thermal stress is applied to the movable mold to calculate a deformation amount of the movable mold.

【図10】スライド中子とスライド中子ストッパの関係
の例を示す説明図である。
FIG. 10 is an explanatory diagram showing an example of the relationship between a slide core and a slide core stopper.

【図11】スライド中子ストッパに型開き力を与えて、
スライド中子ストッパの変形を計算した例を示す説明図
である。
FIG. 11 gives a mold opening force to the slide core stopper,
It is explanatory drawing which shows the example which computed the deformation of the slide core stopper.

【符号の説明】[Explanation of symbols]

1 スリーブ、2 プランジャーチップ、3 固定型、
4 可動型、5 ダイブロック、6 キャビティー、M
溶湯、7 金型見切面、8 ダイブロック間距離、9
金型見切面隙間、10 金型見切面隙間測定位置、1
1 鋳造圧力測定位置、12 金型温度測定位置、13
エアベント、14 固定主型、15 可動主型、16
入子、17 スライド中子、18 油圧シリンダー、
19 スライド中子ストッパ、20 分流子、21 湯
1 sleeve, 2 plunger tip, 3 fixed type,
4 movable type, 5 die block, 6 cavity, M
Molten metal, 7 Mold cutting surface, 8 Distance between die blocks, 9
Mold parting surface gap, 10 Mold parting surface gap measurement position, 1
1 Casting pressure measurement position, 12 Mold temperature measurement position, 13
Air vent, 14 fixed main type, 15 movable main type, 16
Nesting, 17 slide cores, 18 hydraulic cylinders,
19 Slide core stopper, 20 shunts, 21 Runner

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 可動型と固定型を具備した鋳造用金型に
おいて、溶湯充填完了時の鋳物内残留ガス量あるいは圧
力を求め、鋳物との熱交換により生じる残留ガスの熱膨
張による圧力を圧力パラメータAで表現し、係る圧力パ
ラメータAと鋳造圧力を比較し、大きな値を示す方の圧
力から型開き力を求め、金型を設計することを特徴とす
る鋳造用金型の設計方法。
In a casting mold having a movable mold and a fixed mold, an amount or pressure of a residual gas in a casting at the time of completion of filling a molten metal is determined, and a pressure due to a thermal expansion of the residual gas generated by heat exchange with the casting is determined. A method for designing a casting mold, characterized by expressing the parameter A, comparing the pressure parameter A with the casting pressure, determining the mold opening force from the pressure showing the larger value, and designing the mold.
【請求項2】 請求項1に記載の鋳造用金型の設計方法
において、型締め力、熱応力及び型開き力のうち、少な
くとも型開き力を金型あるいは金型を含む鋳造機に与え
て、金型見切面隙間量を計算し、鋳造中の金型見切面の
隙間を既定値以下となるように鋳造用金型を設計するこ
とを特徴とする鋳造用金型の設計方法。
2. The method for designing a casting mold according to claim 1, wherein at least the mold opening force of the mold clamping force, the thermal stress and the mold opening force is given to the mold or a casting machine including the mold. A method of calculating a mold parting surface gap amount, and designing a casting mold so that a gap of the mold parting surface during casting is equal to or less than a predetermined value.
【請求項3】 金型見切面隙間を0.05mm以下とな
るように鋳造用金型を設計することを特徴とする請求項
2に記載の鋳造用金型の設計方法。
3. The method for designing a casting mold according to claim 2, wherein the casting mold is designed so that the gap between the mold parting faces is 0.05 mm or less.
【請求項4】 請求項1に記載の鋳造用金型の設計方法
において、スライド中子とスライド中子ストッパを具備
した鋳造用金型の場合、型締め力、熱応力及び型開き力
のうち、少なくとも型開き力をスライド中子ストッパに
与えて、スライド中子ストッパの変位量を計算し、スラ
イド中子ストッパの変位量を既定値以下となるようにス
ライド中子ストッパの形状を設計することを特徴とする
鋳造用金型の設計方法。
4. The method for designing a casting mold according to claim 1, wherein in the case of a casting mold having a slide core and a slide core stopper, the mold clamping force, the thermal stress, and the mold opening force. By applying at least the mold opening force to the slide core stopper, calculating the displacement of the slide core stopper, and designing the shape of the slide core stopper so that the displacement of the slide core stopper is equal to or less than a predetermined value. A method for designing a casting mold.
【請求項5】 スライド中子ストッパの変位量を0.0
5mm以下となるようにスライド中子ストッパの形状を
設計することを特徴とする請求項4に記載の鋳造用金型
の設計方法。
5. The displacement amount of the slide core stopper is set to 0.0
The method for designing a casting mold according to claim 4, wherein the shape of the slide core stopper is designed to be 5 mm or less.
【請求項6】 請求項1乃至請求項5のいずれかに記載
の鋳造用金型の設計方法で設計したことを特徴とする鋳
造用金型。
6. A casting mold designed by the method for designing a casting mold according to any one of claims 1 to 5.
JP11064805A 1999-03-11 1999-03-11 Method for designing die for casting, die for casting and casting method Pending JP2000263211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11064805A JP2000263211A (en) 1999-03-11 1999-03-11 Method for designing die for casting, die for casting and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11064805A JP2000263211A (en) 1999-03-11 1999-03-11 Method for designing die for casting, die for casting and casting method

Publications (1)

Publication Number Publication Date
JP2000263211A true JP2000263211A (en) 2000-09-26

Family

ID=13268837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11064805A Pending JP2000263211A (en) 1999-03-11 1999-03-11 Method for designing die for casting, die for casting and casting method

Country Status (1)

Country Link
JP (1) JP2000263211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175737A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Casting device, casting method, and device and method for measuring pressure in cavity of casting machine
JP2017029997A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 Metal mold design method
CN114202090A (en) * 2020-09-02 2022-03-18 丰田自动车株式会社 Method and program for analyzing voids, void analyzing device, and method for deriving casting conditions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175737A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Casting device, casting method, and device and method for measuring pressure in cavity of casting machine
JP2017029997A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 Metal mold design method
CN114202090A (en) * 2020-09-02 2022-03-18 丰田自动车株式会社 Method and program for analyzing voids, void analyzing device, and method for deriving casting conditions

Similar Documents

Publication Publication Date Title
JP4379621B2 (en) Aluminum alloy forming method
CN105108096B (en) A kind of Properties of Heavy Rail Steel bloom continuous casting dynamic soft-reduction method for determination of amount
KR20010032525A (en) Magnesium pressure casting
JP2014042926A (en) Press casting apparatus and press casting method
CN103826776A (en) Mold designing method, and mold
Patnaik et al. Die casting parameters and simulations for crankcase of automobile using MAGMAsoft
JP2017154175A (en) Casting apparatus and casting method
CN106623856B (en) A kind of method and apparatus improving extrusion casint Piston Casting quality
JP2020146713A (en) Method of evaluating hold-on force and method of evaluating shrinkage
JP2008284608A (en) Casting method
JP2000263211A (en) Method for designing die for casting, die for casting and casting method
Zhou et al. A coupled thermal–mechanical analysis of a mold-billet system during continuous casting
CN106623845A (en) Die casting extrusion mechanism and method
KR20090099375A (en) Temperature control system of pouring slurry for diecasting and method for the same
JP2854618B2 (en) Melt forging method
JP2000117411A (en) Die casting apparatus and die casting method
KR102555462B1 (en) High-pressure die-casting device for manufacturing VCU housing
JP4227768B2 (en) Continuous casting mold
JP3525840B2 (en) Slab measuring method in continuous casting
PL244657B1 (en) Method of eliminating defects in aluminum alloy low-pressure castings by using local compression and a low-pressure casting die with local compression
Rahul et al. Injection Parameters Setting in High-Pressure Die Casting
JP4265268B2 (en) Solidification analysis method for castings
Roorda Influence of Mold Coating Wear on Heat Transfer Coefficient in Aluminum Permanent Molds
JP3033884B2 (en) Injection molding method of die casting machine
CN105964978A (en) Squeeze casting mold