JP2000262863A - Exhaust gas cleaning catalyst combination device - Google Patents

Exhaust gas cleaning catalyst combination device

Info

Publication number
JP2000262863A
JP2000262863A JP11071986A JP7198699A JP2000262863A JP 2000262863 A JP2000262863 A JP 2000262863A JP 11071986 A JP11071986 A JP 11071986A JP 7198699 A JP7198699 A JP 7198699A JP 2000262863 A JP2000262863 A JP 2000262863A
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
exhaust gas
nitrate
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11071986A
Other languages
Japanese (ja)
Inventor
Kimihiro Tokushima
君博 徳島
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JISEDAI HAIGAS SHOKUBAI KENKYUSHO KK
Original Assignee
JISEDAI HAIGAS SHOKUBAI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JISEDAI HAIGAS SHOKUBAI KENKYUSHO KK filed Critical JISEDAI HAIGAS SHOKUBAI KENKYUSHO KK
Priority to JP11071986A priority Critical patent/JP2000262863A/en
Publication of JP2000262863A publication Critical patent/JP2000262863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To make up for a part of a chemical reaction required for removing a nitrogen oxide based on a rhodium catalyst by another catalyst and perform a chemical reaction, to begin with, at a low temperature without impairing the intrinsic performance of the rhodium catalyst by combining the catalyst containing a hardly reducible rhodium with a catalyst of a different composition from the former catalyst. SOLUTION: Ammonia water is dripped into an aqueous solution of a mixture of rhodium nitrate, gallium nitrate, zirconium nitrate and aluminum nitrate to produce an aqueous solution containing a coprecipitation product of rhodium, gallium, aluminum and zirconium. After that, the aqueous solution is thermally treated while it is heated/stirred and the obtained solution is filtered by suction to obtain a gel coprecipitation substance. At the same time, the coprecipitation substance is cleaned and dry-ground into fine powder, which is turn, is baked. A catalyst containing a hardly reducible rhodium obtained as described and a catalyst of a different composition from the former catalyst are combined to constitute the device. Further, the catalyst containing the hardly reduible rhodium is arranged in the downstream of the device and the catalyst of a different composition is arranged in the upstream.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、酸素過剰存在化
においても窒素酸化物を選択的に除去することができる
排ガス浄化触媒組合せ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst combination apparatus capable of selectively removing nitrogen oxides even when oxygen is excessively present.

【0002】[0002]

【従来の技術】本出願人が提案した難還元性酸化ロジウ
ム触媒(特開平11−9998号公報、特願平9−31
0498号)は、酸素過剰存在下においても窒素酸化物
を高い効率で除去することができるが、作動温度域に制
約があり、実用条件を考慮すると、特に低い温度での活
性向上が望まれる。反応温度域が高いのは炭化水素によ
る窒素酸化物還元作用において、両者が反応し、窒素に
分解されるまでの一連の反応が高温度域でしか発現しな
いためである。
2. Description of the Related Art A non-reducible rhodium oxide catalyst proposed by the present applicant (JP-A-11-9998, Japanese Patent Application No. 9-31).
No. 0498) can remove nitrogen oxides with high efficiency even in the presence of an excess of oxygen. However, the operating temperature range is limited, and considering practical conditions, an improvement in activity at particularly low temperatures is desired. The reason why the reaction temperature range is high is that a series of reactions until the two react and are decomposed into nitrogen are manifested only in the high temperature range in the nitrogen oxide reduction action by the hydrocarbon.

【0003】[0003]

【発明が解決しようとする課題】このように、ロジウム
触媒は触媒性能としては優れたものであるが、低い温度
域からの活性を要求される排気ガス浄化システムには適
用する事ができないという問題がある。
As described above, although the rhodium catalyst has excellent catalytic performance, it cannot be applied to an exhaust gas purification system which requires activity from a low temperature range. There is.

【0004】この発明は、以上の問題を解決するもので
あり、ロジウム触媒をベースとして窒素酸化物の除去に
必要な反応の一部を他の触媒で補完し、ロジウム触媒本
来の性能を損なうことなく、低い温度から反応を開始さ
せることを目的とするものである。
[0004] The present invention solves the above-mentioned problems, and a part of the reaction required for removing nitrogen oxides based on a rhodium catalyst is supplemented with another catalyst, thereby impairing the original performance of the rhodium catalyst. The purpose is to start the reaction from a low temperature.

【0005】[0005]

【課題を解決するための手段】この発明は、以下の構成
を備えることにより上記課題を解決できた。
The present invention has solved the above problems by providing the following constitution.

【0006】(1)難還元性ロジウムを含む触媒と、そ
れと異なる組成の触媒とを組み合わせて成ることを特徴
とする、排ガス浄化触媒組合せ装置。
(1) An exhaust gas purifying catalyst combination device comprising a combination of a catalyst containing non-reducible rhodium and a catalyst having a different composition from the catalyst.

【0007】(2)難還元性ロジウムを含む触媒を下流
側に、それと異なる組成の触媒を上流側に配設して成る
ことを特徴とする前記(1)記載の排ガス浄化触媒組合
せ装置。
(2) The exhaust gas purifying catalyst combination apparatus according to the above (1), wherein a catalyst containing a non-reducible rhodium is disposed downstream and a catalyst having a different composition from the catalyst is disposed upstream.

【0008】(3)遷移金属酸化物を主体とする触媒を
上流側に配設して成ることを特徴とする前記(2)記載
の排ガス浄化触媒組合せ装置。
(3) The exhaust gas purifying catalyst combination apparatus according to (2), wherein a catalyst mainly composed of a transition metal oxide is disposed on the upstream side.

【0009】(4)遷移金属を含有するアルミナ触媒を
上流側に配設して成ることを特徴とする前記(2)記載
の排ガス浄化触媒組合せ装置。
(4) An exhaust gas purifying catalyst combination apparatus according to the above (2), wherein an alumina catalyst containing a transition metal is disposed on the upstream side.

【0010】(5)上流側に配設される触媒の触媒量を
下流側に設けられるロジウム触媒に対して同等もしくは
それ以下にすることを特徴とする前記(2)記載の排ガ
ス浄化触媒組合せ装置。
(5) The exhaust gas purifying catalyst combination apparatus according to the above (2), wherein the amount of the catalyst provided on the upstream side is equal to or less than the amount of the rhodium catalyst provided on the downstream side. .

【0011】この発明に係わる排ガス浄化触媒は、以上
の構成、例えば遷移金属を用いた触媒を上流に配置する
ことにより、窒素酸化物の還元反応の一部を補助し、ロ
ジウム触媒上での反応の進行を促進するものであり、こ
のことにより、この発明では、温度特性に優れた触媒シ
ステムを提供することができ、適用範囲を大きく広げる
ことができるものである。
The exhaust gas purifying catalyst according to the present invention assists a part of the reduction reaction of nitrogen oxides by arranging a catalyst using a transition metal upstream of the above-mentioned structure. Therefore, the present invention can provide a catalyst system having excellent temperature characteristics, and can greatly expand the applicable range.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態を実
施例により詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below in detail with reference to examples.

【0013】実施例の説明に先立ち、まず下流触媒およ
び上流触媒の調製について詳述する。
Prior to the description of the examples, the preparation of the downstream catalyst and the upstream catalyst will first be described in detail.

【0014】(下流触媒の調製)(Rh−Ga−Zr−
Al酸化物触媒の調製) ベースとなるロジウム触媒は、ロジウムとガリウムとジ
ルコニウムとアルミニウムの原子数比が1:10:5:
65となるように硝酸ロジウムと硝酸ガリウムと硝酸ジ
ルコニルと硝酸アルミニウムを混合した水溶液を作成す
る。この水溶液を攪拌しながらアンモニア水を滴下す
る。アンモニア水の滴下は水溶液のpHを測定しながら
行い、pHが9.0となったところで滴下を停止する。
このとき生成したロジウムとガリウムとアルミニウムと
ジルコニウムの共沈物を含む水溶液を室温で17時間放
置する。その後、その水溶液を80℃に加熱して攪拌し
ながら5時間の温熱処理を行う。ここで得られた溶液を
吸引ろ過することにより、ゲル状の共沈物質を得る。こ
のゲルを2リットルの純水で洗浄した後、110℃で1
7時間乾燥し、乳鉢で粉砕することにより微粉末を得
る。この粉末を800℃で5時間焼成することによりベ
ース触媒となるべきロジウム−ガリウム−ジルコニウム
−アルミニウム酸化物触媒(以下、ロジウム触媒とい
う。)を合成した。
(Preparation of downstream catalyst) (Rh-Ga-Zr-
Preparation of Al Oxide Catalyst) A rhodium catalyst as a base has an atomic ratio of rhodium, gallium, zirconium, and aluminum of 1: 10: 5:
An aqueous solution is prepared by mixing rhodium nitrate, gallium nitrate, zirconyl nitrate, and aluminum nitrate so as to obtain a value of 65. While stirring this aqueous solution, aqueous ammonia is added dropwise. The dropping of the aqueous ammonia is performed while measuring the pH of the aqueous solution, and the dropping is stopped when the pH reaches 9.0.
The aqueous solution containing the coprecipitate of rhodium, gallium, aluminum and zirconium formed at this time is left at room temperature for 17 hours. Thereafter, the aqueous solution is heated to 80 ° C., and a heat treatment is performed for 5 hours while stirring. The obtained solution is subjected to suction filtration to obtain a gel-like coprecipitated substance. After washing this gel with 2 liters of pure water,
Dry for 7 hours and crush in a mortar to obtain a fine powder. This powder was calcined at 800 ° C. for 5 hours to synthesize a rhodium-gallium-zirconium-aluminum oxide catalyst (hereinafter referred to as a rhodium catalyst) to be a base catalyst.

【0015】(上流触媒の調製)(各遷移元素−アルミ
ナ酸化物触媒の調製) 遷移元素(鉄、コバルト、マンガン)とアルミニウムの
比率が原子比で1/10になるように各硝酸塩とアルミ
ナを水の中で混合。この水溶液を攪拌しながら減圧下で
約50℃に熱し、アルミナ上に遷移元素を含浸させる。
得られた粉末を110℃で17時間乾燥し、乳鉢で粉砕
することにより微粉末を得る。この粉末を800℃で5
時間焼成することにより、求める遷移元素の鉄、コバル
トまたはマンガンのそれぞれのアルミナ酸化物を得た。
(Preparation of Upstream Catalyst) (Preparation of Each Transition Element-Alumina Oxide Catalyst) Each nitrate and alumina were mixed so that the ratio of transition element (iron, cobalt, manganese) to aluminum became 1/10 in atomic ratio. Mix in water. This aqueous solution is heated to about 50 ° C. under reduced pressure with stirring to impregnate the alumina with the transition element.
The obtained powder is dried at 110 ° C. for 17 hours and pulverized in a mortar to obtain a fine powder. This powder was dried at 800 ° C for 5 minutes.
By calcining for a period of time, alumina oxides of the desired transition elements, iron, cobalt and manganese, were obtained.

【0016】なお、この遷移元素酸化物については、上
述の調製とは別に市販品を用いることもできる。
As the transition element oxide, a commercially available product can be used separately from the above-mentioned preparation.

【0017】つぎに、上述の下流触媒および上流触媒を
用いて組合せたこの発明に係る実施例を説明する。
Next, an embodiment according to the present invention in which the above-described downstream catalyst and upstream catalyst are combined and used will be described.

【0018】(実施例1)上流触媒にはFe/Al10
xを用い、下流触媒に前記ベース触媒のロジウム触媒を
用いそれぞれ0.1ccと1.4ccの体積比で組み合
わせた。
Example 1 Fe / Al 10 O was used as the upstream catalyst.
x was used, and the rhodium catalyst of the base catalyst was used as the downstream catalyst, and they were combined in a volume ratio of 0.1 cc and 1.4 cc, respectively.

【0019】(実施例2)上流触媒にはCo/Al10
xを用い、下流触媒に前記ベース触媒のロジウム触媒を
用いそれぞれ0.1ccと1.4ccの体積比で組み合
わせた。
Example 2 Co / Al 10 O was used as the upstream catalyst.
x was used, and the rhodium catalyst of the base catalyst was used as the downstream catalyst, and they were combined in a volume ratio of 0.1 cc and 1.4 cc, respectively.

【0020】(実施例3)上流触媒にはMn/Al10
xを用い、下流触媒に前記ベース触媒のロジウム触媒を
用いそれぞれ0.1ccと1.4ccの体積比で組み合
わせた。
Example 3 Mn / Al 10 O was used as the upstream catalyst.
x was used, and the rhodium catalyst of the base catalyst was used as the downstream catalyst, and they were combined in a volume ratio of 0.1 cc and 1.4 cc, respectively.

【0021】上記実施例1〜3における上流触媒と下流
触媒との体積比の変更した実施例をつぎに示す。
Examples in which the volume ratio between the upstream catalyst and the downstream catalyst in Examples 1 to 3 is changed are shown below.

【0022】(実施例4)実施例2と同じ手法で組み合
わせる体積比をCo/Al10Oxとロジウム触媒とを
0.5ccと1.0ccとして組み合わせた。
Example 4 The volume ratio of Co / Al 10 Ox and rhodium catalyst was 0.5 cc and 1.0 cc in the same manner as in Example 2.

【0023】つぎに実施例4と同じ量の組み合わせの下
に組み合わせる触媒の金属形態を酸化物とした実施例5
および6を以下に示す。なお組み合わせる上流触媒の遷
移元素は市販品のものを用いた。
Next, Example 5 in which the metal form of the catalyst combined under the same amount of combination as in Example 4 was an oxide
And 6 are shown below. The transition element of the upstream catalyst to be used was a commercial product.

【0024】(実施例5)上流触媒にはCo34 を、
下流触媒にはロジウム触媒を0.5cc,1.0ccの
体積比として組み合わせた。
Example 5 Co 3 O 4 was used for the upstream catalyst,
The downstream catalyst was combined with a rhodium catalyst in a volume ratio of 0.5 cc and 1.0 cc.

【0025】(実施例6)上流触媒にはMnO2 を、下
流触媒にはロジウム触媒を0.5cc,1.0ccの体
積比として組み合わせた。
Example 6 MnO 2 was used as an upstream catalyst and a rhodium catalyst was used as a downstream catalyst in a volume ratio of 0.5 cc and 1.0 cc.

【0026】上記実施例と対比するため以下に比較例を
調製した。
A comparative example was prepared below for comparison with the above example.

【0027】(比較例1)上流触媒にはアルミナ(Al
Ox)を、下流触媒にロジウム触媒を0.5cc,1.
0ccの体積比で構成させて組み合わせた。
Comparative Example 1 Alumina (Al) was used as the upstream catalyst.
Ox), 0.5 cc of a rhodium catalyst as a downstream catalyst, and 1.
The components were combined at a volume ratio of 0 cc.

【0028】以上の合成された各実施例および比較例の
触媒の性能試験は常圧固定床流通式反応装置で行った。
反応ガスは、NO:1000ppm、C36 :100
0ppm、CO:1200ppm、H2 :400pp
m、O2 :6%、CO2 :10%、H2 O:10%の組
成を持つN2 希釈のガスを用いて2.5リットル/mi
nの流速で顆粒状(0.5mm〜1mm)の触媒で構成され
る体積1.5ccの触媒層に供給した。この時の空間速
度は100,000h-1である。この組成の反応ガス流
通下、反応温度を段階的に変化させながら性能評価を行
った。表1には各触媒のNOxの最大浄化率を示した。
なお、NOx浄化率は以下の式によって定義される値で
ある。
The performance tests of the catalysts of the respective Examples and Comparative Examples synthesized above were carried out in a normal-pressure fixed-bed flow reactor.
The reaction gas was NO: 1000 ppm, C 3 H 6 : 100
0ppm, CO: 1200ppm, H 2 : 400pp
m, O 2: 6%, CO 2: 10%, H 2 O: 2.5 liters / mi with 10% N 2 dilution gases having a composition
At a flow rate of n, the mixture was fed to a catalyst layer having a volume of 1.5 cc and composed of a granular (0.5 mm to 1 mm) catalyst. The space velocity at this time is 100,000 h -1 . The performance was evaluated while changing the reaction temperature stepwise under the flow of the reaction gas having this composition. Table 1 shows the maximum NOx purification rate of each catalyst.
Note that the NOx purification rate is a value defined by the following equation.

【0029】 [0029]

【0030】実施例1〜3までの触媒の組み合わせは、
ベース触媒に相当する下流触媒のみのロジウムの触媒に
対して450℃〜500℃付近の低温側の活性が大幅に
向上することが確認された(表1)。
The catalyst combinations of Examples 1 to 3 are as follows:
It was confirmed that the activity on the low temperature side near 450 ° C. to 500 ° C. was significantly improved as compared with the rhodium catalyst having only the downstream catalyst corresponding to the base catalyst (Table 1).

【0031】また上流触媒との組み合わせる触媒量の影
響については、実施例4のテスト結果より、少量では
鉄、マンガンと比較して低温化の作用に乏しいコバルト
でも量の最適化によって低温側の活性が大幅に向上する
ことが確認された(表2)。
Regarding the effect of the amount of the catalyst combined with the upstream catalyst, the test results of Example 4 show that even if the amount of cobalt is small, the effect of lowering the temperature is lower than that of iron and manganese. Was significantly improved (Table 2).

【0032】また組み合わせる触媒の元素形態を酸化物
とすることでも低温側の活性を向上する(表3)。
The activity on the low temperature side is also improved by using an oxide as the elemental form of the catalyst to be combined (Table 3).

【0033】次に比較例1において明らかなように上流
触媒と組み合わせる触媒は、アルミナのみではベース触
媒の活性と比較してほとんど変化がないことから、低温
側の活性向上にはアルミナに添加した元素が主として寄
与していることがわかる(表4)。なお添加する元素に
ついては鉄、コバルト、マンガンが最適である。
Next, as apparent from Comparative Example 1, the catalyst combined with the upstream catalyst has almost no change compared to the activity of the base catalyst when only alumina is used. Is mainly contributing (Table 4). It is to be noted that iron, cobalt, and manganese are optimally added as elements to be added.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】以上示したように、この発明によれば、
上述のようにベース触媒としてロジウム触媒の活性を保
持したまま低温側の活性を大幅に向上させることを見出
したので、これまでの触媒に比較して高い活性で窒素酸
化物を除去できる優れた排ガス浄化触媒を提供すること
ができる。
As described above, according to the present invention,
As described above, it has been found that the activity on the low-temperature side is greatly improved while maintaining the activity of the rhodium catalyst as a base catalyst, and therefore, an excellent exhaust gas capable of removing nitrogen oxides with higher activity than conventional catalysts A purification catalyst can be provided.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月12日(2000.6.1
2)
[Submission date] June 12, 2000 (2006.1.
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】この発明は、酸素過剰存在
においても窒素酸化物を選択的に除去することができる
排ガス浄化触媒組合せ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst combination apparatus capable of selectively removing nitrogen oxides even in the presence of excess oxygen.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】(1)硝酸ロジウムと硝酸ガリウムと硝酸
ジルコニルと硝酸アルミニウムを混合した水溶液よりア
ンモニア水を滴下し、ロジウムとガリウムとアルミニウ
ムとジルコニウムの共沈物を含む水溶液を生成し長時間
放置後、その水溶液を加熱攪拌しながら温熱処理を行
い、得られた溶液を吸引ろ過することにより、ゲル状の
共沈物質を得ると共に、このゲルを洗浄した後、乾燥粉
砕することにより微粉末を得、この粉末を焼成すること
により得られる難還元性ロジウムを含む触媒と、それと
異なる組成の触媒とを組み合わせて成ることを特徴とす
る排ガス浄化触媒組合せ装置。
(1) Rhodium nitrate, gallium nitrate and nitric acid
From an aqueous solution of a mixture of zirconyl and aluminum nitrate.
Dropping ammonia water, rhodium, gallium and aluminum
Solution containing a coprecipitate of zirconium
After standing, a warm heat treatment is performed while heating and stirring the aqueous solution.
The resulting solution is filtered by suction to form a gel.
After obtaining the coprecipitated substance and washing the gel, dry powder
Crushing to obtain fine powder and firing this powder
Characterized in that it comprises a catalyst containing rhodium which is hardly reducible and a catalyst having a different composition.
Exhaust gas purification catalyst combining device that.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】削除[Correction method] Deleted

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/74 311A Fターム(参考) 4D048 AA06 AB02 BA03X BA08X BA17X BA28X BA33X BA36X BA37X BA41X BB01 CC32 CC38 CC46 CC49 4G069 AA02 AA03 BA01A BA01B BB04A BB04B BB06B BC16A BC16B BC17A BC17B BC29A BC29B BC51A BC51B BC62A BC62B BC66A BC66B BC67A BC67B BC71A BC71B CA03 CA08 CA13 DA06 EA02Y EB18Y ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B01J 23/74 311A F-term (Reference) 4D048 AA06 AB02 BA03X BA08X BA17X BA28X BA33X BA36X BA37X BA41X BB01 CC32 CC38 CC46 CC49 4G069 AA02 AA03 BA01A BA01B BB04A BB04B BB06B BC16A BC16B BC17A BC17B BC29A BC29B BC51A BC51B BC62A BC62B BC66A BC66B BC67A BC67B BC71A BC71B CA03 CA08 CA13 DA06 EA02Y EB18Y

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 難還元性ロジウムを含む触媒と、それと
異なる組成の触媒とを組み合わせて成ることを特徴とす
る、排ガス浄化触媒組合せ装置。
1. An exhaust gas purifying catalyst combination device comprising a catalyst containing a non-reducible rhodium and a catalyst having a different composition from the catalyst.
【請求項2】 難還元性ロジウムを含む触媒を下流側
に、それと異なる組成の触媒を上流側に配設して成るこ
とを特徴とする請求項1記載の排ガス浄化触媒組合せ装
置。
2. The exhaust gas purifying catalyst combination apparatus according to claim 1, wherein a catalyst containing a non-reducible rhodium is disposed on a downstream side, and a catalyst having a different composition from the catalyst is disposed on an upstream side.
【請求項3】 遷移金属酸化物を主体とする触媒を上流
側に配設して成ることを特徴とする請求項2記載の排ガ
ス浄化触媒組合せ装置。
3. The exhaust gas purifying catalyst combination apparatus according to claim 2, wherein a catalyst mainly composed of a transition metal oxide is disposed on the upstream side.
【請求項4】 遷移金属を含有するアルミナ触媒を上流
側に配設して成ることを特徴とする請求項2記載の排ガ
ス浄化触媒組合せ装置。
4. The exhaust gas purifying catalyst combination apparatus according to claim 2, wherein an alumina catalyst containing a transition metal is disposed on an upstream side.
【請求項5】 上流側に配設される触媒の触媒量を下流
側に設けられるロジウム触媒に対して同等もしくはそれ
以下にすることを特徴とする請求項2記載の排ガス浄化
触媒組合せ装置。
5. The exhaust gas purifying catalyst combination apparatus according to claim 2, wherein the amount of the catalyst disposed on the upstream side is equal to or less than that of the rhodium catalyst disposed on the downstream side.
JP11071986A 1999-03-17 1999-03-17 Exhaust gas cleaning catalyst combination device Pending JP2000262863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11071986A JP2000262863A (en) 1999-03-17 1999-03-17 Exhaust gas cleaning catalyst combination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11071986A JP2000262863A (en) 1999-03-17 1999-03-17 Exhaust gas cleaning catalyst combination device

Publications (1)

Publication Number Publication Date
JP2000262863A true JP2000262863A (en) 2000-09-26

Family

ID=13476305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11071986A Pending JP2000262863A (en) 1999-03-17 1999-03-17 Exhaust gas cleaning catalyst combination device

Country Status (1)

Country Link
JP (1) JP2000262863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001765A1 (en) 2008-07-04 2010-01-07 日産自動車株式会社 Exhaust gas purifying catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289896A (en) * 1994-04-26 1995-11-07 Hitachi Ltd Waste gas purification catalyst and its production
JPH09323039A (en) * 1996-06-06 1997-12-16 Sekiyu Sangyo Kasseika Center Method for catalytically reducing nitrogen oxide
JPH1080633A (en) * 1996-09-06 1998-03-31 Agency Of Ind Science & Technol Nitrous oxide decomposing catalyst and removing method of nitrous oxide
JPH10118454A (en) * 1996-10-23 1998-05-12 Hino Motors Ltd Apparatus for purifying exhaust gas
JPH10165818A (en) * 1996-12-11 1998-06-23 Agency Of Ind Science & Technol Decomposition catalyst for nitrous oxide and removing method of nitrous oxide
JPH1119513A (en) * 1997-07-01 1999-01-26 Agency Of Ind Science & Technol Catalytic reduction removal catalyst for nitrogen oxide and catalytic reduction removal method for nitrogen oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289896A (en) * 1994-04-26 1995-11-07 Hitachi Ltd Waste gas purification catalyst and its production
JPH09323039A (en) * 1996-06-06 1997-12-16 Sekiyu Sangyo Kasseika Center Method for catalytically reducing nitrogen oxide
JPH1080633A (en) * 1996-09-06 1998-03-31 Agency Of Ind Science & Technol Nitrous oxide decomposing catalyst and removing method of nitrous oxide
JPH10118454A (en) * 1996-10-23 1998-05-12 Hino Motors Ltd Apparatus for purifying exhaust gas
JPH10165818A (en) * 1996-12-11 1998-06-23 Agency Of Ind Science & Technol Decomposition catalyst for nitrous oxide and removing method of nitrous oxide
JPH1119513A (en) * 1997-07-01 1999-01-26 Agency Of Ind Science & Technol Catalytic reduction removal catalyst for nitrogen oxide and catalytic reduction removal method for nitrogen oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001765A1 (en) 2008-07-04 2010-01-07 日産自動車株式会社 Exhaust gas purifying catalyst
US8455390B2 (en) 2008-07-04 2013-06-04 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
RU2185322C2 (en) Ammonia oxidation process
EP1618944A1 (en) Perovskite complex oxide and exhaust gas purification catalyst
EP0208434B1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
CN109689205A (en) Purposes of the vanadate as oxidation catalyst
CN113731401A (en) La1-xMn1+xO3Preparation method of (1)
JP2620624B2 (en) Exhaust gas purification catalyst
JPH0312936B2 (en)
AU2008293119B2 (en) Mixed metal oxide catalyst and production of nitric oxide by oxidation of ammonia
JP2930975B2 (en) Method for producing combustion catalyst
JP2000262863A (en) Exhaust gas cleaning catalyst combination device
JP3436425B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JPH09175822A (en) Heat-resistant oxide
JP4016193B2 (en) Denitration catalyst
JPH02187130A (en) Method for nitrogen oxide removal
JPH11106811A (en) Production of reduced iron and apparatus therefor
KR101153284B1 (en) Reforming catalysts of carbon dioxide and process for preparing them
JP4868384B2 (en) Rare earth-noble metal composite material and rare earth-noble metal composite oxide
CN108435237A (en) Middle and low temperature NH3-SCR catalyst, preparation method and application thereof
JPH02187131A (en) Method for removing nitrogen oxide
JP2002320847A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide
JP3239155B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3265605B2 (en) Exhaust gas purification catalyst carrier and method for producing the same
JP3239156B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH07284663A (en) Oxide catalyst material for removal of nitrogen oxides and method for removing nitrogen oxides
JP3605655B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010424