JP2000258513A - Method for calculating soc of secondary battery for electric automobile - Google Patents

Method for calculating soc of secondary battery for electric automobile

Info

Publication number
JP2000258513A
JP2000258513A JP11061068A JP6106899A JP2000258513A JP 2000258513 A JP2000258513 A JP 2000258513A JP 11061068 A JP11061068 A JP 11061068A JP 6106899 A JP6106899 A JP 6106899A JP 2000258513 A JP2000258513 A JP 2000258513A
Authority
JP
Japan
Prior art keywords
battery
soc
calculated
charge
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11061068A
Other languages
Japanese (ja)
Other versions
JP3543662B2 (en
Inventor
Norihiko Hirata
典彦 枚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP06106899A priority Critical patent/JP3543662B2/en
Publication of JP2000258513A publication Critical patent/JP2000258513A/en
Application granted granted Critical
Publication of JP3543662B2 publication Critical patent/JP3543662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Abstract

PROBLEM TO BE SOLVED: To provide a method for calculating SOC of secondary battery for electric automobile by which the charged-state SOC of a secondary battery can be calculated with accuracy. SOLUTION: The internal resistance (r) of a secondary battery 6 is calculated from a formula, r=r0.A2/A1, where the r0, A1, and A2 respectively represent a prescribed resistance value, a first resistance ratio based on the temperature T of the battery 6, and a second resistance ratio based on a prescribed standard charged state. Then the open-circuit voltage E of the battery 6 is calculated by using a formula, F=V+I.r, where the r, I, and V respectively represent the calculated internal resistance and the current and voltage of the battery 6. Thereafter, the SOC of the battery 6 is calculated from the open-circuit voltage E and the correlation between the voltage E and SOC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド車を
含む電気自動車に用いられる電気自動車用二次電池のSO
C演算方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery SO for an electric vehicle used for an electric vehicle including a hybrid vehicle.
Related to C calculation method.

【0002】[0002]

【従来の技術】ハイブリッド自動車等を含む電気自動車
では、モータ駆動用二次電池としてニッケル水素電池や
リチウムイオン電池などが用いられる。二次電池の充電
状態を表す量の一つとしてSOC(state of charge)があ
り、満充電状態をSOC=100%で表し、SOC=0%で充
電量ゼロの状態を表す。上述したニッケル水素電池やリ
チウムイオン電池では、電池温度に関係なく開放電圧Eo
とSOCとの間に所定の相関関係があり、開放電圧EoとSOC
とは一対一の対応関係が成り立っている。そこで、電池
の開放電圧Eoを計測または計算により推定して、Eo−SO
C相関から開放電圧Eoに対応するSOCを求めることができ
る。一般的に、充放電時の開放電圧Eは、充放電時の電
池総電圧V、負荷電流Iおよび電池内部抵抗rから次式
(5)により推定される。
2. Description of the Related Art In electric vehicles including hybrid vehicles, nickel-metal hydride batteries and lithium ion batteries are used as secondary batteries for driving motors. One of the quantities representing the state of charge of the secondary battery is an SOC (state of charge). A fully charged state is represented by SOC = 100%, and a state of zero charge is represented by SOC = 0%. In the above-mentioned nickel-metal hydride battery and lithium-ion battery, the open-circuit voltage Eo is independent of the battery temperature.
Has a predetermined correlation between the open circuit voltage Eo and the SOC.
Has a one-to-one correspondence. Therefore, the open circuit voltage Eo of the battery is estimated by measurement or calculation, and Eo−SO
The SOC corresponding to the open circuit voltage Eo can be obtained from the C correlation. In general, the open-circuit voltage E during charge / discharge is estimated from the following equation (5) from the total battery voltage V during charge / discharge, the load current I, and the internal resistance r of the battery.

【数4】E=V+I・r …(5)E = V + I · r (5)

【0003】[0003]

【発明が解決しようとする課題】従来、式(5)を用い
て開放電圧Eを算出する場合には、内部抵抗rとして一
定の設定値r0、例えば、SOC=100%、電池温度20
℃のときの内部抵抗、を用いて算出するようにしてい
る。しかし、内部抵抗rは電池温度やそのときのSOCに
依存するため、一定の設定値r0を用いて算出された開放
電圧Eと実際の開放電圧Eoとの間に誤差が生じ、開放電
圧Eの誤差の分だけSOCの算出精度が低下してしまうとい
う欠点があった。
Conventionally, when the open-circuit voltage E is calculated by using the equation (5), a constant set value r0 as the internal resistance r, for example, SOC = 100%, and the battery temperature 20
The calculation is made using the internal resistance at a temperature of ° C. However, since the internal resistance r depends on the battery temperature and the SOC at that time, an error occurs between the open-circuit voltage E calculated using the fixed set value r0 and the actual open-circuit voltage Eo, and the open-circuit voltage E There is a drawback that the SOC calculation accuracy is reduced by the error.

【0004】本発明の目的は、充電状態SOCを精度良く
算出することができる電気自動車用二次電池のSOC演算
方法を提供することにある。
An object of the present invention is to provide an SOC calculation method for a secondary battery for an electric vehicle, which can accurately calculate a state of charge SOC.

【0005】[0005]

【課題を解決するための手段】発明の実施の形態を示す
図1に対応付けて説明する。 請求項1の発明は、電池開放電圧と電池6の充電状態
を表すSOCとの相関を示す開放電圧対SOC相関を利用し
て、電池開放電圧から電池6の充電状態を算出する電気
自動車用二次電池のSOC演算方法に適用され、電池開放
電圧Eを、(a)電池6に関して予め与えられる所定抵
抗値r0と、電池温度Tに基づく第1の抵抗比A1と、所与
の基準充電状態に基づく第2の抵抗比A2とから式(6)
により算出される電池内部抵抗rと、(b)充放電時の
電池6の電流Iおよび電圧Vと、から式(7)により算
出することにより上述の目的を達成する。なお、基準充
電状態としては、充電状態算出時より過去に算出された
充電状態や計測された開放電圧などが用いられる。
An embodiment of the present invention will be described with reference to FIG. According to the first aspect of the present invention, there is provided a vehicle for an electric vehicle, which calculates a state of charge of a battery from an open-circuit voltage of a battery by using an open-circuit voltage-to-SOC correlation indicating a correlation between an open-circuit voltage of a battery and an SOC indicating the state of charge of the battery. The battery open voltage E is applied to the SOC calculation method of the next battery, and (a) a first resistance ratio A1 based on the battery temperature T, a predetermined resistance value r0 given in advance for the battery 6, and a given reference charge state From the second resistance ratio A2 based on
The above-mentioned object is achieved by calculating from the battery internal resistance r calculated by the following equation (b) and (b) the current I and the voltage V of the battery 6 at the time of charging / discharging by the equation (7). As the reference state of charge, a state of charge calculated in the past from the state of charge calculation, a measured open circuit voltage, and the like are used.

【数5】r=r0・A2/A1 …(6) E=V+I・r …(7) 請求項2の発明は、電池開放電圧と電池6の充電状態
を表すSOCとの相関を示す開放電圧対SOC相関を利用し
て、電池開放電圧から電池6の充電状態を算出する電気
自動車用二次電池のSOC演算方法に適用され、電池温度
Tと充放電時の電池の電圧Vおよび電流Iとを検出する
第1の工程と、電池温度に依存する第1の抵抗比A1を第
1の工程で検出された電池温度Tに基づいて算出する第
2の工程と、電池6の充電状態に依存する第2の抵抗比
A2を所与の基準充電状態に基づいて算出する第3の工程
と、電池6の基準抵抗値r0,第2の工程で算出された第
1の抵抗比A1および第3の工程で算出された第2の抵抗
比A2から式(8)により電池内部抵抗rを算出する第4
の工程と、
R = r0 · A2 / A1 (6) E = V + I · r (7) According to the invention of claim 2, the open-circuit voltage indicating the correlation between the battery open-circuit voltage and the SOC indicating the state of charge of the battery 6. The present invention is applied to an SOC calculation method for an electric vehicle secondary battery that calculates the state of charge of the battery 6 from the battery open-circuit voltage using the SOC-correlation, and includes the battery temperature T, the battery voltage V during charging and discharging, and the current I. , A second step of calculating a first resistance ratio A1 depending on the battery temperature based on the battery temperature T detected in the first step, and a second step of calculating the first resistance ratio A1 depending on the state of charge of the battery 6. Second resistance ratio
The third step of calculating A2 based on a given reference state of charge, the reference resistance value r0 of the battery 6, the first resistance ratio A1 calculated in the second step, and the third step The fourth calculation of the battery internal resistance r from the second resistance ratio A2 according to equation (8)
Process and

【数6】r=r0・A2/A1 …(8) 電圧V,電流Iおよび電池内部抵抗rから式(9)によ
り電池開放電圧Eを算出する第5の工程と、
R = r0 · A2 / A1 (8) a fifth step of calculating the battery open-circuit voltage E from the voltage V, the current I, and the battery internal resistance r according to the equation (9);

【数7】E=V+I・r …(9) 第5の工程で算出された電池開放電圧Eおよび開放電圧
対SOC相関から電池6の充電状態を算出する第6の工程
と、第6の工程で算出された充電状態を基準充電状態に
設定する第7の工程とを有し、第3の工程から第7の工
程までの一連の工程を複数回繰り返し行うことにより上
述の目的を達成する。なお、基準充電状態としては、充
電状態算出時より過去に算出された充電状態や計測され
た開放電圧などが用いられる。
E = V + I · r (9) A sixth step of calculating the state of charge of the battery 6 from the battery open-circuit voltage E calculated in the fifth step and the correlation between the open-circuit voltage and the SOC, and a sixth step And a seventh step of setting the state of charge calculated in the above to a reference state of charge, and the above-described object is achieved by repeating a series of steps from the third step to the seventh step a plurality of times. As the reference state of charge, a state of charge calculated in the past from the time of calculation of the state of charge, a measured open circuit voltage, and the like are used.

【0006】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used in order to make the present invention easier to understand. However, the present invention is not limited to the embodiment.

【0007】[0007]

【発明の効果】本発明によれば、電池開放電圧Eの算出
に用いられる電池内部抵抗rを、所定抵抗値r0,電池温
度に基づく第1の抵抗比A1および基準充電状態に基づく
第2の抵抗比A2から算出しているので、電池状態がより
正確に反映された電池内部抵抗rが算出され、この電池
開放電圧と開放電圧対SOC相関とから算出される充電状
態SOCの精度向上を図ることができる。特に請求項2の
発明では、算出された充電状態SOCに基づいて第2の抵
抗比A2を算出するとともに、その第2の抵抗比A2を用い
て再び充電状態SOCを算出する演算処理を複数回繰り返
し行うので、より高精度な充電状態SOCを算出すること
ができる。
According to the present invention, the battery internal resistance r used for calculating the battery open-circuit voltage E is set to a predetermined resistance value r0, a first resistance ratio A1 based on the battery temperature, and a second resistance ratio A1 based on the reference state of charge. Since the battery state is calculated from the resistance ratio A2, the battery internal resistance r reflecting the battery state more accurately is calculated, and the accuracy of the state of charge SOC calculated from the battery open-circuit voltage and the open-circuit voltage-SOC correlation is improved. be able to. In particular, in the second aspect of the present invention, the second resistance ratio A2 is calculated based on the calculated state of charge SOC, and the calculation processing of calculating the state of charge SOC again using the second resistance ratio A2 is performed a plurality of times. Since the repetition is performed, a more accurate state of charge SOC can be calculated.

【0008】[0008]

【発明の実施の形態】以下、図1〜図7を参照して本発
明の実施の形態を説明する。図1はパラレル・ハイブリ
ッド車の構成を示すブロック図である。エンジン2の主
軸には電動モータ3の回転子が直結されており、エンジ
ン2および/またはモータ3の駆動力は駆動系4を介し
て車軸1に伝達される。モータ3は二次電池6により駆
動されるが、この際にインバータ5を用いて二次電池6
の直流電力を交流電力に変換する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a parallel hybrid vehicle. The rotor of the electric motor 3 is directly connected to the main shaft of the engine 2, and the driving force of the engine 2 and / or the motor 3 is transmitted to the axle 1 via the drive system 4. The motor 3 is driven by a secondary battery 6. At this time, the secondary battery 6 is
Is converted to AC power.

【0009】パラレル・ハイブリッド車におけるモータ
3の運転モードには、車軸1を駆動する駆動モードと二
次電池6を充電する発電モードとがある。車両自体の駆
動モード時、すなわち加速時,平坦路走行時や登坂時等
に、モータ3へ電力を供給する二次電池6が充分な充電
状態にある場合には、モータ3を駆動モードで運転して
エンジン2とモータ3の両方の駆動力により走行する。
ただし、二次電池6の充電状態が低い場合にはモータ3
を発電モードで運転して、エンジン2の駆動力により走
行を行うとともにエンジン2の駆動力によりモータ3の
回転子を回転し、モータ3による発電を行って二次電池
6を充電する。この発電モード時には、インバータ5は
モータ3からの交流電力を直流電力に変換して二次電池
6へ供給する。
The driving modes of the motor 3 in the parallel hybrid vehicle include a driving mode for driving the axle 1 and a power generation mode for charging the secondary battery 6. When the secondary battery 6 that supplies power to the motor 3 is in a sufficiently charged state in the drive mode of the vehicle itself, that is, when accelerating, traveling on a flat road, or climbing a hill, the motor 3 is operated in the drive mode. Then, the vehicle travels with the driving force of both the engine 2 and the motor 3.
However, when the state of charge of the secondary battery 6 is low, the motor 3
Is operated in the power generation mode, the vehicle runs with the driving force of the engine 2, rotates the rotor of the motor 3 with the driving force of the engine 2, generates power by the motor 3, and charges the secondary battery 6. In the power generation mode, the inverter 5 converts AC power from the motor 3 into DC power and supplies the DC power to the secondary battery 6.

【0010】一方、車両制動モード時、すなわち減速時
や降坂時などには、駆動系4を介した車輪の回転力によ
ってエンジン2およびモータ3が駆動される。このと
き、モータ3を発電モードで運転し回生エネルギーを吸
収して二次電池6を充電する。7は電圧センサ8,電流
センサ9,および温度センサ10により検出された端子
電圧V,充放電電流Iおよび電池温度T等に基づいて二
次電池6のSOC等を算出するとともに、インバータ12
の出力制御や回生制御などを行なうバッテリーコントロ
ーラであり、CPU,RAM,ROM等を備えている。11はエ
ンジン2,モータ3,バッテリーコントローラ7等の全
体的な制御を行うメインコントローラである。
On the other hand, in the vehicle braking mode, that is, during deceleration or downhill, the engine 2 and the motor 3 are driven by the rotational force of the wheels via the drive system 4. At this time, the motor 3 is operated in the power generation mode to absorb the regenerative energy and charge the secondary battery 6. 7 calculates the SOC of the secondary battery 6 based on the terminal voltage V, the charging / discharging current I, the battery temperature T, and the like detected by the voltage sensor 8, the current sensor 9, and the temperature sensor 10;
It is a battery controller that performs output control, regenerative control, etc., and has a CPU, RAM, ROM, etc. A main controller 11 performs overall control of the engine 2, motor 3, battery controller 7, and the like.

【0011】図2は二次電池6の開放電圧EoとSOCとの
相関関係の一例を示す図であり、図2に示すように電池
6の開放電圧E’が分かればEo−SOC相関からその時のSO
C’を求めることができる。なお、Eo−SOC相関は、予め
相関式の形でバッテリーコントローラ7に記憶されてい
る。前述したように、充放電時の開放電圧Eは、次式
(10)を用いて算出する。
FIG. 2 is a diagram showing an example of the correlation between the open-circuit voltage Eo of the secondary battery 6 and the SOC. If the open-circuit voltage E 'of the battery 6 is known as shown in FIG. SO
C 'can be obtained. The Eo-SOC correlation is stored in the battery controller 7 in the form of a correlation equation in advance. As described above, the open circuit voltage E during charging and discharging is calculated using the following equation (10).

【数8】E=V+I・r …(10) 式(10)において、Vは負荷時の総電圧、Iは負荷電
流、rは電池内部抵抗であり、VおよびIは図1の電圧
センサ8および電流センサ9により検出される。
E = V + I · r (10) In equation (10), V is the total voltage under load, I is the load current, r is the internal resistance of the battery, and V and I are the voltage sensor 8 of FIG. And the current sensor 9.

【0012】図3は電池内部抵抗rの特性を示す図であ
り、縦軸は内部抵抗rを、横軸はDOD(depth of discha
rge)をそれぞれ表している。なお、DOD=0%はSOC=10
0%に対応し、DOD=100%はSOC=0%に対応している。
図3においてL(0)は電池温度T=0℃のときの内部抵抗
特性を示しており、L(20),L(40)はT=20℃およびT=
40℃のときの内部抵抗特性を示している。図3からも分
かるように、放電末期のDODが大きい領域を除けば、特
性L(0),L(20),L(40)は互いに平行な直線と見なすこと
ができる。
FIG. 3 is a graph showing the characteristics of the internal resistance r of the battery. The vertical axis represents the internal resistance r, and the horizontal axis represents the DOD (depth of discha).
rge). DOD = 0% is SOC = 10
Corresponding to 0%, DOD = 100% corresponds to SOC = 0%.
In FIG. 3, L (0) indicates the internal resistance characteristics when the battery temperature T = 0 ° C., and L (20) and L (40) indicate T = 20 ° C. and T = 20 ° C.
The graph shows the internal resistance characteristics at 40 ° C. As can be seen from FIG. 3, the characteristics L (0), L (20), and L (40) can be regarded as straight lines parallel to each other except for a region where the DOD at the end of discharge is large.

【0013】そこで、本実施の形態では、内部抵抗rに
ついては次式(11)を用いて算出する。
Therefore, in the present embodiment, the internal resistance r is calculated using the following equation (11).

【数9】r=r0・A2/A1 …(11) ここで、r0は内部抵抗の初期設定値であり、電池温度T
=20℃、SOC=100%のときの内部抵抗値である。また、
A1は電池温度Tに依存する電池内部抵抗比、A2は電池の
SOCに依存する電池内部抵抗比であり、表1の(a)、
(b)にA1、A2の一例を示す。なお、二次電池6に関す
るA1、A2は予め表1のようなテーブルとしてバッテリー
コントローラ7(図1)に入力されている。式(11)
によれば、電池温度が20℃でSOC=100%の場合にはA1=
A2=1であるからr=r0となり、例えば,電池温度が30
℃でSOC=80%の場合にはA1=0.9、A2=1.10であるから
r1.22・r0となる。
R = r0 · A2 / A1 (11) where r0 is the initial set value of the internal resistance, and the battery temperature T
= 20 ° C, SOC = 100%. Also,
A1 is the internal resistance ratio of the battery depending on the battery temperature T, and A2 is the
This is the battery internal resistance ratio depending on the SOC.
(B) shows an example of A1 and A2. Note that A1 and A2 relating to the secondary battery 6 are previously input to the battery controller 7 (FIG. 1) as a table as shown in Table 1. Equation (11)
According to the formula, when the battery temperature is 20 ° C and the SOC = 100%, A1 =
Since A2 = 1, r = r0. For example, when the battery temperature is 30
When SOC = 80% at ° C., A1 = 0.9 and A2 = 1.10, so r1.22 · r0.

【表1】 [Table 1]

【0014】次に、バッテリーコントローラ7で行われ
るSOC演算の手順について説明する。 −SOC演算例1− 図4に示すフローチャートを用いてSOC演算の第1の例
について説明する。このフローチャートは車両電源をオ
ンして車両起動することによりスタートし、ステップS
1へ進む。ステップS1では、車両電源オン直後の負荷
電流I=0の時の電圧、すなわち図1の電池6の開放電
圧E0を電圧センサ8より読み込む。ステップS2では、
図2に示したEo−SOC相関からステップS1で求めた開
放電圧E0に対応する車両起動時のSOC(SOC1と記す)を
算出し、このSOC1をバッテリーコントローラ7内のメモ
リ(不図示)に設けられたメモリ領域M1に記憶する。続
くステップS3では、電池温度T、電圧V、電流Iの読み
込みを行う。
Next, the procedure of the SOC calculation performed by the battery controller 7 will be described. —SOC Calculation Example 1— A first example of the SOC calculation will be described with reference to the flowchart shown in FIG. This flowchart is started by turning on the vehicle power supply and starting up the vehicle.
Proceed to 1. In step S1, the voltage at the time of the load current I = 0 immediately after the vehicle power is turned on, that is, the open voltage E0 of the battery 6 in FIG. In step S2,
From the Eo-SOC correlation shown in FIG. 2, the SOC at the time of starting the vehicle (hereinafter referred to as SOC1) corresponding to the open circuit voltage E0 obtained in step S1 is calculated, and this SOC1 is provided in a memory (not shown) in the battery controller 7. Is stored in the specified memory area M1. In the following step S3, the battery temperature T, voltage V, and current I are read.

【0015】ステップS4はSOC演算を行うステップで
あり、図5のフローチャートに詳細な手順を示す。図5
のステップS41では、バッテリーコントローラ7に予
め記憶されている内部抵抗比A1テーブルおよび内部抵抗
比A2テーブルを用いて、電池温度Tに対応する内部抵抗
比A1(T)およびメモリ領域M1のSOC1に対応するA2(SOC1)
を算出する。ステップS42では、ステップS41で算
出された内部抵抗比A1(T),A2(SOC1)および上述した初
期設定値r0から式(11)を用いて内部抵抗rを算出す
る。ステップS43では、電圧V、電流Iおよびステップ
S42で算出された内部抵抗rから式(10)を用いて
開放電圧Eを算出する。次いでステップS44で、Eo−S
OC相関からステップS42で求めた開放電圧Eに対応す
るSOC2を算出してバッテリーコントローラ7のメモリ領
域M2に記憶したならば、図5のSOC演算ルーチンを終了
して図4のステップS5へ進む。
Step S4 is a step of performing the SOC calculation, and the detailed procedure is shown in the flowchart of FIG. FIG.
In step S41, the internal resistance ratio A1 (T) corresponding to the battery temperature T and the SOC1 of the memory area M1 are corresponded using the internal resistance ratio A1 table and the internal resistance ratio A2 table stored in the battery controller 7 in advance. A2 (SOC1)
Is calculated. In step S42, an internal resistance r is calculated from the internal resistance ratios A1 (T) and A2 (SOC1) calculated in step S41 and the above-described initial set value r0 using equation (11). In step S43, the open-circuit voltage E is calculated from the voltage V, the current I, and the internal resistance r calculated in step S42 using Expression (10). Next, in step S44, Eo-S
When the SOC2 corresponding to the open circuit voltage E obtained in step S42 is calculated from the OC correlation and stored in the memory area M2 of the battery controller 7, the SOC calculation routine of FIG. 5 ends, and the process proceeds to step S5 of FIG.

【0016】図4のステップS5は車両電源オフの指示
を受信したか否かを判断するステップであり、YESなら
ばSOC演算に関する一連の処理を終了する。一方、ステ
ップS5においてNOと判断された場合には、ステップS
6へ進んでメモリ領域M2のSOC2を新たなSOC1としてメモ
リ領域M1に記憶する。その後ステップS3へ進み、車両
電源オフの指示を受信するまでステップS3からステッ
プS5までの処理を繰り返し行う。このようにして、起
動後のSOCが次々と算出され、メモリ領域M1内のSOC1が
電池6のSOCとして用いられる。
Step S5 in FIG. 4 is a step for judging whether or not an instruction to turn off the vehicle power has been received. If YES, a series of processes relating to the SOC calculation is ended. On the other hand, if NO is determined in step S5, the process proceeds to step S5.
Proceeding to 6, the SOC2 of the memory area M2 is stored as a new SOC1 in the memory area M1. Thereafter, the process proceeds to step S3, and the process from step S3 to step S5 is repeated until an instruction to turn off the vehicle power is received. In this way, the SOCs after startup are calculated one after another, and the SOC 1 in the memory area M 1 is used as the SOC of the battery 6.

【0017】−SOC演算例2− 上述したSOC演算方法では、内部抵抗rを算出する際の
内部抵抗比A2(SOC1)は、算出時のSOC2ではなくその前に
得られたSOC1に基づくものである。そのため、算出され
たSOC2は算出時の電池状態を正確に反映しておらず、内
部抵抗比A2(SOC1)による誤差が含まれていることにな
る。そこで、このような誤差の影響を極力低減したSOC
演算方法を、図6のフローチャートを用いて説明する。
-SOC Calculation Example 2 In the above-described SOC calculation method, the internal resistance ratio A2 (SOC1) when calculating the internal resistance r is based not on the SOC2 at the time of calculation but on the SOC1 obtained before. is there. Therefore, the calculated SOC2 does not accurately reflect the battery state at the time of calculation, and includes an error due to the internal resistance ratio A2 (SOC1). Therefore, SOC that minimizes the effects of such errors
The calculation method will be described with reference to the flowchart in FIG.

【0018】図6においてステップS1からステップS
4までの処理は図4のフローチャートのステップS1か
らステップS4と同様であり、ここでは説明を省略す
る。ステップS4でSOC2を算出したならば、ステップS
10において車両電源オフの指示を受信したか否かを判
断し、YESならばSOC演算に関する一連の処理を終了し、
NOならばステップS11へ進む。ステップS11はメモ
リ領域M2に記憶されているSOC2とメモリ領域M1に記憶さ
れているSOC1との差の大きさ|SOC2−SOC1|が設定値Δ
S以下か否かを判断するステップであり、YESの場合には
ステップS14へ進み、NOの場合にはステップS12へ
進む。なお、||は絶対値記号を表す。
In FIG. 6, steps S1 to S
The processes up to 4 are the same as steps S1 to S4 of the flowchart in FIG. If SOC2 is calculated in step S4, step S4
It is determined whether or not an instruction to turn off the vehicle power has been received at 10; if YES, a series of processes related to the SOC calculation is terminated,
If NO, proceed to step S11. In step S11, the magnitude | SOC2−SOC1 | of the difference between SOC2 stored in the memory area M2 and SOC1 stored in the memory area M1 is equal to the set value Δ
This is a step of determining whether or not it is equal to or less than S. If YES, the process proceeds to step S14, and if NO, the process proceeds to step S12. || represents an absolute value symbol.

【0019】ところで、現在(ステップS11処理時)
のSOCの算出値はメモリ領域M2のSOC2であり、メモリ領
域M1に記憶されているSOC1はSOC2より1回前に算出され
たSOCである。ここで、SOC2の算出に用いられる内部抵
抗比A2(SOC1)は前回算出されたSOC1に基づいて算出され
たものである。そのため、SOC1算出時からSOCが変化し
ていないような場合には、例えば、SOC1が車両起動時の
SOCでSOC2が車両走行開始前に算出されたものである場
合にはSOC2=SOC1となるはずであるから、SOC2算出に用
いられる内部抵抗比A2(SOC1)はSOC1に基づくものである
がA2(SOC1)=A2(SOC2)とみなすことができる。
By the way, at present (during step S11)
Is the SOC2 of the memory area M2, and the SOC1 stored in the memory area M1 is the SOC calculated one time before the SOC2. Here, the internal resistance ratio A2 (SOC1) used for calculating SOC2 is calculated based on SOC1 calculated last time. Therefore, if the SOC has not changed since the SOC1 calculation, for example, the SOC1
If SOC2 is calculated before the vehicle starts traveling in SOC, SOC2 should be SOC1.Therefore, the internal resistance ratio A2 (SOC1) used for SOC2 calculation is based on SOC1, but A2 ( SOC1) = A2 (SOC2).

【0020】すなわち、SOCが変化していない場合に
は、算出値SOC1,SOC2はSOC2=SOC1を満たしステップS
11からステップS14へと進む。そして、ステップS
14においてメモリ領域M1の値をメモリ領域M2のSOC2の
値に書き換えてSOC1として記憶したならば、ステップS
3へ戻って次のタイミングのSOCを算出する。
That is, if the SOC has not changed, the calculated values SOC1 and SOC2 satisfy SOC2 = SOC1 and the process proceeds to step S2.
The process proceeds from step 11 to step S14. And step S
If the value of the memory area M1 is rewritten to the value of SOC2 of the memory area M2 and stored as SOC1 in step 14,
Returning to step 3, the SOC at the next timing is calculated.

【0021】一方、SOS2算出時のSOCがSOC1から変化し
ている場合には、算出されたSOC2はSOC2≠SOC1となる。
また、SOS2算出には内部抵抗比A2(SOC1)を用いているの
で、真の値SOC2’に対してもSOS2≠SOC2’となってい
る。ここで、SOS2はSOC1よりもSOC2’に近い値となるの
で、内部抵抗比A2(SOC1)の代わりにA2(SOC2)を用いてSO
Cを算出すれば、上述したSOS2よりさらに真の値SOC2’
に近いSOCが算出できることになる。
On the other hand, if the SOC at the time of calculating SOS2 is different from SOC1, the calculated SOC2 is SOC2 ≠ SOC1.
Also, since SOS2 is calculated using the internal resistance ratio A2 (SOC1), SOS22SOC2 'also holds for the true value SOC2'. Here, SOS2 becomes a value closer to SOC2 'than SOC1, so that A2 (SOC2) is used instead of the internal resistance ratio A2 (SOC1).
If C is calculated, the true value SOC2 ′ is even more than SOS2 described above.
Can be calculated.

【0022】そこで、ステップS11でNOと判断された
場合には、ステップS12に進んでメモリ領域M1のSOC1
の値をSOC2の値に書き換え、次のステップS13では書
き換えられたSOC1を用いてSOC演算を行う。なお、ステ
ップS13のSOC演算はステップS4の演算と同様であ
り説明を省略する。ステップS13でSOC2を算出したな
らばステップS11へ戻って、算出されたSOC2が|SOC2
−SOC1|≦ΔSであるか否かを判断する。そして、ステ
ップS11においてSOC2が|SOC2−SOC1|≦ΔSを満足
してステップS14へ進むまで、ステップS11からス
テップS13までの処理を繰り返し行う。
Therefore, if NO is determined in the step S11, the process proceeds to a step S12, in which the SOC1 of the memory area M1 is changed.
Is rewritten to the value of SOC2, and in the next step S13, the SOC calculation is performed using the rewritten SOC1. Note that the SOC calculation in step S13 is the same as the calculation in step S4, and a description thereof will be omitted. If SOC2 is calculated in step S13, the process returns to step S11, and the calculated SOC2 is | SOC2
It is determined whether or not −SOC1 | ≦ ΔS. Then, the processing from step S11 to step S13 is repeated until SOC2 satisfies | SOC2−SOC1 | ≦ ΔS in step S11 and proceeds to step S14.

【0023】このようにステップS11からステップS
13までの処理を繰り返し行うと、算出されるSOC2は漸
近的に真の値SOC2’に近づき、|SOC2−SOC1|は次第に
小さくなる。そこで、繰り返し処理を終了する際の基準
値ΔSを所定精度のSOCが得られるように設定し、|SOC2
−SOC1|≦ΔSとなったならばステップS14へ進んで
メモリ領域M1の値をSOC2の値に書き換えた後、ステップ
S3へ戻って次のタイミングのSOCを算出する。
As described above, steps S11 to S
When the processing up to 13 is repeatedly performed, the calculated SOC2 asymptotically approaches the true value SOC2 ′, and | SOC2−SOC1 | gradually decreases. Therefore, the reference value ΔS at the end of the repetitive processing is set so as to obtain an SOC with a predetermined accuracy, and | SOC2
If −SOC1 ≦ ΔS, the process proceeds to step S14 to rewrite the value of the memory area M1 to the value of SOC2, and then returns to step S3 to calculate the SOC at the next timing.

【0024】このように車両電源がオフとされるまでス
テップS3以降の処理を繰り返し行うことにより、SOC
が次々と算出される。なお、メモリ領域M1に記憶される
SOC1が電池状態を表すSOCとして用いられる。この演算
例2では、SOC2が|SOC2−SOC1|≦ΔSを満足するまでS
OC2を繰り返し算出するようにしているので、演算例1
と比べて精度の高いSOCが得られる。
By repeating the processing from step S3 until the vehicle power is turned off, the SOC
Are calculated one after another. It is stored in the memory area M1.
SOC1 is used as the SOC indicating the battery state. In this calculation example 2, S is calculated until SOC2 satisfies | SOC2−SOC1 | ≦ ΔS.
Calculation example 1 because OC2 is calculated repeatedly
As a result, an SOC with higher accuracy can be obtained.

【0025】−SOC演算例3− 上述したSOC演算例2では、SOCが変化した場合には|SO
C2−SOC1|が設定値ΔS以下となるまでSOC演算を繰り返
し行ったが、図7のフローチャートで示す演算例3では
ΔSのような設定値を設けないで、SOC演算を規定の回数
(M回)繰り返し行うようにした。図7のフローチャー
トでは、図6と同一内容のステップには図6と同一符号
を付した。以下では図6のフローチャートと異なる部分
を中心に説明する。
-SOC Calculation Example 3-In the above-described SOC calculation example 2, when the SOC changes, | SO
The SOC calculation was repeated until C2−SOC1 | became equal to or less than the set value ΔS. However, in the calculation example 3 shown in the flowchart of FIG. 7, the SOC calculation was performed a specified number of times (M times ) Repeatedly. In the flowchart of FIG. 7, steps having the same contents as in FIG. 6 are denoted by the same reference numerals as in FIG. The following description focuses on the differences from the flowchart of FIG.

【0026】ステップS20は算出されたSOC2がメモリ
領域M1のSOC1と等しいか否かを判断するステップであ
り、YESの場合にはステップS14へ進んでメモリ領域M
1のSOC1をSOC2の値に書き換えた後にステップS3へ戻
り、NOの場合には、すなわちSOCが変化した場合にはス
テップS21へ進む。次いで、ステップS21において
繰り返し回数を示す変数Nを1に設定したならば、ステ
ップS22へ進んでメモリ領域M1のSOC1をSOC2の値に書
き換える。ステップS23はステップS4と同様に図4
に示すようなSOC演算を行うステップであり、ステップ
S23においてSOC2を算出したならばステップS24へ
進む。ステップS24は変数Nの値が規定繰り返し回数
Mと等しいか否かを判断するステップであり、N<Mの
場合にはステップS25へ進んで変数Nの値を1だけ増
加した後にステップS22へ戻る。その後、変数NがN
=MとなるまでステップS22〜ステップS25の処理
を繰り返し行う。そして、N=Mとなったならばステッ
プS24からステップS14へ進み、メモリ領域M1のSO
C1をSOC2の値に書き換えた後にステップS3へ戻る。
Step S20 is a step for judging whether or not the calculated SOC2 is equal to the SOC1 of the memory area M1. If YES, the process proceeds to step S14 to proceed to the memory area M1.
After rewriting SOC1 of 1 to the value of SOC2, the process returns to step S3. If NO, that is, if the SOC has changed, the process proceeds to step S21. Next, if the variable N indicating the number of repetitions is set to 1 in step S21, the process proceeds to step S22, where SOC1 of the memory area M1 is rewritten to the value of SOC2. Step S23 is the same as step S4 in FIG.
This is the step of performing the SOC calculation as shown in FIG. 4. If SOC2 is calculated in step S23, the process proceeds to step S24. Step S24 is a step of judging whether or not the value of the variable N is equal to the prescribed number of repetitions M. If N <M, the process proceeds to step S25, and after increasing the value of the variable N by 1, returns to step S22. . Then, the variable N becomes N
The processing of steps S22 to S25 is repeated until M = M. Then, if N = M, the process proceeds from step S24 to step S14, where the SO of the memory area M1 is
After rewriting C1 to the value of SOC2, the process returns to step S3.

【0027】上述したように、本実施の形態では、電池
6の内部抵抗rを内部抵抗比A1,A2を用いて式(11)
から算出するようにしたので、電池状態を反映した内部
抵抗rを算出することができる。そして、この内部抵抗
rを用いて式(10)により開放電圧Eを算出し、その
開放電圧EとEo−SOC相関を用いてSOCを算出しているた
め、SOCを精度良く算出することができる。さらに、上
述したSOC演算例2およびSOC演算例3では、算出された
SOC2に基づいて抵抗比A2を算出するとともに、このよう
に抵抗比A2を補正しつつSOC2を繰り返し算出するように
にしたので、より高精度なSOCを算出することができ
る。
As described above, in the present embodiment, the internal resistance r of the battery 6 is calculated by using the internal resistance ratios A1 and A2 according to the equation (11).
, The internal resistance r reflecting the battery state can be calculated. Then, the open circuit voltage E is calculated by the equation (10) using the internal resistance r, and the SOC is calculated using the open circuit voltage E and the Eo-SOC correlation. Therefore, the SOC can be calculated with high accuracy. . Further, in the above-described SOC calculation examples 2 and 3, the calculated
Since the resistance ratio A2 is calculated based on the SOC2 and the SOC2 is repeatedly calculated while correcting the resistance ratio A2 in this manner, a more accurate SOC can be calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】パラレル・ハイブリッド車の構成を示すブロッ
ク図。
FIG. 1 is a block diagram showing a configuration of a parallel hybrid vehicle.

【図2】Eo−SOC相関図。FIG. 2 is an Eo-SOC correlation diagram.

【図3】電池内部抵抗特性図。FIG. 3 is a battery internal resistance characteristic diagram.

【図4】SOC演算例1におけるSOC演算の手順を示すフロ
ーチャート。
FIG. 4 is a flowchart showing a procedure of SOC calculation in SOC calculation example 1;

【図5】図4に示すフローチャートの、ステップS4の
演算処理を説明するフローチャート。
FIG. 5 is a flowchart illustrating a calculation process in step S4 of the flowchart shown in FIG. 4;

【図6】SOC演算例2におけるSOC演算の手順を示すフロ
ーチャート。
FIG. 6 is a flowchart illustrating a procedure of an SOC calculation in SOC calculation example 2;

【図7】SOC演算例3におけるSOC演算の手順を示すフロ
ーチャート。
FIG. 7 is a flowchart illustrating a procedure of an SOC calculation in SOC calculation example 3;

【符号の説明】[Explanation of symbols]

6 二次電池 7 バッテリーコントローラ 8 電圧センサ 9 電流センサ 10 温度センサ A1,A2 電池内部抵抗比 6 Secondary battery 7 Battery controller 8 Voltage sensor 9 Current sensor 10 Temperature sensor A1, A2 Battery internal resistance ratio

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 H02J 7/00 X Fターム(参考) 2G016 CA03 CB06 CB11 CB12 CB13 CB21 CB31 CC01 CC13 CC27 CC28 CD01 CD02 CD03 5G003 BA01 CA01 CA11 CB01 FA06 5H030 AA08 AA10 AS08 FF22 FF42 FF43 FF44 5H115 PG04 PI16 PI22 PI29 PO17 PU08 PU23 PU25 PV09 QE06 QE10 QI04 QN03 TI01 TI05 TI06 TI10 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H02J 7/00 H02J 7/00 X F term (reference) 2G016 CA03 CB06 CB11 CB12 CB13 CB21 CB31 CC01 CC13 CC27 CC28 CD01 CD02 CD03 5G003 BA01 CA01 CA11 CB01 FA06 5H030 AA08 AA10 AS08 FF22 FF42 FF43 FF44 5H115 PG04 PI16 PI22 PI29 PO17 PU08 PU23 PU25 PV09 QE06 QE10 QI04 QN03 TI01 TI05 TI06 TI10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電池開放電圧と電池の充電状態を表すSO
Cとの相関を示す開放電圧対SOC相関を利用して、電池開
放電圧から電池の充電状態を算出する電気自動車用二次
電池のSOC演算方法において、 前記電池開放電圧Eを、(a)前記電池に関して予め与
えられる所定抵抗値r0と、電池温度に基づく第1の抵抗
比A1と、所与の基準充電状態に基づく第2の抵抗比A2と
から式(1)により算出される電池内部抵抗rと、
(b)充放電時の前記電池の電流Iおよび電圧Vと、か
ら式(2)により算出することを特徴とする電気自動車
用二次電池のSOC演算方法。 【数1】r=r0・A2/A1 …(1) E=V+I・r …(2)
1. SO representing the open-circuit voltage of a battery and the state of charge of the battery
A SOC calculation method for a secondary battery for an electric vehicle, which calculates a state of charge of a battery from an open-circuit voltage of a battery using an open-circuit voltage versus SOC correlation indicating a correlation with C. A battery internal resistance calculated by equation (1) from a predetermined resistance value r0 given in advance for the battery, a first resistance ratio A1 based on the battery temperature, and a second resistance ratio A2 based on a given reference state of charge. r and
(B) An SOC calculation method for a secondary battery for an electric vehicle, wherein the SOC is calculated from the current I and the voltage V of the battery at the time of charge / discharge by Expression (2). R = r0 · A2 / A1 (1) E = V + I · r (2)
【請求項2】 電池開放電圧と電池の充電状態を表すSO
Cとの相関を示す開放電圧対SOC相関を利用して、電池開
放電圧から電池の充電状態を算出する電気自動車用二次
電池のSOC演算方法において、 電池温度と充放電時の電池の電圧Vおよび電流Iとを検
出する第1の工程と、 電池温度に依存する第1の抵抗比A1を前記第1の工程で
検出された電池温度に基づいて算出する第2の工程と、 電池の充電状態に依存する第2の抵抗比A2を所与の基準
充電状態に基づいて算出する第3の工程と、 電池の基準抵抗値r0,前記第2の工程で算出された第1
の抵抗比A1および前記第3の工程で算出された第2の抵
抗比A2から式(3)により電池内部抵抗rを算出する第
4の工程と、 【数2】r=r0・A2/A1 …(3) 前記電圧V,前記電流Iおよび前記電池内部抵抗rから
式(4)により電池開放電圧Eを算出する第5の工程
と、 【数3】E=V+I・r …(4) 前記第5の工程で算出された電池開放電圧Eおよび前記
開放電圧対SOC相関から電池の充電状態を算出する第6
の工程と、 前記第6の工程で算出された充電状態を前記基準充電状
態に設定する第7の工程とを有し、前記第3の工程から
前記第7の工程までの一連の工程を複数回繰り返し行う
ことを特徴とする電気自動車用二次電池のSOC演算方
法。
2. SO representing the open-circuit voltage of the battery and the state of charge of the battery.
In an SOC calculation method for a secondary battery for an electric vehicle, which calculates a state of charge of a battery from an open-circuit voltage of a battery using an open-circuit voltage vs. SOC correlation indicating a correlation with C, the battery temperature and the battery voltage V during charging and discharging A second step of calculating a first resistance ratio A1 dependent on the battery temperature based on the battery temperature detected in the first step; and charging the battery. A third step of calculating a second resistance ratio A2 depending on the state based on a given reference state of charge; and a reference resistance value r0 of the battery, the first step calculated in the second step.
A fourth step of calculating the battery internal resistance r from equation (3) from the resistance ratio A1 of the above and the second resistance ratio A2 calculated in the third step; and r = r0 · A2 / A1 (3) a fifth step of calculating a battery open-circuit voltage E from the voltage V, the current I, and the battery internal resistance r according to the equation (4), and E = V + I · r (4) Calculating the state of charge of the battery from the battery open circuit voltage E calculated in the fifth step and the open circuit voltage versus SOC correlation;
And a seventh step of setting the state of charge calculated in the sixth step to the reference state of charge, wherein a plurality of series of steps from the third step to the seventh step are performed. A SOC calculation method for a secondary battery for an electric vehicle, wherein the SOC calculation is performed repeatedly.
JP06106899A 1999-03-09 1999-03-09 SOC calculation method for secondary battery for electric vehicle Expired - Lifetime JP3543662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06106899A JP3543662B2 (en) 1999-03-09 1999-03-09 SOC calculation method for secondary battery for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06106899A JP3543662B2 (en) 1999-03-09 1999-03-09 SOC calculation method for secondary battery for electric vehicle

Publications (2)

Publication Number Publication Date
JP2000258513A true JP2000258513A (en) 2000-09-22
JP3543662B2 JP3543662B2 (en) 2004-07-14

Family

ID=13160470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06106899A Expired - Lifetime JP3543662B2 (en) 1999-03-09 1999-03-09 SOC calculation method for secondary battery for electric vehicle

Country Status (1)

Country Link
JP (1) JP3543662B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351068A2 (en) 2002-04-02 2003-10-08 The Raymond Corporation Battery state of charge indicator
US6653819B2 (en) 2001-05-11 2003-11-25 Toyota Jidosha Kabushiki Kaisha Refresh charge control device and method
WO2004008166A1 (en) * 2002-07-12 2004-01-22 Toyota Jidosha Kabushiki Kaisha Battery state-of-charge estimator
WO2007032382A1 (en) * 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
JP2007078661A (en) * 2005-09-16 2007-03-29 Furukawa Electric Co Ltd:The Method for detecting degradation/charge conditions of storage battery, and device thereof
JP2007263828A (en) * 2006-03-29 2007-10-11 Seiko Epson Corp Battery remaining amount management device
GB2437166A (en) * 2006-04-13 2007-10-17 Linde Material Handling Gmbh & Determining the state of charge of an industrial truck drive battery
KR100802310B1 (en) 2005-06-14 2008-02-11 주식회사 엘지화학 Method and apparatus of controlling for charging/discharging voltage of battery
WO2008108455A1 (en) 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Electric vehicle, method for estimating state of charge, and computer readable recording medium recording program for executing state of charge estimation method on computer
CN102466786A (en) * 2010-10-29 2012-05-23 通用汽车环球科技运作有限责任公司 Apparatus of soc estimation during plug-in charge mode
EP2461173A1 (en) * 2009-07-31 2012-06-06 Honda Motor Co., Ltd. Apparatus for managing electricity storage capacity
WO2012120620A1 (en) 2011-03-07 2012-09-13 株式会社 日立製作所 Battery state estimating method and battery management system
CN103869254A (en) * 2014-02-20 2014-06-18 北京九高科技有限公司 On-line diagnosis self-adaptive predictive control-based lithium battery pack SOC (state of charge) measuring method
WO2014122721A1 (en) * 2013-02-05 2014-08-14 日立ビークルエナジー株式会社 Cell control device
JP2014178324A (en) * 2014-04-16 2014-09-25 Gs Yuasa Corp Method for diagnosing charging state of battery pack
WO2014147725A1 (en) 2013-03-18 2014-09-25 三菱電機株式会社 Apparatus and method for estimating electric storage device degradation
WO2014170980A1 (en) 2013-04-18 2014-10-23 三菱電機株式会社 Vehicle control device for electric rolling stock
CN106984561A (en) * 2017-03-09 2017-07-28 梅州市量能新能源科技有限公司 A kind of screening technique of power lithium-ion battery
CN110077282A (en) * 2019-05-16 2019-08-02 上海楞次新能源汽车科技有限公司 The online life detecting method of the fuel cell of new-energy automobile, system and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153650A1 (en) 2012-04-12 2013-10-17 三菱電機株式会社 Discharging device for electricity storage device
US10211490B2 (en) 2014-04-09 2019-02-19 Mitsubishi Electric Corporation Storage battery deterioration measurement device and power storage system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653819B2 (en) 2001-05-11 2003-11-25 Toyota Jidosha Kabushiki Kaisha Refresh charge control device and method
EP1351068A2 (en) 2002-04-02 2003-10-08 The Raymond Corporation Battery state of charge indicator
EP1351068B1 (en) * 2002-04-02 2010-08-11 The Raymond Corporation Battery state of charge indicator
US7443139B2 (en) 2002-07-12 2008-10-28 Toyota Jidosha Kabushiki Kaisha Battery state-of-charge estimator
WO2004008166A1 (en) * 2002-07-12 2004-01-22 Toyota Jidosha Kabushiki Kaisha Battery state-of-charge estimator
CN100447577C (en) * 2002-07-12 2008-12-31 丰田自动车株式会社 Battery state-of-charge estimator
KR100802310B1 (en) 2005-06-14 2008-02-11 주식회사 엘지화학 Method and apparatus of controlling for charging/discharging voltage of battery
JP2007078661A (en) * 2005-09-16 2007-03-29 Furukawa Electric Co Ltd:The Method for detecting degradation/charge conditions of storage battery, and device thereof
WO2007032382A1 (en) * 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
US9091739B2 (en) 2005-09-16 2015-07-28 The Furukawa Electric Co., Ltd Method and apparatus for determining deterioration of secondary battery, and power supply system therewith
US7626394B2 (en) 2005-09-16 2009-12-01 The Furukawa Electric Co., Ltd. Method and apparatus for determining deterioration of secondary battery, and power supply system therewith
US8129996B2 (en) 2005-09-16 2012-03-06 The Furukawa Electric Co., Ltd. Method and apparatus for determining deterioration of secondary battery, and power supply system therewith
JP2007263828A (en) * 2006-03-29 2007-10-11 Seiko Epson Corp Battery remaining amount management device
GB2437166B (en) * 2006-04-13 2010-02-17 Linde Material Handling Gmbh Industrial truck with a battery and a method for operating an industrial truck with a battery
US7872449B2 (en) 2006-04-13 2011-01-18 Linde Material Handling Gmbh Industrial truck with a battery and method for operating an industrial truck with a battery
GB2437166A (en) * 2006-04-13 2007-10-17 Linde Material Handling Gmbh & Determining the state of charge of an industrial truck drive battery
RU2416142C1 (en) * 2007-03-06 2011-04-10 Тойота Дзидося Кабусики Кайся Transport vehicle with electric drive, evaluation method of charge condition and machine-processable data storage medium with stored programme to implement evaluation method of charge condition
US8648571B2 (en) 2007-03-06 2014-02-11 Toyota Jidosha Kabushiki Kaisha Electric-powered vehicle, method for estimating state of charge, and computer-readable storage medium having program stored therein for causing computer to execute method for estimating state of charge
WO2008108455A1 (en) 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Electric vehicle, method for estimating state of charge, and computer readable recording medium recording program for executing state of charge estimation method on computer
EP2461173A1 (en) * 2009-07-31 2012-06-06 Honda Motor Co., Ltd. Apparatus for managing electricity storage capacity
EP2461173A4 (en) * 2009-07-31 2013-02-20 Honda Motor Co Ltd Apparatus for managing electricity storage capacity
US8947051B2 (en) 2009-07-31 2015-02-03 Honda Motor Co., Ltd. Storage capacity management system
CN102466786A (en) * 2010-10-29 2012-05-23 通用汽车环球科技运作有限责任公司 Apparatus of soc estimation during plug-in charge mode
CN102466786B (en) * 2010-10-29 2016-05-18 通用汽车环球科技运作有限责任公司 Apparatus of soc estimation during plug-in charge mode
WO2012120620A1 (en) 2011-03-07 2012-09-13 株式会社 日立製作所 Battery state estimating method and battery management system
US9952288B2 (en) 2013-02-05 2018-04-24 Hitachi Automotive Systems, Ltd. Battery controller
WO2014122721A1 (en) * 2013-02-05 2014-08-14 日立ビークルエナジー株式会社 Cell control device
US9599676B2 (en) 2013-03-18 2017-03-21 Mitsubishi Electric Corporation Apparatus and method for estimating power storage device degradation
WO2014147725A1 (en) 2013-03-18 2014-09-25 三菱電機株式会社 Apparatus and method for estimating electric storage device degradation
EP2978064A4 (en) * 2013-03-18 2016-11-23 Mitsubishi Electric Corp Apparatus and method for estimating electric storage device degradation
JP5865546B2 (en) * 2013-03-18 2016-02-17 三菱電機株式会社 Electric storage device electric energy estimation apparatus and electric storage device electric energy estimation method
AU2013382873B2 (en) * 2013-03-18 2016-03-10 Mitsubishi Electric Corporation Apparatus and method for estimating electric storage device degradation
US9504178B2 (en) 2013-04-18 2016-11-22 Mitsubishi Electric Corporation Vehicle control device for electric rolling stock
WO2014170980A1 (en) 2013-04-18 2014-10-23 三菱電機株式会社 Vehicle control device for electric rolling stock
CN103869254B (en) * 2014-02-20 2018-04-17 北京九高科技有限公司 Lithium battery group SOC assay methods based on the control of inline diagnosis adaptive prediction
CN103869254A (en) * 2014-02-20 2014-06-18 北京九高科技有限公司 On-line diagnosis self-adaptive predictive control-based lithium battery pack SOC (state of charge) measuring method
JP2014178324A (en) * 2014-04-16 2014-09-25 Gs Yuasa Corp Method for diagnosing charging state of battery pack
CN106984561A (en) * 2017-03-09 2017-07-28 梅州市量能新能源科技有限公司 A kind of screening technique of power lithium-ion battery
CN110077282A (en) * 2019-05-16 2019-08-02 上海楞次新能源汽车科技有限公司 The online life detecting method of the fuel cell of new-energy automobile, system and device

Also Published As

Publication number Publication date
JP3543662B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP2000258513A (en) Method for calculating soc of secondary battery for electric automobile
CN103180747B (en) Controller of vehicle and control method for vehicle
US6359419B1 (en) Quasi-adaptive method for determining a battery&#39;s state of charge
US6639385B2 (en) State of charge method and apparatus
JP3395694B2 (en) Calculation method for battery capacity deterioration of secondary battery
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
EP2101183B1 (en) Control device for power storage device mounted on a vehicle
US20100045239A1 (en) Electric-powered vehicle, method for estimating state of charge, and computer-readable storage medium having program stored therein for causing computer to execute method for estimating state of charge
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
JP2012103131A (en) Status quantification device for on-vehicle secondary battery
JPH11326472A (en) Residual capacity meter of battery
US11750006B2 (en) Estimation system and estimation method
JP2000306613A (en) Battery state monitoring device
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP2012237665A (en) Battery state estimation device
JP2002252901A (en) Method and apparatus for detecting voltage-current characteristic for on-vehicle battery, method and apparatus for calculating internal resistance of on- vehicle battery, and method and apparatus for detecting degree of deterioration of on-vehicle battery
US11180051B2 (en) Display apparatus and vehicle including the same
JP3687463B2 (en) Control device for hybrid vehicle
JP4149682B2 (en) Battery pack state control method for hybrid vehicles
JP2004325263A (en) Self-discharge amount detection device of battery
JP2000131404A (en) Cell deterioration degree determining apparatus
JP2003018756A (en) Output-deterioration calculation device for secondary battery and its method
JPH10271695A (en) Battery residual capacity detector and generation controller of hybrid electric car
JP3628912B2 (en) Battery charge state detection device
JP2004301778A (en) Dischargeable capacity detecting method and battery condition monitoring method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term