WO2012120620A1 - Battery state estimating method and battery management system - Google Patents

Battery state estimating method and battery management system Download PDF

Info

Publication number
WO2012120620A1
WO2012120620A1 PCT/JP2011/055251 JP2011055251W WO2012120620A1 WO 2012120620 A1 WO2012120620 A1 WO 2012120620A1 JP 2011055251 W JP2011055251 W JP 2011055251W WO 2012120620 A1 WO2012120620 A1 WO 2012120620A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
management system
current
value
full charge
Prior art date
Application number
PCT/JP2011/055251
Other languages
French (fr)
Japanese (ja)
Inventor
井上 健士
二見 基生
洋平 河原
本田 光利
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2011/055251 priority Critical patent/WO2012120620A1/en
Priority to US14/000,030 priority patent/US20130320989A1/en
Priority to KR1020137019499A priority patent/KR20130121143A/en
Priority to JP2013503262A priority patent/JPWO2012120620A1/en
Priority to EP11860301.8A priority patent/EP2685269A4/en
Priority to CN2011800684392A priority patent/CN103392133A/en
Publication of WO2012120620A1 publication Critical patent/WO2012120620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/12Measuring rate of change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3646Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery state estimation method for detecting a battery state and a battery management system.
  • the battery voltage is measured when the battery current is not flowing at the time of system suspension, and the voltage and the charge rate (SOC; Measure the charge rate with reference to the map that shows the relationship between (Charge) and use the charge (integrated current during operation) used between pauses and pauses.
  • SOH state of Health
  • SOC voltage and the charge rate
  • the full charge capacity is measured and the SOH is set to (full charge capacity) / (initial full charge capacity) (see Patent Document 1).
  • the battery stopped charging / discharging, and it was set as 1 minute or more.
  • the battery state estimation method measures the current value and the terminal voltage value of the battery at the time of charging and discharging the battery, and based on the measured current value and the terminal voltage value,
  • a battery state estimation method for calculating at least one of a charging rate, a degree of deterioration, and a full charge capacity, and when a change in measured current value per second is a predetermined value or more, occurrence of a current change The battery charging rate based on the current value and the terminal voltage value measured in the battery charging / discharging period other than the above period is not used. And calculating at least one of the deterioration degree and the full charge capacity.
  • the battery management system includes a current detection unit that detects a current value of the battery, a voltage detection unit that detects a terminal voltage value of the battery, and a current value detected by the current detection unit.
  • a current change detection unit that detects a current change whose change per second is equal to or greater than a predetermined value, and a current value and a terminal voltage detected in a period from when the current change is detected by the current change detection unit until a predetermined time elapses.
  • Battery state calculation that calculates at least one of the charging rate, the degree of deterioration, and the full charge capacity as the battery state based on the current value and the terminal voltage value detected in the battery charging / discharging period other than the period without using the value A section.
  • the battery management system of the second aspect in the battery management system of the second aspect, it is preferable to use the smallest polarization time constant of the battery polarization time constant or 2 seconds for a predetermined time.
  • the battery management system of the second or third aspect it is preferable to use a current value corresponding to a discharge rate of 0.1 C as the change in the current value per second.
  • the battery management system according to any one of the second to fourth aspects includes a display device that displays the battery state calculated by the battery state calculation unit.
  • the charging is performed within a predetermined number from the present time to the past among the charge rates calculated by the battery state calculation unit.
  • the battery state calculation unit calculates the full charge capacity when the difference between the maximum value and the minimum value of the charge rate stored in the storage unit is equal to or greater than the predetermined charge rate difference. It is intended to be.
  • the predetermined charging rate difference is 15%.
  • the battery management system includes a display device that displays the battery state calculated by the battery state calculation unit, and the display device is charged by the battery state calculation unit.
  • the display of the charge rate is updated with the calculated charge rate, and when the full charge capacity corresponding to the charge rate has not been calculated, the most recently calculated full charge capacity and the The battery deterioration level based on the full charge capacity is displayed.
  • the battery management system of the eighth aspect when displaying the most recently calculated full charge capacity and the degree of deterioration of the battery based on the full charge capacity, the full charge capacity and It is preferable to make the display form of the deterioration degree different from the display form in the case of displaying the full charge capacity corresponding to the charging rate.
  • the battery in the battery management system according to the second aspect, is composed of a plurality of battery cells, and the battery state detection unit is at least one of a battery charge rate, a degree of deterioration, and a full charge capacity. Is calculated for each of the plurality of battery cells.
  • the battery in the battery management system according to the second aspect, includes a plurality of battery blocks each including a plurality of battery cells, and the battery state detection unit includes the battery charge rate, the degree of deterioration, and the fullness. At least one of the charging capacities is calculated for each of the plurality of battery blocks.
  • the connection of the plurality of batteries includes at least a series connection, and the detection of the current value and the terminal voltage value is performed in series.
  • the battery management system includes a display device that displays the battery state calculated by the battery state calculation unit, and the display device is calculated by the battery state calculation unit. A battery state is displayed for each of the plurality of battery blocks.
  • the present invention can estimate the battery state such as the capacity and the degree of deterioration with higher accuracy during charging / discharging even when there is no clear battery halt condition.
  • FIG. 4 is a diagram showing a table in the SOC / charge storage unit 14. It is a figure explaining how to obtain the full charge capacity.
  • FIG. 4 is a diagram showing a table in the SOC / charge storage unit 14. It is a figure explaining how to obtain the full charge capacity.
  • FIG. 10 is a diagram showing a display example of the display unit 19. It is a figure which shows a system configuration
  • FIG. 1 is a functional block diagram showing the configuration of the battery management system according to the present embodiment.
  • the battery management system according to the present embodiment is applied to devices such as an electric vehicle and a power system, and estimates the full charge capacity of the battery while these devices are in operation.
  • the battery management system includes an ammeter 10, a current integration unit 11, a voltage detection unit 12, a voltage correction unit 13, an SOC / charge storage unit 14, a measurement timing designation unit 15, an SOC estimation map 16, an update command unit 17, a full charge capacity. It comprises a calculation unit 18 and a display unit 19.
  • the current integration unit 11, the voltage correction unit 13, the SOC / charge storage unit 14, the measurement timing designation unit 15, the SOC estimation map 16, the update command unit 17, and the full charge capacity calculation unit 18 are It is realized by a controller provided on the device system side, for example, a notebook PC, a controller in an electric vehicle, or software in a power system controller.
  • a controller provided on the device system side, for example, a notebook PC, a controller in an electric vehicle, or software in a power system controller.
  • a controller dedicated to the battery management system may be provided and executed.
  • the software in the controller is realized by a state detection device (battery temperature, current, voltage measurement device) directly connected to the battery, a controller of the moving body, a controller of the generator, or a combination of various controllers. You may do it.
  • the display unit 19 is realized by a display device and a display provided separately. Here, the display device may be placed in the vicinity of the battery, or information on the charging rate and the full charge capacity may be sent to a remote place via a communication line, and the display device may be prepared and displayed at the remote place.
  • the ammeter 10 measures the current charged and discharged in the battery.
  • the ammeter uses a shunt resistor or a Hall element (reference patent, Japanese Patent Laid-Open No. 10-62453).
  • the voltage detection unit 12 in FIG. 1 measures the voltage (analog value) between the negative electrode and positive electrode of the battery B, converts it to a digital value, and sends voltage information to the voltage correction unit 13.
  • the battery B in FIG. 1 is a secondary battery such as a lead battery or a lithium ion battery, or an electric double layer capacitor or a lithium ion capacitor.
  • FIG. 14 is a block diagram showing an example of a drive system of a vehicular rotating electrical machine to which the battery management system according to the present embodiment is applied.
  • the drive system shown in FIG. 14 includes a battery module 9, a battery monitoring device 100 that monitors the battery module 9, an inverter device 220 that converts DC power from the battery module 9 into three-phase AC power, and a motor 230 for driving the vehicle. ing.
  • the battery management system of this embodiment is adopted for the battery monitoring device 100.
  • the motor 230 is driven by the three-phase AC power from the inverter device 220.
  • the inverter device 220 and the battery monitoring device 100 are connected by CAN communication, and the inverter device 220 functions as a host controller for the battery monitoring device 100. Further, the inverter device 220 operates based on command information from a host controller (not shown).
  • the inverter device 220 includes a power module 226, an MCU 222, and a driver circuit 224 for driving the power module 226.
  • the power module 226 converts the DC power supplied from the battery module 9 into three-phase AC power for driving the motor 230.
  • Inverter device 220 controls the phase of AC power generated by power module 226 with respect to the rotor of motor 230, and causes motor 230 to operate as a generator during vehicle braking.
  • the three-phase AC power generated by the motor 230 is converted into DC power by the power module 226 and supplied to the battery module 9. As a result, the battery module 9 is charged.
  • the battery module 9 is composed of two battery blocks 9A and 9B connected in series. Each battery block 9A, 9B is provided with 16 battery cells connected in series.
  • the battery block 9A and the battery block 9B are connected in series via a maintenance / inspection service disconnect SD in which a switch and a fuse are connected in series. By opening this service disconnect SD, the direct circuit of the electric circuit is cut off, and even if a connection circuit is formed at one place between the battery blocks 9A and 9B and the vehicle, no current flows. With such a configuration, high safety can be maintained.
  • a battery disconnect unit BDU including a relay RL, a resistor RP, and a precharge relay RLP is provided in the high-voltage line HV + between the battery module 9 and the inverter device 220.
  • a series circuit of the resistor RP and the precharge relay RLP is connected in parallel with the relay RL.
  • the battery monitoring device 100 mainly performs measurement of each cell voltage, measurement of total voltage, measurement of current, cell temperature, cell capacity adjustment, and the like.
  • IC1 to IC6 as cell controllers are provided.
  • the 16 battery cells provided in each battery block 9A, 9B are each divided into three cell groups, and one IC is provided for each cell group.
  • IC1 to IC6 communicate with the microcomputer 30 in a daisy chain manner via an insulating element (for example, a photocoupler) PH, a communication system 602 for reading a cell voltage value and transmitting various commands, and only cell overcharge detection information. And a communication system 604 for transmitting.
  • the communication system 602 is divided into an upper communication path for IC1 to IC3 of the battery block 9A and a lower communication path for IC4 to IC6 of the battery block 9B.
  • a current sensor Si such as a Hall element is installed in the battery disconnect unit BDU, and the output of the current sensor Si is input to the microcomputer 30.
  • Signals related to the total voltage and temperature of the battery module 9 are also input to the microcomputer 30 and measured by an AD converter (ADC) of the microcomputer 30.
  • Temperature sensors are provided at a plurality of locations in the battery blocks 9A and 9B.
  • FIG. 2 is a flowchart for explaining processing in the battery management system shown in FIG.
  • the processing of the flowchart shown in FIG. 2 is executed when a device (electric vehicle, notebook PC, power system, etc.) provided with a battery management system starts to operate, at regular time intervals or at predetermined conditions until the device stops. Every time it is established, it is repeated periodically.
  • the execution cycle is set to a predetermined value (for example, 100 ms).
  • Step S20 the charge / discharge current value of the battery B is measured by the ammeter 10 of FIG.
  • Step S21 a charge (current integration) is calculated based on the current value measured in step S20. That is, the charge (Ah) is calculated by (current value) ⁇ (time), and the time here is an elapsed time from the previous current measurement to the current current measurement, and the execution cycle described above is used. Note that the initial charge value at the start of operation (charge / discharge start) is set to zero.
  • the charge calculation process in step S21 corresponds to the current integration unit 11 in FIG.
  • Step S22 it is determined whether or not the charging rate calculation condition is met based on the current change rate, that is, whether or not the charging rate is calculated at the current measurement timing (program processing timing in FIG. 2).
  • FIG. 3 is a diagram illustrating determination of the charging rate calculation condition in step S22
  • FIG. 5 is a flowchart illustrating an example of detailed processing in step S22.
  • the process of step S22 corresponds to the process of the measurement timing designation
  • the battery state (charge rate (SOC: State of Charge), degree of deterioration, full charge capacity) is calculated based on the current value and the terminal voltage measured during operation (charging / discharging). I have to.
  • the current value changes according to the state of the load (for example, a motor). Then, as shown in FIG. 3, if the battery state is calculated using the current value and the voltage value measured immediately after the current value suddenly changes, the calculation error increases.
  • FIG. 3 is a diagram schematically showing a relationship between a change in current value and an error in the calculated charging rate.
  • the current value changes by ⁇ I at time ta is shown.
  • the calculated charging rate error changes greatly immediately after the current value changes, and thereafter, the error decreases after a certain amount of time has elapsed.
  • the elapsed time after the current value changes is 2 seconds or more, the error is sufficiently small.
  • the current value and the voltage value measured until a predetermined elapsed time elapses from the change of the current value are not used for calculation of the battery state (charging rate, deterioration degree, full charge capacity).
  • the predetermined elapsed time ⁇ is referred to as a waiting time ⁇ .
  • step S22 of FIG. 2 whether or not a current change greater than or equal to a predetermined value has occurred at the current process timing, or during a waiting time when there is a current change greater than or equal to a predetermined value It is determined whether or not. If a current change occurs or during a waiting time, it is determined that the condition is not satisfied, and the program of FIG. 2 is terminated. On the other hand, if it is determined that it is not during the waiting time, the process proceeds from step S22 to step S23.
  • the current change is a current change per second
  • a determination value for determining the current change is, for example, a current change per second that is a constant multiple C (the initial full charge capacity of the battery B).
  • C discharge rate
  • 0.1 C is 0.5 A, and therefore, a current change of 0.5 A or more occurs per second.
  • 0.1C is an example, and it may be 0.3C larger than 0.1C.
  • an optimal value may be set by testing with an actual machine in advance.
  • the waiting time ⁇ may be a predetermined value (for example, 2 seconds described above), or may be the shortest time among the polarization time constants of the battery.
  • the number of measurement data to be used for battery state calculation is reduced, and it is difficult to obtain the calculation timing. Therefore, in order to achieve both calculation frequency and error reduction, it is preferable that ⁇ be in the order of seconds both when a constant value is used and when the polarization time constant of the battery is used.
  • FIG. 4 is a diagram showing an example of a circuit model of a battery, which is an ideal battery 31 (voltage after several hours since charging / discharging of the battery is stopped), DC resistance 32, polarization 1 (33), polarization 2 (34), It consists of + pole 35.
  • polarization is expressed as a parallel connection of a resistor and a capacitor.
  • ⁇ 1 is a time constant of about several seconds depending on the battery
  • ⁇ 2 is a time constant of several minutes to several hours.
  • ⁇ 1 is used as the waiting time ⁇ described above. 4 may be measured using a known electrochemical impedance (EIS) measurement method (AC impedance method) (Masayuki Itagaki: electrochemical impedance method principle, measurement / analysis, Maruzen).
  • EIS electrochemical impedance
  • AC impedance method electrochemical impedance method principle, measurement / analysis, Maruzen.
  • calculated by the following equation (1) may be used as the above-described waiting time ⁇ .
  • the voltage per SOC 1% will be described in step S24 described later.
  • the SOC error is a predetermined value (for example, 5%).
  • ⁇ 1 ⁇ ⁇ I ⁇ R1 / v
  • v SOC 1% voltage
  • the count number N is an index indicating the elapsed time since the current value has changed by a predetermined value or more, and the elapsed time is represented by N ⁇ execution cycle (for example, 100 ms).
  • the count number N is stored in a memory provided in the controller, and the value of N at the start of operation is 0.
  • M is an integer that satisfies the equation “M ⁇ execution cycle ⁇ ⁇ > (M ⁇ 1) ⁇ execution cycle”.
  • FIG. 6 is a diagram showing changes in current, and t0 to t10 indicate processing timings when the program shown in FIG. 2 is executed.
  • the current value changes by ⁇ I1 between time t0 and time t1, changes by ⁇ I2 between time t5 and time t6, and changes by ⁇ I3 between time t6 and time t7.
  • any change amount ⁇ I1 to I3 is considered to be larger than the predetermined value when converted into a current change for one second.
  • the program processing timing at time t9 and time t10 is the same as that at time t4 described above. Therefore, when the elapsed time from the current change between time t6 and time t7 becomes equal to or longer than the waiting time ⁇ , calculation of the battery state such as the charging rate is started again. By performing the process as shown in FIG. 5, when there is a current change of a predetermined value or more, the battery state is calculated after a predetermined waiting time has elapsed. Can be suppressed and the calculation accuracy can be improved.
  • step S23 corresponds to the process of the voltage correction part 13 in the functional block diagram of FIG.
  • the current and voltage are measured by the ammeter 10 and the voltage detection unit 11, and based on the measured current value and voltage value, the battery is left for several hours in a state where there is no charge / discharge of the battery.
  • the battery terminal voltage is estimated using equation (2).
  • Open-circuit voltage V + I ⁇ R-Vf (2)
  • V, I, R, and Vf are as follows.
  • I Measured current (positive for discharging and negative for charging)
  • R DC resistance of the battery (resistance after the measurement cycle when the current changes)
  • Vf battery polarization voltage
  • V and I in the equation (2) are known because they are measured, but the DC resistance R and the polarization voltage Vf are unknown, and thus need to be estimated.
  • the formula (3) may be used, or a table (index is set to SOC (charge rate) or SOH (degradation degree: State of Health), temperature) is set in advance). You may make it refer to a value.
  • a thermometer for measuring the battery temperature is provided, and the measured temperature is used when referring to the table.
  • R ⁇ V / ⁇ I (3)
  • ⁇ V current battery voltage ⁇ 1battery voltage before measurement cycle
  • ⁇ I current current ⁇ 1current before measurement cycle
  • the resistance is not always required, and the current change ⁇ I is required to be large to some extent (for example, a change of 0.1 C or more). Therefore, when the current change ⁇ I is small and the value of the DC resistance R cannot always be prepared, the resistance value obtained when the previous current change occurs is avoided by using it.
  • a method using a table a method described in “JP 2000-258513 A” may be used.
  • the polarization voltage Vf may be obtained based on the past voltage and current by using the method described in “Japanese Unexamined Patent Application Publication No. 2007-171045”.
  • step S24 the charging rate (SOC) is estimated from the open circuit voltage of the battery. Note that the process of step S24 corresponds to the process of the SOC estimation map 16 in the functional block diagram of FIG.
  • FIG. 7 shows an example of an open-circuit voltage-charge rate (SOC) map.
  • the map shown in FIG. 7 shows a case where the relationship between the open circuit voltage and the SOC does not change depending on the battery temperature, and is composed of a data group in which 0% to 100% of the SOC is divided in 10% increments.
  • FIG. 8 is a graph showing the map of FIG.
  • the data closest to 3.71 V is searched from the open voltage data group in the column shown on the left side of FIG. Here, it becomes 3.8V in the seventh stage.
  • the sixth-stage data which is voltage data one rank lower than 3.8V is selected.
  • a value may be obtained by linear interpolation from these two points (data).
  • linear interpolation is used here, data estimation by well-known spline interpolation may be used using four points including 3.55 V data and 3.9 V data.
  • a method of spline interpolation for example, the method described in “Yoshimoto Safuji-shi: Spline function and its application (mathematics of new application series 20), Education Publishing ⁇ (1979/01)” is used.
  • FIG. 8 shows the characteristics of the ideal battery 31.
  • the width of SOC1% when SOC is 80% is 79.5% to 80.5%.
  • the difference between the open circuit voltage at 80.5% and the open circuit voltage at 79.5% is ⁇ V.
  • This open-circuit voltage difference ⁇ V is defined as a voltage per 1% SOC.
  • an example in which the SOC is 80% is shown, but the same calculation is performed for other SOCs (for example, 40%).
  • step S25 a data pair (charge, SOC) stored in the SOC / charge storage unit 14 is added.
  • the process of step S25 corresponds to the process of the SOC / charge storage unit 14 in the functional block diagram of FIG.
  • As a method of adding a data pair it may be recorded every time a data pair is acquired, but may be recorded when there is a change of 1% or more from the previously recorded SOC without recording each time. .
  • the data stored in the SOC / charge storage unit 14 is appropriately deleted. Also good.
  • data deletion for example, data that has been accumulated for a certain period of time after accumulation is used. The fixed time T is determined by the charge error caused by the ammeter error.
  • the error of the ammeter 10 is divided into an offset error and white noise, and the respective values are defined as Io [A] and Iw [A] (see the catalog value of the ammeter, or Determined by actual measurement). Then, if the error of the full charge capacity given in advance is Qe [Ah], T [h] satisfying the following equation (5) is set as the above-mentioned fixed time T.
  • the error Qe is determined as Qmax ⁇ ⁇ using the error rate ⁇ of the full charge capacity Qmax.
  • the value of the error rate ⁇ may be 5%, for example.
  • FIG. 9 is a diagram showing a table in the SOC / charge storage unit 14, and an example of processing of the SOC / charge storage unit 14 will be described with reference to FIG.
  • a data pair consisting of SOC and electric charge is stored together with the measurement time.
  • the charge is an integral value from the initial value, the unit is Ah, and the discharge side is positive.
  • the data at the measurement time 10:10 is the initial value
  • the initial value of the SOC is 60%
  • the initial value of the charge is 0%.
  • FIG. 9 shows a case where the relationship between the SOC and the open circuit voltage does not change depending on the temperature.
  • a table as shown in FIG. 9 is prepared for each temperature, and the table is selected according to the value of a thermometer separately attached to the battery. .
  • the data at the measurement time is used when deleting the above-mentioned old data to prevent error deterioration or to prevent the memory from overflowing.
  • step S26 it is determined whether to update the full charge capacity. If the update condition is satisfied, the process proceeds to step S27. If the update condition is not satisfied, the process proceeds to step S28. Note that the process of step S26 corresponds to the process of the update command unit 17 in the functional block diagram of FIG.
  • step S26 the difference between the SOC minimum value and the maximum value in the data group stored in the table of FIG. 9 is taken, and the battery is fully charged when the difference is equal to or greater than a predetermined value.
  • Update the capacity Even if it is updated once, if this update condition is satisfied, the update is performed after the next data addition.
  • this predetermined value for example, a fixed value such as 20% or 15% is used.
  • step S27 the full charge capacity of the battery is estimated based on the pair data of SOC and charge.
  • the process of step S27 corresponds to the full charge capacity calculation part 18 in the functional block diagram of FIG.
  • SOC is x
  • charge is y
  • the slope of a straight line indicating the relationship between x and y is obtained as the full charge capacity.
  • the target data pair is all data stored in the SOC / charge storage unit 14.
  • Charge full charge capacity x SOC + constant (6)
  • the least square method is used.
  • the method described in the reference “The University of Tokyo Faculty of Liberal Arts, Statistics Department: Introduction to Statistics, University of Tokyo Press, September 25, 2001, 20th edition” may be used.
  • the reason for using the inclination is that, for example, when the SOC estimation shift occurs, the approximate straight line may move up and down on the coordinates, but the inclination is not affected, so that it is resistant to bias error deviation in the SOC estimation. It is.
  • FIG. 10 is a plot of the data of FIG. 9 on coordinates where the horizontal axis is charge [Ah] and the horizontal axis is SOC [%].
  • the data in the fifth row in FIG. 9 is the point D1 in FIG. 10, and for the plotted data group, the approximate straight line obtained by the least square is L1.
  • the slope of this straight line L1 represents the full charge capacity.
  • the slope is 0.1 Ah / SOC%, and the full charge capacity is calculated as 10 Ah, which is 100 times.
  • SOH degree of deterioration
  • step S28 display update processing of the display unit 19 is performed.
  • FIG. 11 shows a display example of the display screen of the display unit 19. In the example shown in FIG. 11, the SOC, SOH, and remaining operation time are displayed. In FIG. 11, 81 indicates SOC, 82 indicates full charge capacity, 83 indicates SOH, and 84 indicates remaining usage time.
  • SOC not only the percentage display by numerical value but also the SOC display with the bar display 86 of the battery display 85 for easy visual understanding. Therefore, the amount that can be used is indicated by the size of the portion denoted by reference numeral 86. Similarly, SOH is displayed on the bar display 87 of the battery display 88 as well as the percentage display by numerical values.
  • the display on the display unit 19 is updated every time the charging rate is calculated. However, when the process proceeds from step S22 to step S28, the full charge capacity has not been calculated, so the SOH at the current processing timing is not calculated. The value of the full charge capacity has not yet been determined. In that case, the display color may be changed to display the final value when the previous operation was performed. Alternatively, instead of changing the display color, a blinking display may be used. The user can recognize from the display color that the SOH and the full charge capacity are not the latest.
  • “100 ⁇ (current charge ⁇ charge of latest data stored in the SOC charge storage unit) / (full charge capacity)” is added to the latest SOC value measured by the SOC estimation map 16 of FIG. It may be an added value.
  • the remaining usage time may be calculated by the following equation (7).
  • the average current may be the average value of currents for the last 30 minutes (or 30 minutes instead of 30 minutes).
  • Remaining usage time (current SOC-minimum SOC) x full charge capacity / average current x 100 ... (7)
  • FIG. 12 shows an example in which a total of four 2 series batteries are connected in parallel. That is, the batteries 911A and 911B connected in series and the batteries 912A and 912B connected in series are connected in parallel. Ammeters 901 and 902 are provided at the places connected in series. For each of the batteries 911A, 911B, 912A, and 912B, measurement units 903, 904, 905, and 906 that can periodically measure current and voltage simultaneously are provided.
  • the measurement start of the AD (Analog-to-Digital) circuit of a current sensor and a voltage sensor is performed synchronously between the measurement unit 903 and the measurement unit 904 provided in the batteries 912A and 912B connected in series.
  • the measurement start of the AD circuit of the current sensor and the voltage sensor is performed in synchronization. Therefore, a synchronization signal is input from the synchronization unit 920 to each measurement unit 903, 904, 905, 906.
  • calculation units 907 to 910 that perform the processing shown in FIG. 2 are provided for the measurement units 903 to 906, respectively.
  • the display unit 913 performs display as shown in FIG. 13 based on the calculation results of the calculation units 907 to 910.
  • the full charge capacity and SOC for each of the batteries 911A, 911B, 912A, and 912B are calculated by calculation units 907 to 910 shown in FIG.
  • the capacity and remaining operation time of the entire battery are calculated by the following equations (8) and (9).
  • the average current is, for example, the average value of currents for the last 30 minutes (or 30 minutes instead of 30 minutes).
  • FIG. 13 is a diagram showing a display example.
  • the display unit 913 includes a deterioration state screen 101 that collectively displays the deterioration state of each battery, a charge rate display screen 102 that collectively displays the charge rate state of each battery, and a battery group.
  • the remaining usage time display 103 displays the total remaining usage time, and a display screen 104 displays which battery is deteriorated.
  • Degradation state screen 101 shows the SOH of batteries 911A, 911B, 912A, and 912B connected in two series and two in parallel (degree of degradation: 100% ratio of [full charge capacity] / [full charge capacity of new battery] here) Display each.
  • the SOH display corresponding to the battery 911 ⁇ / b> A of FIG. 12 is the display 105 ⁇ / b> A, and the SOH is displayed by the bar display 107 and the numerical display “SOH 70%” is displayed in an overlapping manner.
  • the displays 105B, 106A, and 106B are SOH displays corresponding to the batteries 911B, 912A, and 912B, respectively.
  • the charging rate display screen 102 has the same configuration as the deterioration state screen 101, and the displays 108A, 108B, 109A, and 109B are charging rate displays corresponding to the batteries 911B, 912A, and 912B, respectively.
  • the charging rate is indicated by the bar display 110 and the numerical value display “SOC 70%” is displayed in an overlapping manner.
  • the display screen 104 displaying the deteriorated battery displays a battery number whose SOH value is equal to or less than a predetermined threshold value.
  • a predetermined threshold value for example, a fixed value of 50% may be used. If there is a battery for which the value of the full charge capacity has not been determined, the SOH value of the corresponding battery on the deterioration state screen 101 in FIG.
  • the value of the usage time display 103 is tentatively calculated using the full charge capacity at the previous operation and is displayed in gray. After the value is confirmed, the value is displayed in black.
  • the battery current value and the terminal voltage value at the time of charging and discharging the battery are measured, and the charging rate and the deterioration degree as the battery state are measured based on the measured current value and the terminal voltage value.
  • the current value and terminal voltage value measured during the period until the battery is not used, and the battery charge rate, deterioration degree, and fullness are measured based on the current value and terminal voltage value measured during the battery charge / discharge period other than the above period. At least one of the charge capacities was calculated.
  • the battery state is calculated using the current value and the terminal voltage detected during charging / discharging, even when there is no clear battery suspension state in the power system or electric vehicle, The battery state can be estimated.
  • the current value and the terminal voltage value immediately after a current change of a predetermined value or more are transient values, calculating the battery state using them results in a value with a large error and lacking reliability.
  • the current change per second is greater than or equal to a predetermined value, a transient period until a predetermined time elapses. Since the detected current value and terminal voltage value are not used, the battery state can be calculated with higher accuracy. Note that the same processing as when there is a change in current of a predetermined value or more may be performed at the beginning of current flow at the start of operation.
  • an ammeter 10 that detects the current value of the battery B
  • a voltage detection unit 12 that detects a terminal voltage value of the battery B
  • a current value detected by the ammeter 10 per second As a configuration of the battery management system, an ammeter 10 that detects the current value of the battery B, a voltage detection unit 12 that detects a terminal voltage value of the battery B, and a current value detected by the ammeter 10 per second.
  • a measurement timing designating unit 15 that detects a current change whose change is equal to or greater than a predetermined value, and a current value and a terminal voltage value detected during a period from when the current change is detected by the measurement timing designating unit 15 until a predetermined time elapses.
  • a battery state calculation unit that calculates at least one of a charging rate, a degree of deterioration, and a full charge capacity as a battery state based on a current value and a terminal voltage value that are not used and are detected in a battery charge / discharge period other than that period (For example, a full charge capacity calculation unit 18 for calculating a full charge capacity).
  • measuring units 903 and 904 that can periodically measure current and voltage for each battery 911A, 911B, 912A, and 912B at the same time.
  • 905, 906 are provided.
  • a battery state should just be calculated about each of a some battery. As a result, the battery state of each battery can be calculated with high accuracy.
  • the display units 19 and 913 which are display devices that display the battery state calculated by the battery state calculation unit, the user can easily recognize the battery state.
  • the full charge capacity if the full charge capacity corresponding to the charging rate is not calculated, the most recently calculated full charge capacity and the degree of deterioration of the battery based on the full charge capacity are displayed. . By doing so, the full charge capacity and the degree of deterioration are always displayed in the same manner as the charge rate, and the user can know the outline of the battery state even when the full charge capacity is not calculated.
  • the full charge capacity corresponding to the charge rate is displayed as a display form of the full charge capacity and the degree of deterioration.
  • the full charge capacity and the deterioration degree are not the current values but the latest values.
  • the battery B represents a management unit.
  • each of a plurality of battery cells included in the battery module 9 of FIG. 14 may be the battery B, and each cell group may be the battery B.
  • each of the battery blocks 9A and 9B may be a battery B, and of course, the battery module 9 may be a battery B.
  • all the battery cells are connected in series, but a configuration including series connection and parallel connection may be used.
  • all the battery cells included in the battery module 9 may be displayed, but for each battery replacement unit, for example, for each of the battery blocks 9A and 9B in FIG. It is realistic and preferable to display the average value.

Abstract

In this battery state estimating method, a current value and a terminal voltage value of a battery (B) are measured by means of a current detection unit (10) and a voltage detection unit (12) when a current is being charged or discharged, and on the basis of the current value and the terminal voltage value thus measured, at least one of charging rate, deterioration level or full charge quantity is calculated as a battery state. In the cases where a change of the measured current value per one second is a predetermined value or more, a current and a terminal voltage measured in a predetermined period of time after generation of the current change are not used, and on the basis of a current value and a terminal voltage value, which are measured during the charge/discharge period other than such period of time, at least one of the charging rate, the deterioration level or the full charge quantity of the battery (B) is calculated.

Description

電池状態推定方法および電池管理システムBattery state estimation method and battery management system
 本発明は、電池の状態を検出する電池状態推定方法、および電池管理システムに関する。 The present invention relates to a battery state estimation method for detecting a battery state and a battery management system.
 従来、電池の満充電容量、劣化度(SOH; State of Health)を推定する方法として、システム休止時の電池電流が流れていないときに電池の電圧を測り、電圧と充電率(SOC; State of Charge)の関係を示すマップを参照して充電率を測り、休止と休止との間に使用した電荷(稼働中の電流を積分)とを用い、「電荷/(一回休止前のSOC-今回の休止のSOC)」として満充電容量を測り、SOHを(満充電容量)/(初期満充電容量)とする方法があった(特許文献1参照)。なお、システム休止の定義としては、電池が充放電を止めて1分以上としていた。 Conventionally, as a method for estimating the full charge capacity and the degree of deterioration (SOH; State of Health) of a battery, the battery voltage is measured when the battery current is not flowing at the time of system suspension, and the voltage and the charge rate (SOC; Measure the charge rate with reference to the map that shows the relationship between (Charge) and use the charge (integrated current during operation) used between pauses and pauses. There is a method in which the full charge capacity is measured and the SOH is set to (full charge capacity) / (initial full charge capacity) (see Patent Document 1). In addition, as a definition of system suspension, the battery stopped charging / discharging, and it was set as 1 minute or more.
日本国特開平6-242193号公報Japanese Unexamined Patent Publication No. 6-242193
 上述した従来の方法では、自動車でかつシステム休止が頻繁に起きる場合には適用できるものの、電力系統のようなシステム休止がメンテナンス時のみといったシステムの場合には適用が困難であった。 Although the conventional method described above can be applied when the system is frequently stopped in an automobile, it is difficult to apply to a system such as a power system where the system is stopped only during maintenance.
 本発明の第1の態様によると、電池状態推定方法は、電池充放電時の電池の電流値および端子電圧値を計測し、計測された電流値および端子電圧値に基づいて、電池状態としての充電率、劣化度および満充電容量の少なくとも一つを算出する電池状態推定方法であって、計測された電流値の1秒当たりの変化が所定値以上であった場合には、電流変化の発生から所定時間が経過するまでの期間に計測された電流値および端子電圧値は使用せず、前記期間以外の電池充放電期間において計測された電流値および端子電圧値に基づいて、電池の充電率、劣化度および満充電容量の少なくとも一つを算出する。
本発明の第2の態様によると、電池管理システムは、電池の電流値を検出する電流検出部と、電池の端子電圧値を検出する電圧検出部と、電流検出部で検出された電流値の1秒当たりの変化が所定値以上である電流変化を検出する電流変化検出部と、電流変化検出部による電流変化の検出時から所定時間が経過するまでの期間に検出された電流値および端子電圧値は使用せず、期間以外の電池充放電期間において検出された電流値および端子電圧値に基づいて、電池状態としての充電率、劣化度および満充電容量の少なくとも一つを算出する電池状態算出部と、を備える。
 本発明の第3の態様によると、第2の態様の電池管理システムにおいて、所定時間に、電池の分極時定数の内の最も小さな分極時定数、または、2秒を用いるのが好ましい。
 本発明の第4の態様によると、第2または3の態様の電池管理システムにおいて、放電率で0.1Cに相当する電流値を、前記1秒当たりの電流値の変化として用いるのが好ましい。
 本発明の第5の態様によると、第2乃至4のいずれか一の態様の電池管理システムにおいて、電池状態算出部で算出された電池状態を表示する表示装置を備えたものである。
 本発明の第6の態様によると、第2乃至4のいずれか一の態様の電池管理システムにおいて、電池状態算出部で算出された充電率の内、現時点から過去に遡った所定数以内の充電率が蓄積される蓄積部を備え、電池状態算出部による満充電容量の算出が、蓄積部に蓄積されている充電率の最大値と最小値との差が所定充電率差以上の場合に行われるようにしたものである。
 本発明の第7の態様によると、第6の態様の電池管理システムにおいて、所定充電率差を15%としたものである。
 本発明の第8の態様によると、第6または7の態様の電池管理システムにおいて、電池状態算出部で算出された電池状態を表示する表示装置を備え、表示装置は、電池状態算出部により充電率が算出されると、充電率の表示を算出された充電率で更新し、充電率に対応した満充電容量の算出が行われていない場合には、直近に算出された満充電容量および該満充電容量に基づく電池の劣化度を表示するようにしたものである。
 本発明の第9の態様によると、第8の態様の電池管理システムにおいて、直近に算出された満充電容量および該満充電容量に基づく電池の劣化度を表示する場合には、満充電容量および劣化度の表示形態を、充電率に対応した満充電容量を表示する場合の表示形態と異ならせるのが好ましい。
 本発明の第10の態様によると、第2の態様の電池管理システムにおいて、電池は複数の電池セルから成り、電池状態検出部は、電池の充電率、劣化度および満充電容量の少なくとも一つを前記複数の電池セルの各々について算出するものである。
 本発明の第11の態様によると、第2の態様の電池管理システムにおいて、電池は、複数の電池セルから成る電池ブロックを複数備え、電池状態検出部は、電池の充電率、劣化度および満充電容量の少なくとも一つを複数の電池ブロックの各々について算出するものである。
 本発明の第12の態様によると、第10または11の態様の電池管理システムにおいて、複数の電池の接続に少なくとも直列接続が含まれ、電流値および端子電圧値の検出が直列接続された複数の電池の間で同時期に行われるように、電流検出部による検出および電圧検出部による各電池の検出をそれぞれ同期させる同期装置を備えるようにしたものである。
 本発明の第13の態様によると、第11の態様の電池管理システムにおいて、電池状態算出部で算出された電池状態を表示する表示装置を備え、表示装置は、電池状態算出部で算出された電池状態を前記複数の電池ブロック毎に表示するものである。
According to the first aspect of the present invention, the battery state estimation method measures the current value and the terminal voltage value of the battery at the time of charging and discharging the battery, and based on the measured current value and the terminal voltage value, A battery state estimation method for calculating at least one of a charging rate, a degree of deterioration, and a full charge capacity, and when a change in measured current value per second is a predetermined value or more, occurrence of a current change The battery charging rate based on the current value and the terminal voltage value measured in the battery charging / discharging period other than the above period is not used. And calculating at least one of the deterioration degree and the full charge capacity.
According to the second aspect of the present invention, the battery management system includes a current detection unit that detects a current value of the battery, a voltage detection unit that detects a terminal voltage value of the battery, and a current value detected by the current detection unit. A current change detection unit that detects a current change whose change per second is equal to or greater than a predetermined value, and a current value and a terminal voltage detected in a period from when the current change is detected by the current change detection unit until a predetermined time elapses. Battery state calculation that calculates at least one of the charging rate, the degree of deterioration, and the full charge capacity as the battery state based on the current value and the terminal voltage value detected in the battery charging / discharging period other than the period without using the value A section.
According to the third aspect of the present invention, in the battery management system of the second aspect, it is preferable to use the smallest polarization time constant of the battery polarization time constant or 2 seconds for a predetermined time.
According to the fourth aspect of the present invention, in the battery management system of the second or third aspect, it is preferable to use a current value corresponding to a discharge rate of 0.1 C as the change in the current value per second.
According to a fifth aspect of the present invention, the battery management system according to any one of the second to fourth aspects includes a display device that displays the battery state calculated by the battery state calculation unit.
According to the sixth aspect of the present invention, in the battery management system according to any one of the second to fourth aspects, the charging is performed within a predetermined number from the present time to the past among the charge rates calculated by the battery state calculation unit. The battery state calculation unit calculates the full charge capacity when the difference between the maximum value and the minimum value of the charge rate stored in the storage unit is equal to or greater than the predetermined charge rate difference. It is intended to be.
According to a seventh aspect of the present invention, in the battery management system of the sixth aspect, the predetermined charging rate difference is 15%.
According to an eighth aspect of the present invention, in the battery management system according to the sixth or seventh aspect, the battery management system includes a display device that displays the battery state calculated by the battery state calculation unit, and the display device is charged by the battery state calculation unit. When the rate is calculated, the display of the charge rate is updated with the calculated charge rate, and when the full charge capacity corresponding to the charge rate has not been calculated, the most recently calculated full charge capacity and the The battery deterioration level based on the full charge capacity is displayed.
According to the ninth aspect of the present invention, in the battery management system of the eighth aspect, when displaying the most recently calculated full charge capacity and the degree of deterioration of the battery based on the full charge capacity, the full charge capacity and It is preferable to make the display form of the deterioration degree different from the display form in the case of displaying the full charge capacity corresponding to the charging rate.
According to a tenth aspect of the present invention, in the battery management system according to the second aspect, the battery is composed of a plurality of battery cells, and the battery state detection unit is at least one of a battery charge rate, a degree of deterioration, and a full charge capacity. Is calculated for each of the plurality of battery cells.
According to an eleventh aspect of the present invention, in the battery management system according to the second aspect, the battery includes a plurality of battery blocks each including a plurality of battery cells, and the battery state detection unit includes the battery charge rate, the degree of deterioration, and the fullness. At least one of the charging capacities is calculated for each of the plurality of battery blocks.
According to a twelfth aspect of the present invention, in the battery management system according to the tenth or eleventh aspect, the connection of the plurality of batteries includes at least a series connection, and the detection of the current value and the terminal voltage value is performed in series. A synchronization device that synchronizes the detection by the current detection unit and the detection of each battery by the voltage detection unit is provided so as to be performed at the same time between the batteries.
According to a thirteenth aspect of the present invention, the battery management system according to the eleventh aspect includes a display device that displays the battery state calculated by the battery state calculation unit, and the display device is calculated by the battery state calculation unit. A battery state is displayed for each of the plurality of battery blocks.
 本発明は、明確な電池休止状況が無かった場合でも、充放電中において容量や劣化度などの電池状態をより高精度に推定することができる。 The present invention can estimate the battery state such as the capacity and the degree of deterioration with higher accuracy during charging / discharging even when there is no clear battery halt condition.
本実施形態に係る電池管理システムの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the battery management system which concerns on this embodiment. 電池管理システムにおける処理を説明するフローチャートである。It is a flowchart explaining the process in a battery management system. 電流値の変化と、算出される充電率の誤差との関係を模式的に示す図である。It is a figure which shows typically the relationship between the change of an electric current value, and the error of the calculated charging rate. 電池の回路モデルの一例を示す図である。It is a figure which shows an example of the circuit model of a battery. ステップS22の詳細処理の一例を示すフローチャートである。It is a flowchart which shows an example of the detailed process of step S22. 充電率計算条件判定処理を説明する図である。It is a figure explaining charge rate calculation condition judgment processing. 開放電圧-充電率(SOC)マップの一例を示したものである。2 shows an example of an open-circuit voltage-charge rate (SOC) map. 開放電圧-SOCのグラフを示す図である。It is a figure which shows the graph of open circuit voltage-SOC. SOC・電荷蓄積部14におけるテーブルを示す図である。FIG. 4 is a diagram showing a table in the SOC / charge storage unit 14. 満充電容量の求め方を説明する図である。It is a figure explaining how to obtain the full charge capacity. 表示部19の表示例を示す図である。FIG. 10 is a diagram showing a display example of the display unit 19. 2直列の電池が2並列の計4個が接続されている場合にシステム構成を示す図である。It is a figure which shows a system configuration | structure, when a total of four 2 series batteries of 2 parallel are connected. 電池を直並列した場合の、表示部913における表示例を示す図である。It is a figure which shows the example of a display in the display part 913 at the time of connecting a battery in series. 本実施の形態による電池管理システムが適用される車両用回転電機の、駆動システムを示すブロック図である。It is a block diagram which shows the drive system of the rotary electric machine for vehicles to which the battery management system by this Embodiment is applied.
 以下、図を参照して本発明を実施するための形態について説明する。図1は、本実施形態に係る電池管理システムの構成を示す機能ブロック図である。本実施形態に係る電池管理システムは、電気自動車や電力系統などの機器に適用され、それらの機器が稼動中に電池の満充電容量の推定を行う。電池管理システムは、電流計10、電流積分部11、電圧検出部12、電圧補正部13、SOC・電荷蓄積部14、計測タイミング指定部15、SOC推定マップ16、更新指令部17、満充電容量計算部18および表示部19から構成される。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a functional block diagram showing the configuration of the battery management system according to the present embodiment. The battery management system according to the present embodiment is applied to devices such as an electric vehicle and a power system, and estimates the full charge capacity of the battery while these devices are in operation. The battery management system includes an ammeter 10, a current integration unit 11, a voltage detection unit 12, a voltage correction unit 13, an SOC / charge storage unit 14, a measurement timing designation unit 15, an SOC estimation map 16, an update command unit 17, a full charge capacity. It comprises a calculation unit 18 and a display unit 19.
 図1に示した構成のうち、電流積分部11、電圧補正部13、SOC・電荷蓄積部14、計測タイミング指定部15、SOC推定マップ16、更新指令部17、満充電容量計算部18は、
機器システム側に設けられたコントローラ、例えば、ノートPC、電気自動車内のコントローラ、電力系統コントローラ内のソフトウエアで実現される。例えば、電気自動車であれば、電池制御用に設けられたバッテリコントローラのソフトウェアによって実現される。もちろん、電池管理システム専用のコントローラを備えて、それに実行させるようにしてもかまわない。
In the configuration shown in FIG. 1, the current integration unit 11, the voltage correction unit 13, the SOC / charge storage unit 14, the measurement timing designation unit 15, the SOC estimation map 16, the update command unit 17, and the full charge capacity calculation unit 18 are
It is realized by a controller provided on the device system side, for example, a notebook PC, a controller in an electric vehicle, or software in a power system controller. For example, in the case of an electric vehicle, it is realized by software of a battery controller provided for battery control. Of course, a controller dedicated to the battery management system may be provided and executed.
 コントローラ内のソフトウエアは、電池に直結された状態検知装置(バッテリの温度、電流、電圧測定装置)、移動体のコントローラ、若しくは発電機のコントローラのいずれか、または各種複数コントローラ組み合わせで実現されるようにしても良い。表示部19は、別途設けられた表示装置、ディスプレイで実現される。ここで、表示装置は電池の近傍に置かれるか、または、通信線で充電率、満充電容量の情報を遠隔地に送り、遠隔地にて表示装置を用意して表示しても良い。 The software in the controller is realized by a state detection device (battery temperature, current, voltage measurement device) directly connected to the battery, a controller of the moving body, a controller of the generator, or a combination of various controllers. You may do it. The display unit 19 is realized by a display device and a display provided separately. Here, the display device may be placed in the vicinity of the battery, or information on the charging rate and the full charge capacity may be sent to a remote place via a communication line, and the display device may be prepared and displayed at the remote place.
 電流計10は、電池に充放電された電流を計測する。電流計は、シャント抵抗、またはホール素子を用いる(参考特許、特開平10-62453)。図1の電圧検出部12は、電池Bの―極と+極間の電圧(アナログ値)を測定して、デジタル値に変換して、電圧補正部13へ電圧情報を送る。図1の電池Bは、鉛電池、リチウムイオン電池等の二次電池、または電気二重層コンデンサ、リチウムイオンキャパシタが対象となる。 The ammeter 10 measures the current charged and discharged in the battery. The ammeter uses a shunt resistor or a Hall element (reference patent, Japanese Patent Laid-Open No. 10-62453). The voltage detection unit 12 in FIG. 1 measures the voltage (analog value) between the negative electrode and positive electrode of the battery B, converts it to a digital value, and sends voltage information to the voltage correction unit 13. The battery B in FIG. 1 is a secondary battery such as a lead battery or a lithium ion battery, or an electric double layer capacitor or a lithium ion capacitor.
 図14は、本実施の形態による電池管理システムが適用される車両用回転電機の、駆動システムの一例を示すブロック図である。図14に示す駆動システムは、電池モジュール9、電池モジュール9を監視する電池監視装置100、電池モジュール9からの直流電力を3相交流電力に変換するインバータ装置220、車両駆動用のモータ230を備えている。電池監視装置100に本実施形態の電池管理システムが採用されている。 FIG. 14 is a block diagram showing an example of a drive system of a vehicular rotating electrical machine to which the battery management system according to the present embodiment is applied. The drive system shown in FIG. 14 includes a battery module 9, a battery monitoring device 100 that monitors the battery module 9, an inverter device 220 that converts DC power from the battery module 9 into three-phase AC power, and a motor 230 for driving the vehicle. ing. The battery management system of this embodiment is adopted for the battery monitoring device 100.
 モータ230は、インバータ装置220からの3相交流電力により駆動される。インバータ装置220と電池監視装置100とはCAN通信で結ばれており、インバータ装置220は電池監視装置100に対して上位コントローラとして機能する。また、インバータ装置220は、さらに上位のコントローラ(不図示)からの指令情報に基づいて動作する。 The motor 230 is driven by the three-phase AC power from the inverter device 220. The inverter device 220 and the battery monitoring device 100 are connected by CAN communication, and the inverter device 220 functions as a host controller for the battery monitoring device 100. Further, the inverter device 220 operates based on command information from a host controller (not shown).
 インバータ装置220は、パワーモジュール226と、MCU222と、パワーモジュール226を駆動するためのドライバ回路224とを有している。パワーモジュール226は、電池モジュール9から供給される直流電力を、モータ230を駆動するための3相交流電力に変換する。なお、インバータ装置220は、モータ230の回転子に対するパワーモジュール226により発生する交流電力の位相を制御して、車両制動時にはモータ230をジェネレータとして動作させる。モータ230で発電された3相交流電力は、パワーモジュール226により直流電力に変換されて電池モジュール9に供給される。その結果、電池モジュール9は充電される。 The inverter device 220 includes a power module 226, an MCU 222, and a driver circuit 224 for driving the power module 226. The power module 226 converts the DC power supplied from the battery module 9 into three-phase AC power for driving the motor 230. Inverter device 220 controls the phase of AC power generated by power module 226 with respect to the rotor of motor 230, and causes motor 230 to operate as a generator during vehicle braking. The three-phase AC power generated by the motor 230 is converted into DC power by the power module 226 and supplied to the battery module 9. As a result, the battery module 9 is charged.
 電池モジュール9は、直列接続された2つの電池ブロック9A,9Bで構成されている。各電池ブロック9A,9Bは、直列接続された16セルの電池セルを備えている。電池ブロック9Aと電池ブロック9Bとは、スイッチとヒューズとが直列接続された保守・点検用のサービスディスコネクトSDを介して直列接続される。このサービスディスコネクトSDが開くことで電気回路の直接回路が遮断され、仮に電池ブロック9A,9Bのどこかで車両との間に1箇所接続回路ができたとしても電流が流れることはない。このような構成により高い安全性を維持できる。 The battery module 9 is composed of two battery blocks 9A and 9B connected in series. Each battery block 9A, 9B is provided with 16 battery cells connected in series. The battery block 9A and the battery block 9B are connected in series via a maintenance / inspection service disconnect SD in which a switch and a fuse are connected in series. By opening this service disconnect SD, the direct circuit of the electric circuit is cut off, and even if a connection circuit is formed at one place between the battery blocks 9A and 9B and the vehicle, no current flows. With such a configuration, high safety can be maintained.
 電池モジュール9とインバータ装置220との間の強電ラインHV+には、リレーRL,抵抗RPおよびプリチャージリレーRLPを備えた電池ディスコネクトユニットBDUが設けられている。抵抗RPおよびプリチャージリレーRLPの直列回路は、リレーRLと並列に接続されている。 A battery disconnect unit BDU including a relay RL, a resistor RP, and a precharge relay RLP is provided in the high-voltage line HV + between the battery module 9 and the inverter device 220. A series circuit of the resistor RP and the precharge relay RLP is connected in parallel with the relay RL.
 電池監視装置100は、主に各セル電圧の測定、総電圧の測定、電流の測定、セル温度およびセルの容量調整等を行う。そのために、セルコントローラとしてのIC1~IC6が設けられている。各電池ブロック9A,9B内に設けられた16セルの電池セルは、それぞれ3つのセルグループに分けられ、各セルグループ毎に一つのICが設けられている。 The battery monitoring device 100 mainly performs measurement of each cell voltage, measurement of total voltage, measurement of current, cell temperature, cell capacity adjustment, and the like. For this purpose, IC1 to IC6 as cell controllers are provided. The 16 battery cells provided in each battery block 9A, 9B are each divided into three cell groups, and one IC is provided for each cell group.
 IC1~IC6は、絶縁素子(例えば、フォトカプラ)PHを介してデイジーチェーン方式でマイコン30と通信を行い、セル電圧値読み取りや各種コマンド送信のための通信系602と、セル過充電検知情報のみを送信する通信系604とを備えている。図14に示す例では、通信系602は、電池ブロック9AのIC1~IC3に対する上位の通信経路と、電池ブロック9BのIC4~IC6に対する下位の通信経路とに分けられている。電池ディスコネクトユニットBDU内にはホール素子等の電流センサSiが設置されており、電流センサSiの出力はマイコン30に入力される。電池モジュール9の総電圧および温度に関する信号もマイコン30に入力され、マイコン30のAD変換器(ADC)によって測定される。温度センサは電池ブロック9A,9B内の複数箇所に設けられている。 IC1 to IC6 communicate with the microcomputer 30 in a daisy chain manner via an insulating element (for example, a photocoupler) PH, a communication system 602 for reading a cell voltage value and transmitting various commands, and only cell overcharge detection information. And a communication system 604 for transmitting. In the example shown in FIG. 14, the communication system 602 is divided into an upper communication path for IC1 to IC3 of the battery block 9A and a lower communication path for IC4 to IC6 of the battery block 9B. A current sensor Si such as a Hall element is installed in the battery disconnect unit BDU, and the output of the current sensor Si is input to the microcomputer 30. Signals related to the total voltage and temperature of the battery module 9 are also input to the microcomputer 30 and measured by an AD converter (ADC) of the microcomputer 30. Temperature sensors are provided at a plurality of locations in the battery blocks 9A and 9B.
 図2は、図1に示した電池管理システムにおける処理を説明するフローチャートである。図2に示すフローチャートの処理は、電池管理システムが設けられた装置(電気自動車、ノートPC、電力系統等)が稼働開始すると共に実行される、装置が停止するまで一定時間毎または所定の条件が成立する毎に定期的に繰り返し実行される。一定時間毎にプログラムを実行する場合には、例えば、その実行周期は、予め決められた値(例えば100ms)とする。 FIG. 2 is a flowchart for explaining processing in the battery management system shown in FIG. The processing of the flowchart shown in FIG. 2 is executed when a device (electric vehicle, notebook PC, power system, etc.) provided with a battery management system starts to operate, at regular time intervals or at predetermined conditions until the device stops. Every time it is established, it is repeated periodically. When the program is executed at regular time intervals, for example, the execution cycle is set to a predetermined value (for example, 100 ms).
(ステップS20)
 ステップS20では、図1の電流計10により電池Bの充放電電流値を計測する。
(Step S20)
In step S20, the charge / discharge current value of the battery B is measured by the ammeter 10 of FIG.
(ステップS21)
 ステップS21では、ステップS20で計測した電流値に基づいて電荷(電流積分)を計算する。すなわち、電荷(Ah)は(電流値)×(時間)で計算され、ここでの時間は前回電流計測から今回電流計測までの経過時間であって、上述した実行周期が用いられる。なお、稼働開始(充放電開始)時の電荷の初期値は0としておく。このステップS21の電荷計算処理は、図1の電流積分部11に該当する。
(Step S21)
In step S21, a charge (current integration) is calculated based on the current value measured in step S20. That is, the charge (Ah) is calculated by (current value) × (time), and the time here is an elapsed time from the previous current measurement to the current current measurement, and the execution cycle described above is used. Note that the initial charge value at the start of operation (charge / discharge start) is set to zero. The charge calculation process in step S21 corresponds to the current integration unit 11 in FIG.
(ステップS22)
 ステップS22では、電流の変化率に基づいて充電率計算条件に合致するかどうか、すなわち、今回の計測タイミング(図2のプログラム処理タイミング)において充電率計算を行うか否かを判定する。図3は、ステップS22における充電率計算条件の判定を説明する図であり、図5はステップS22の詳細処理の一例を示すフローチャートである。なお、ステップS22の処理は、図1の計測タイミング指定部15の処理に該当する。
(Step S22)
In step S22, it is determined whether or not the charging rate calculation condition is met based on the current change rate, that is, whether or not the charging rate is calculated at the current measurement timing (program processing timing in FIG. 2). FIG. 3 is a diagram illustrating determination of the charging rate calculation condition in step S22, and FIG. 5 is a flowchart illustrating an example of detailed processing in step S22. In addition, the process of step S22 corresponds to the process of the measurement timing designation | designated part 15 of FIG.
 本実施の形態では、稼働中(充放電中)に計測された電流値および端子電圧に基づいて、電池状態(充電率(SOC: State of Charge)、劣化度、満充電容量)を算出するようにしている。稼働中は、負荷(例えば、モータ)の状態に応じて電流値が変化する。そして、図3に示すように電流値が急激に変化した直後に計測された電流値および電圧値を用いて電池状態を算出すると、算出誤差が大きくなる。 In the present embodiment, the battery state (charge rate (SOC: State of Charge), degree of deterioration, full charge capacity) is calculated based on the current value and the terminal voltage measured during operation (charging / discharging). I have to. During operation, the current value changes according to the state of the load (for example, a motor). Then, as shown in FIG. 3, if the battery state is calculated using the current value and the voltage value measured immediately after the current value suddenly changes, the calculation error increases.
 図3は、電流値の変化と、算出される充電率の誤差との関係を模式的に示す図である。時刻taにおいて電流値がΔIだけ変化した場合を示している。このように電流値が変化した場合、算出される充電率誤差は、電流値が変化した直後に大きく変化し、その後、ある程度の時間が経過すると誤差は小さくなる。一般的に、電流値が変化してからの経過時間が2秒以上であれば、誤差は十分小さくなる。本実施の形態では、電流値の変化から所定経過時間が経過するまでに計測された電流値および電圧値は、電池状態(充電率、劣化度、満充電容量)の算出に用いないよう視することで、電池状態の算出精度を向上させるようにした。以下では、この所定経過時間τを待ち時間τと呼ぶことにする。 FIG. 3 is a diagram schematically showing a relationship between a change in current value and an error in the calculated charging rate. A case where the current value changes by ΔI at time ta is shown. When the current value changes in this way, the calculated charging rate error changes greatly immediately after the current value changes, and thereafter, the error decreases after a certain amount of time has elapsed. Generally, if the elapsed time after the current value changes is 2 seconds or more, the error is sufficiently small. In the present embodiment, it is considered that the current value and the voltage value measured until a predetermined elapsed time elapses from the change of the current value are not used for calculation of the battery state (charging rate, deterioration degree, full charge capacity). Thus, the calculation accuracy of the battery state is improved. Hereinafter, the predetermined elapsed time τ is referred to as a waiting time τ.
 そのため、図2のステップS22の充電率計算条件判定処理では、今回の処理タイミングにおいて所定値以上の電流変化が発生したか否か、または、所定値以上の電流変化があった場合の待ち時間中であるか否かを判定している。そして、電流変化が発生した場合や待ち時間中であれば、条件を満たさないと判定され図2のプログラムを終了する。一方、待ち時間中でないと判定されると、ステップS22からステップS23へと進む。 Therefore, in the charging rate calculation condition determination process in step S22 of FIG. 2, whether or not a current change greater than or equal to a predetermined value has occurred at the current process timing, or during a waiting time when there is a current change greater than or equal to a predetermined value It is determined whether or not. If a current change occurs or during a waiting time, it is determined that the condition is not satisfied, and the program of FIG. 2 is terminated. On the other hand, if it is determined that it is not during the waiting time, the process proceeds from step S22 to step S23.
 ここで、電流変化とは1秒当たりの電流変化のことであり、電流変化を判定するため判定値としては、例えば、一秒当たりの電流変化が電池Bの初期満充電容量の定数倍C(C:放電率)とする。一般的には、0.1C程度に設定するのが良い。初期満充電容量=5Ahの電池の場合には、0.1Cは0.5Aであるので、1秒に0.5A以上の電流変化が起こった時とする。0.1Cは一例であって、0.1Cよりも大きい0.3C等としても良く例えば、予め実機でもって試験をし、最適な値を設定するようにしても良い。 Here, the current change is a current change per second, and a determination value for determining the current change is, for example, a current change per second that is a constant multiple C (the initial full charge capacity of the battery B). C: discharge rate). Generally, it is better to set to about 0.1C. In the case of a battery having an initial full charge capacity = 5 Ah, 0.1 C is 0.5 A, and therefore, a current change of 0.5 A or more occurs per second. 0.1C is an example, and it may be 0.3C larger than 0.1C. For example, an optimal value may be set by testing with an actual machine in advance.
 また、待ち時間τとしては、予め定められた所定の値(例えば、上述した2秒)としても良いし、電池の分極時定数の中で最も短い時間としても良い。待ち時間τを大きな値に設定するほど誤差は小さくなるが、逆に、電池状態算出に用いるべき計測データの数が減ってしまって算出タイミングがなかなか得られなくなる。そのため、算出頻度と誤差低減とを両立するには、一定数値を用いる場合も電池の分極時定数を用いる場合も、τは秒オーダーとするのが好ましい。 Further, the waiting time τ may be a predetermined value (for example, 2 seconds described above), or may be the shortest time among the polarization time constants of the battery. The larger the waiting time τ is set, the smaller the error is. On the other hand, the number of measurement data to be used for battery state calculation is reduced, and it is difficult to obtain the calculation timing. Therefore, in order to achieve both calculation frequency and error reduction, it is preferable that τ be in the order of seconds both when a constant value is used and when the polarization time constant of the battery is used.
 分極時定数について、図4を用いて説明する。図4は電池の回路モデルの一例を示す図であり、理想電池31(電池の充放電が停止して数時間後の電圧)、直流抵抗32、分極1(33)、分極2(34)、+極35からなる。ここで、分極は抵抗とコンデンサの並列接続として表現される。分極1の時定数をτ1=C1・R1、分極2の時定数をτ2=C2・R2として、τ1<τ2とする。ここで、τ1は電池によるがおよそ数秒の時定数、τ2は数分から数時間の時定数となる。ここで、上述した待ち時間τとしては、τ1を用いる。なお、図4の各回路パラメータは、周知の電気化学インピーダンス(EIS)測定法(交流インピーダンス法)を用いて測定してもよい(板垣昌幸:電気化学インピーダンス法 原理・測定・解析,丸善)。 The polarization time constant will be described with reference to FIG. FIG. 4 is a diagram showing an example of a circuit model of a battery, which is an ideal battery 31 (voltage after several hours since charging / discharging of the battery is stopped), DC resistance 32, polarization 1 (33), polarization 2 (34), It consists of + pole 35. Here, polarization is expressed as a parallel connection of a resistor and a capacitor. The time constant of polarization 1 is τ1 = C1 · R1, the time constant of polarization 2 is τ2 = C2 · R2, and τ1 <τ2. Here, τ1 is a time constant of about several seconds depending on the battery, and τ2 is a time constant of several minutes to several hours. Here, τ1 is used as the waiting time τ described above. 4 may be measured using a known electrochemical impedance (EIS) measurement method (AC impedance method) (Masayuki Itagaki: electrochemical impedance method principle, measurement / analysis, Maruzen).
 また、分極の時定数に代えて、次式(1)で算出されるτを上述した待ち時間τとして用いても良い。なお、SOC1%当たりの電圧については、後述するステップS24において説明する。SOC誤差としては予め与えられた値(例えば5%)とする。
   τ=τ1×ΔI×R1/v  …(1)
      v=SOC1%の電圧×SOC誤差
      τ1:分極時定数の中でも最も短い時間
      ΔI:電流差(1周期前の計測電流―今回の電流)
      R1:図4中のR1
Further, instead of the time constant of polarization, τ calculated by the following equation (1) may be used as the above-described waiting time τ. The voltage per SOC 1% will be described in step S24 described later. The SOC error is a predetermined value (for example, 5%).
τ = τ1 × ΔI × R1 / v (1)
v = SOC 1% voltage × SOC error τ1: The shortest time among the polarization time constants ΔI: Current difference (measured current one cycle before this time)
R1: R1 in FIG.
 次いで、図5を用いて、ステップS22における充電率計算条件判定処理の詳細を説明する。ステップS220では、電流計10で計測された今回計測電流値と前回計測電流値との差分ΔIを実行周期(上述した100ms)で除算して得られる1秒当たりの電流変化が、所定値以上か否かを判定する。ステップS220で電流変化が所定値以上と判定されると、ステップS225へ進んでカウント数NをN=1とする。カウント数Nは、電流値所定値以上変化してからの経過時間を示す指標であり、経過時間はN×実行周期(例えば、100ms)で表される。なお、カウント数Nはコントローラに設けられたメモリに記憶され、稼動開始時のNの値は0である。ステップS220からステップS225へ進んだ場合には所定値以上の電流変化があったので、充電率計算条件を満足しておらず、図2のプログラムを終了する。 Next, details of the charging rate calculation condition determination process in step S22 will be described with reference to FIG. In step S220, whether the current change per second obtained by dividing the difference ΔI between the current measured current value measured by the ammeter 10 and the previous measured current value by the execution period (100 ms described above) is a predetermined value or more. Determine whether or not. If it is determined in step S220 that the current change is equal to or greater than the predetermined value, the process proceeds to step S225, and the count number N is set to N = 1. The count number N is an index indicating the elapsed time since the current value has changed by a predetermined value or more, and the elapsed time is represented by N × execution cycle (for example, 100 ms). The count number N is stored in a memory provided in the controller, and the value of N at the start of operation is 0. When the process proceeds from step S220 to step S225, there is a current change of a predetermined value or more, so the charging rate calculation condition is not satisfied and the program of FIG. 2 is terminated.
 一方、ステップS220において電流変化が所定値より小さいと判定されると、ステップS221へ進んでカウント数NがN≠0か否かを判定する。ステップS221でN≠0と判定されるとステップS222へ進み、N=0と判定されると図2のステップS23へ進む。 On the other hand, if it is determined in step S220 that the current change is smaller than the predetermined value, the process proceeds to step S221 to determine whether the count number N is N ≠ 0. If N ≠ 0 is determined in step S221, the process proceeds to step S222. If N = 0 is determined, the process proceeds to step S23 in FIG.
 ステップS222では、カウント数NがN=Mを満足しているか否かを判定する。ここで、Mは、式「M×実行周期≧τ>(M-1)×実行周期」を満足する整数であり、ステップS222では経過時間が待ち時間τ以上となったか否かを判定している。ステップS222でN≠M、すなわち、経過時間が待ち時間τに達していないと判定されると、ステップS224へ進んでカウント数NをN=N+1と増加させる。ステップS224の処理が終了したならば、図2のプログラムを終了する。 In step S222, it is determined whether the count number N satisfies N = M. Here, M is an integer that satisfies the equation “M × execution cycle ≧ τ> (M−1) × execution cycle”. In step S222, it is determined whether or not the elapsed time is equal to or greater than the waiting time τ. Yes. If N ≠ M in step S222, that is, if it is determined that the elapsed time has not reached the waiting time τ, the process proceeds to step S224, and the count number N is increased to N = N + 1. When the process of step S224 is completed, the program of FIG. 2 is terminated.
 一方、ステップS222でN=Mと判定されると、すなわち、経過時間が待ち時間τ以上と判定されると、ステップS223へ進んでカウント数をN=0とした後、図2のステップS23へ進む。 On the other hand, if it is determined in step S222 that N = M, that is, if it is determined that the elapsed time is equal to or longer than the waiting time τ, the process proceeds to step S223 and the count is set to N = 0, and then to step S23 in FIG. move on.
 上述した図5の充電率計算条件判定処理を、図6を参照して説明すると以下のようになる。図6は電流変化を示す図であり、t0~t10は図2に示すプログラムが実行される処理タイミングを示している。電流値は、時刻t0と時刻t1との間においてΔI1変化し、時刻t5と時刻t6との間ではΔI2変化し、時刻t6と時刻t7との間でΔI3変化している。ここでは、いずれの変化量ΔI1~I3も、1秒間の電流変化に換算した場合に上記所定値よりも大きいとして考える。また、待ち時間τに関するMは、M=3である。 The above-described charging rate calculation condition determination process in FIG. 5 will be described with reference to FIG. FIG. 6 is a diagram showing changes in current, and t0 to t10 indicate processing timings when the program shown in FIG. 2 is executed. The current value changes by ΔI1 between time t0 and time t1, changes by ΔI2 between time t5 and time t6, and changes by ΔI3 between time t6 and time t7. Here, any change amount ΔI1 to I3 is considered to be larger than the predetermined value when converted into a current change for one second. Further, M related to the waiting time τ is M = 3.
 時刻t1におけるプログラム処理タイミングでは、図5のステップS220においてYESと判定されステップS225でN=1とされた後、図2のステップS23以降の処理(充電率算出等を含む)を実行せずにプログラムを終了する。ステップS225でN=1とされることにより、経過時間の算出が開始されることになる。 At the program processing timing at time t1, after YES is determined in step S220 in FIG. 5 and N = 1 is set in step S225, the processing after step S23 in FIG. 2 (including charge rate calculation and the like) is not executed. Exit the program. By setting N = 1 in step S225, the calculation of the elapsed time is started.
 続く時刻t2におけるプログラム処理タイミングでは、電流変化はゼロなので、ステップS220でNOと判定されてステップS221へ進む。なお、前回の時刻t1における処理においてカウント数NはN=1とされているので、ステップS221においてYESと判定されてステップS222へ進む。ステップS222ではN≠M(NO)と判定され、続くステップS224でN=1+1=2とされた後、図2のステップS23以降の処理を実行せずにプログラムを終了する。時刻t3におけるプログラム処理サイクルにおいても、電流変化がゼロなので、同様にステップS220→ステップS221→ステップS222→ステップS224のように処理が進み、ステップS224でN=2+1=3とされた後にプログラムを終了する。 At the subsequent program processing timing at time t2, since the current change is zero, NO is determined in step S220, and the process proceeds to step S221. Since the count number N is set to N = 1 in the process at the previous time t1, YES is determined in step S221, and the process proceeds to step S222. In step S222, it is determined that N.noteq.M (NO), and in step S224, N = 1 + 1 = 2. Then, the program is terminated without executing the processes in and after step S23 in FIG. Also in the program processing cycle at time t3, since the current change is zero, the process proceeds in the same manner as in step S220 → step S221 → step S222 → step S224, and after N = 2 + 1 = 3 in step S224, the program ends. To do.
 時刻t4におけるプログラム処理タイミングでも、電流変化がゼロなのでステップS220→ステップS221→ステップS222と進むが、N=3(=M)であるためステップS222においてYESと判定される。その結果、ステップS222からステップS223へ進んでカウント数NがN=0とされ、図2のステップS23へと進む。すなわち、時刻t4においては、所定値以上の電流変化が生じてからの経過時間が待ち時間τ以上となり、ステップS20で計測された電流値に基づいて、充電率等の電池状態が算出される。 Even at the program processing timing at time t4, since the current change is zero, the process proceeds from step S220 to step S221 to step S222. However, since N = 3 (= M), YES is determined in step S222. As a result, the process proceeds from step S222 to step S223, the count number N is set to N = 0, and the process proceeds to step S23 in FIG. That is, at time t4, the elapsed time after the current change greater than or equal to the predetermined value is equal to or longer than the waiting time τ, and the battery state such as the charging rate is calculated based on the current value measured in step S20.
 時刻t5におけるプログラム処理タイミングでは、電流変化がゼロであってかつN=0なので、ステップS220→ステップS221→ステップS222→ステップS223のように処理が進む。そのため、時刻t5におけるプログラム処理タイミングにおいても、ステップS23以降の処理が実行され、充電率等の電池状態が算出される。 At the program processing timing at time t5, since the current change is zero and N = 0, the process proceeds in the order of step S220 → step S221 → step S222 → step S223. Therefore, also in the program processing timing at time t5, the processing after step S23 is executed, and the battery state such as the charging rate is calculated.
 続く時刻t6におけるプログラム処理タイミングでは、時刻t5における電流値に対する電流変化が所定値以上であるため、ステップS220からステップS225へ進み、カウント数NをN=1と設定し、プログラムを終了する。 At the subsequent program processing timing at time t6, since the current change with respect to the current value at time t5 is equal to or greater than the predetermined value, the process proceeds from step S220 to step S225, the count number N is set to N = 1, and the program ends.
 時刻t7におけるプログラム処理タイミングでは、再び電流値が増加して電流変化が所定値以上となるため、ステップS220でYESと判定され、ステップS225においてカウント数Nが再びN=1とされる。すなわち、経過時間の計測開始時刻が時刻t7に更新されることになる。 At the program processing timing at time t7, since the current value increases again and the current change becomes equal to or greater than the predetermined value, YES is determined in step S220, and the count number N is again set to N = 1 in step S225. That is, the elapsed time measurement start time is updated at time t7.
 時刻t8におけるプログラム処理タイミングでは、電流変化がゼロなのでステップS220→ステップS221と進む。時刻t8においてはカウント数NはN=1なので、ステップS221→ステップS222→ステップS224と進み、ステップS224においてカウント数NがN=1+1=2とされる。そして、図2のプログラムを終了する。時刻t9および時刻t10におけるプログラム処理タイミングは、上述した時刻t4の場合と同様である。そのため、時刻t6と時刻t7との間の電流変化からの経過時間が待ち時間τ以上となった時点で、充電率等の電池状態の算出が再び開始されることになる。図5に示すような処理を行うことにより、所定値以上の電流変化があった場合には、所定の待ち時間が経過してから電池状態の算出が行われるので、電流変化の電池状態算出への影響を抑えることができ、算出精度の向上をはかるおとができる。 At the program processing timing at time t8, since the current change is zero, the process proceeds from step S220 to step S221. Since the count number N is N = 1 at time t8, the process proceeds from step S221 to step S222 to step S224. In step S224, the count number N is set to N = 1 + 1 = 2. Then, the program of FIG. 2 is terminated. The program processing timing at time t9 and time t10 is the same as that at time t4 described above. Therefore, when the elapsed time from the current change between time t6 and time t7 becomes equal to or longer than the waiting time τ, calculation of the battery state such as the charging rate is started again. By performing the process as shown in FIG. 5, when there is a current change of a predetermined value or more, the battery state is calculated after a predetermined waiting time has elapsed. Can be suppressed and the calculation accuracy can be improved.
(ステップS23の説明)
 次に、ステップS23の処理について説明する。なお、ステップS23の処理は、図1の機能ブロック図では電圧補正部13の処理に該当する。ステップS23では、電流計10および電圧検出部11により電流および電圧を計測し、計測された電流値および電圧値に基づいて、開放電圧、すなわち電池の充放電が無い状態で数時間放置した後の電池端子電圧を式(2)を用いて推定する。
  開放電圧=V+I・R-Vf  …(2)
なお、式(2)において、V,I,R,Vfは以下の通りである。
V:測定した電池の電圧
I:測定した電流(放電の場合をプラス、充電の場合をマイナスとする)
R:電池の直流抵抗(電流が変化して、計測周期後の抵抗)
Vf:電池の分極電圧
(Description of step S23)
Next, the process of step S23 will be described. In addition, the process of step S23 corresponds to the process of the voltage correction part 13 in the functional block diagram of FIG. In step S23, the current and voltage are measured by the ammeter 10 and the voltage detection unit 11, and based on the measured current value and voltage value, the battery is left for several hours in a state where there is no charge / discharge of the battery. The battery terminal voltage is estimated using equation (2).
Open-circuit voltage = V + I · R-Vf (2)
In the formula (2), V, I, R, and Vf are as follows.
V: Measured battery voltage I: Measured current (positive for discharging and negative for charging)
R: DC resistance of the battery (resistance after the measurement cycle when the current changes)
Vf: battery polarization voltage
 ここで、式(2)のV,Iは計測するため既知であるが、直流抵抗Rと分極電圧Vfは未知であるため推定する必要がある。直流抵抗Rの推定方法としては、式(3)を用いても良いし、予めテーブル(インデックスをSOC(充電率)、またはないしSOH(劣化度: State of Health)、温度とする)に設定した値を参照するようにしても良い。テーブルを用いる場合、電池温度を計測する温度計を備え、テーブルを参照する際にその計測温度を利用する。
  R=ΔV/ΔI  …(3)
 ΔV=現在の電池電圧-1計測周期前の電池電圧
 ΔI=現在の電流-1計測周期前の電流
Here, V and I in the equation (2) are known because they are measured, but the DC resistance R and the polarization voltage Vf are unknown, and thus need to be estimated. As an estimation method of the DC resistance R, the formula (3) may be used, or a table (index is set to SOC (charge rate) or SOH (degradation degree: State of Health), temperature) is set in advance). You may make it refer to a value. When using a table, a thermometer for measuring the battery temperature is provided, and the measured temperature is used when referring to the table.
R = ΔV / ΔI (3)
ΔV = current battery voltage−1battery voltage before measurement cycle ΔI = current current−1current before measurement cycle
 なお、式(3)を用いる場合には、常に抵抗が求められるわけではなく、電流変化ΔIがある程度(例えば0.1C以上の変化)大きいことが求められる。そこで、電流変化ΔIが小さくて直流抵抗Rの値が常に準備できない場合には、前回の電流変化が起こった時に求めた抵抗の値を使用することで回避する。また、テーブルを用いる方法としては、「特開2000-258513号公報」に掲載される方法を用いても良い。 In addition, when using formula (3), the resistance is not always required, and the current change ΔI is required to be large to some extent (for example, a change of 0.1 C or more). Therefore, when the current change ΔI is small and the value of the DC resistance R cannot always be prepared, the resistance value obtained when the previous current change occurs is avoided by using it. In addition, as a method using a table, a method described in “JP 2000-258513 A” may be used.
 また、分極電圧Vfについては「特開2007-171045号公報」に記載の方法を用いて、過去の電圧と電流とに基づいて求めるようにしても良い。 Further, the polarization voltage Vf may be obtained based on the past voltage and current by using the method described in “Japanese Unexamined Patent Application Publication No. 2007-171045”.
(ステップS24の説明)
 ステップS24では、電池の開放電圧から充電率(SOC)を推定する。なお、ステップS24の処理は、図1の機能ブロック図ではSOC推定マップ16の処理に該当する。本実施の形態における充電率(SOC)は式(4)により定義されるが、実際の推定方法としては、予め用意された充電率-開放電圧マップを用いる。
   SOC=100×現在の充電量[Ah]/初期満充電容量[Ah]   …(4)
(Description of step S24)
In step S24, the charging rate (SOC) is estimated from the open circuit voltage of the battery. Note that the process of step S24 corresponds to the process of the SOC estimation map 16 in the functional block diagram of FIG. The charging rate (SOC) in the present embodiment is defined by Equation (4), but as an actual estimation method, a charging rate-open voltage map prepared in advance is used.
SOC = 100 × current charge amount [Ah] / initial full charge capacity [Ah] (4)
 図7は、開放電圧-充電率(SOC)マップの一例を示したものである。なお、図7に示したマップは、開放電圧-SOCの関係が電池温度によって変わらない場合を示したものであり、SOCの0%から100%までを10%刻みで分けたデータ群からなる。図7のマップをグラフで示すと図8のようになる。 FIG. 7 shows an example of an open-circuit voltage-charge rate (SOC) map. The map shown in FIG. 7 shows a case where the relationship between the open circuit voltage and the SOC does not change depending on the battery temperature, and is composed of a data group in which 0% to 100% of the SOC is divided in 10% increments. FIG. 8 is a graph showing the map of FIG.
 一例として、ステップS23で推定された開放電圧が3.71Vであった場合の、マップを用いたSOCの求め方について説明する。図8に示す開放電圧-SOCのグラフでは、開放電圧3.71Vに対応するSOCとしてSOC=54%が得られる。しかし、図7のマップから実際にSOCを推定する場合には、以下に説明するような方法で推定する。 As an example, a description will be given of how to obtain an SOC using a map when the open circuit voltage estimated in step S23 is 3.71V. In the graph of the open circuit voltage-SOC shown in FIG. 8, SOC = 54% is obtained as the SOC corresponding to the open circuit voltage 3.71V. However, when the SOC is actually estimated from the map of FIG. 7, it is estimated by the method described below.
 まず、図7の左側に示す列の開放電圧データ群の中から、3.71Vに最も近いデータを検索する。ここでは、7段目の3.8Vとなる。次に、3.71Vは3.8Vよりも値が小さいので、3.8Vより一つ下のランクの電圧データである6段目のデータを選択する。この2つの点(データ)より、線形補間により値を求めても良い。その場合には、3.65Vの時のSOCが50%、3.8Vの時のSOCが60%であるので、SOCは50+(60-50)×(3.71-3.65)=54[%]と推定される。なお、ここでは線形補間を用いたが、更に3.55Vのデータ、3.9Vのデータを加えた4点を用いて、周知のスプライン補間によるデータ推定を用いても良い。スプライン補間の方法としては、例えば、「吉本 富士市:スプライン関数とその応用 (シリーズ新しい応用の数学 20),教育出版 (1979/01)」に記載の方法が用いられる。 First, the data closest to 3.71 V is searched from the open voltage data group in the column shown on the left side of FIG. Here, it becomes 3.8V in the seventh stage. Next, since 3.71V has a smaller value than 3.8V, the sixth-stage data which is voltage data one rank lower than 3.8V is selected. A value may be obtained by linear interpolation from these two points (data). In that case, since the SOC at 3.65V is 50% and the SOC at 3.8V is 60%, the SOC is 50+ (60−50) × (3.71−3.65) = 54. [%]It is estimated to be. Although linear interpolation is used here, data estimation by well-known spline interpolation may be used using four points including 3.55 V data and 3.9 V data. As a method of spline interpolation, for example, the method described in “Yoshimoto Safuji-shi: Spline function and its application (mathematics of new application series 20), Education Publishing 教育 (1979/01)” is used.
 ここで、前述した式(1)における、SOC1%当たりの電圧の求め方を説明する。図8は理想電池31の特性を示している。ここで、SOC80%時のSOC1%の幅は79.5%から80.5%となる。そして、80.5%のときの開放電圧と79.5%のときの開放電圧の差はΔVとなる。この開放電圧の差ΔVをSOC1%当たりの電圧とする。ここではSOC80%のときの例を示したが、他のSOC(例えば40%)でも同じように計算する。 Here, how to obtain the voltage per 1% of SOC in the above-described equation (1) will be described. FIG. 8 shows the characteristics of the ideal battery 31. Here, the width of SOC1% when SOC is 80% is 79.5% to 80.5%. The difference between the open circuit voltage at 80.5% and the open circuit voltage at 79.5% is ΔV. This open-circuit voltage difference ΔV is defined as a voltage per 1% SOC. Here, an example in which the SOC is 80% is shown, but the same calculation is performed for other SOCs (for example, 40%).
(ステップS25の説明)
 ステップS25では、SOC・電荷蓄積部14に蓄えられるデータペア(電荷,SOC)を追加する。なお、ステップS25の処理は、図1の機能ブロック図ではSOC・電荷蓄積部14の処理に該当する。データペアを追加の仕方としては、データペアを取得する度に毎回記録しても良いが、毎回記録せずに、前回記録したSOCから1%以上の変化があった場合に記録するとしても良い。
(Description of step S25)
In step S25, a data pair (charge, SOC) stored in the SOC / charge storage unit 14 is added. The process of step S25 corresponds to the process of the SOC / charge storage unit 14 in the functional block diagram of FIG. As a method of adding a data pair, it may be recorded every time a data pair is acquired, but may be recorded when there is a change of 1% or more from the previously recorded SOC without recording each time. .
 なお、メモリ容量の関係で大量のデータを蓄積できない場合や、古いデータを削除して誤差悪化を防ぐ場合には、適宜、SOC・電荷蓄積部14に蓄積されているデータを削除するようにしても良い。データ削除の基準としては、例えば、蓄積してから一定時間経過したデータとする。この一定時間Tの決め方は、電流計の誤差により起因する電荷の誤差により決める。 When a large amount of data cannot be stored due to the memory capacity or when old data is deleted to prevent error deterioration, the data stored in the SOC / charge storage unit 14 is appropriately deleted. Also good. As a reference for data deletion, for example, data that has been accumulated for a certain period of time after accumulation is used. The fixed time T is determined by the charge error caused by the ammeter error.
 具体的には、電流計10の誤差をオフセット誤差と、ホワイトノイズに分け、それぞれの値をIo[A]、Iw[A]とする(これらは、電流計のカタログ値を参照するかまたは、実測して求めておく)。そして、予め与えた満充電容量の誤差をQe[Ah]とするならば、次式(5)を満たすT[h]を上述した一定時間Tとする。なお、誤差Qeの決め方としては、満充電容量Qmaxの誤差率εを用いて、Qmax×εとして決める。誤差率εの値は、例えば、5%としても良い。ΔTは電流積分時間刻み幅[h]である。
   Io×T+Iw×√T×ΔT=Qe  …(5)
Specifically, the error of the ammeter 10 is divided into an offset error and white noise, and the respective values are defined as Io [A] and Iw [A] (see the catalog value of the ammeter, or Determined by actual measurement). Then, if the error of the full charge capacity given in advance is Qe [Ah], T [h] satisfying the following equation (5) is set as the above-mentioned fixed time T. The error Qe is determined as Qmax × ε using the error rate ε of the full charge capacity Qmax. The value of the error rate ε may be 5%, for example. ΔT is the current integration time step [h].
Io × T + Iw × √T × ΔT = Qe (5)
 図9はSOC・電荷蓄積部14におけるテーブルを示す図であり、この図9を用いてSOC・電荷蓄積部14の処理の一例を説明する。SOCと電荷から成るデータペアは、その計測時刻と共に格納されている。電荷は初期値からの積分値であって、単位はAh、さらに放電側をプラスとする。図9に示す例では、計測時刻10:10のデータが初期値であって、SOCの初期値は60%で、電荷の初期値を0%としている。そして、前回のSOCから1%のSOC変化があった場合に、そのときのSOCと電荷とを記憶するようにしている。 FIG. 9 is a diagram showing a table in the SOC / charge storage unit 14, and an example of processing of the SOC / charge storage unit 14 will be described with reference to FIG. A data pair consisting of SOC and electric charge is stored together with the measurement time. The charge is an integral value from the initial value, the unit is Ah, and the discharge side is positive. In the example shown in FIG. 9, the data at the measurement time 10:10 is the initial value, the initial value of the SOC is 60%, and the initial value of the charge is 0%. When there is a 1% SOC change from the previous SOC, the SOC and charge at that time are stored.
 2段目から4段目まではSOCが1%ずつ減少しているので、放電時に得られたデータペアである。電荷は放電側をプラスとしているので、電荷は増加している。一方、4段目から5段目に移る場合には、SOCは増加しており、電荷は減少している。すなわち、4段目から5段目の間で充電が行われたことを示している。最下段のデータペアは最新のデータを示しており、SOCは46%、電荷は1.41Ahとなっている。 2) From the 2nd stage to the 4th stage, since the SOC is decreased by 1%, it is a data pair obtained at the time of discharging. Since the charge is positive on the discharge side, the charge is increasing. On the other hand, when moving from the fourth stage to the fifth stage, the SOC increases and the charge decreases. That is, charging is performed between the fourth stage and the fifth stage. The lowermost data pair indicates the latest data, and the SOC is 46% and the charge is 1.41 Ah.
 図9に示す例では、温度によってSOCと開放電圧との関係が変わらない場合を示している。しかし、温度によりSOCと開放電圧との関係が変化する電池が対象の場合には、各温度毎に図9のようなテーブルを用意し、別途電池に取り付けた温度計の値によりテーブルを選択する。計測時刻のデータは、上述した古いデータを削除して誤差悪化を防ぐためや、メモリが溢れるのを防ぐためのデータ削除の際に使用する。 The example shown in FIG. 9 shows a case where the relationship between the SOC and the open circuit voltage does not change depending on the temperature. However, when a battery whose relationship between the SOC and the open-circuit voltage varies depending on the temperature is a target, a table as shown in FIG. 9 is prepared for each temperature, and the table is selected according to the value of a thermometer separately attached to the battery. . The data at the measurement time is used when deleting the above-mentioned old data to prevent error deterioration or to prevent the memory from overflowing.
(ステップS26の説明)
 ステップS26では、満充電容量の更新判断を行い、更新条件を満たす場合にはステップS27へ進み、更新条件を満たさない場合にはステップS28へ進む。なお、ステップS26の処理は、図1の機能ブロック図では更新指令部17の処理に該当する。
(Description of step S26)
In step S26, it is determined whether to update the full charge capacity. If the update condition is satisfied, the process proceeds to step S27. If the update condition is not satisfied, the process proceeds to step S28. Note that the process of step S26 corresponds to the process of the update command unit 17 in the functional block diagram of FIG.
 ステップS26の更新条件としては、図9のテーブルに記憶されているデータ群の中で、SOCの最小値と最大値との差を取り、その差が予め決められた値以上の場合に満充電容量の更新を行うようにする。また、一度更新された場合であっても、この更新条件を満たす場合には次回のデータ追加後も更新を行うものとする。この予め決められた値としては、例えば、20%や15%のような固定した値が用いられる。 As an update condition in step S26, the difference between the SOC minimum value and the maximum value in the data group stored in the table of FIG. 9 is taken, and the battery is fully charged when the difference is equal to or greater than a predetermined value. Update the capacity. Even if it is updated once, if this update condition is satisfied, the update is performed after the next data addition. As this predetermined value, for example, a fixed value such as 20% or 15% is used.
(ステップS27の説明)
 ステップS27では、SOCと電荷とのペアデータに基づいて、電池の満充電容量を推定する。なお、ステップS27の処理は、図1の機能ブロック図では満充電容量計算部18に該当する。満充電容量の推定には次式(6)の関係を用い、SOCをx、電荷をyとし、x、yの関係を示す直線の傾きを満充電容量として求める。また、対象とするデータペアは、SOC・電荷蓄積部14に蓄積されている全データとする。
   電荷=満充電容量×SOC+定数  …(6)
(Description of step S27)
In step S27, the full charge capacity of the battery is estimated based on the pair data of SOC and charge. In addition, the process of step S27 corresponds to the full charge capacity calculation part 18 in the functional block diagram of FIG. For the estimation of the full charge capacity, the relationship of the following equation (6) is used, where SOC is x, charge is y, and the slope of a straight line indicating the relationship between x and y is obtained as the full charge capacity. The target data pair is all data stored in the SOC / charge storage unit 14.
Charge = full charge capacity x SOC + constant (6)
 具体的に満充電容量を求める場合には、例えば、最小二乗法を用いる。最小二乗の方法としては、参考文献「東京大学教養学部統計学教室編:統計学入門,東京大学出版会, 2001年9月25日第20刷」の方法を用いても良い。ここで、傾きを用いる理由は、例えばSOC推定のズレが生じた場合、近似直線が座標上で上下することはあっても、傾きには影響が無いため、SOC推定におけるバイアス誤差ずれに強いためである。 When specifically obtaining the full charge capacity, for example, the least square method is used. As a method of least squares, the method described in the reference “The University of Tokyo Faculty of Liberal Arts, Statistics Department: Introduction to Statistics, University of Tokyo Press, September 25, 2001, 20th edition” may be used. Here, the reason for using the inclination is that, for example, when the SOC estimation shift occurs, the approximate straight line may move up and down on the coordinates, but the inclination is not affected, so that it is resistant to bias error deviation in the SOC estimation. It is.
 図10を用いて満充電容量の求め方を説明する。図10は、横軸を電荷[Ah]、横軸をSOC[%]とする座標上に図9のデータをプロットしたものである。図9の5段目のデータが図10の点D1であり、プロットされたデータ群について、最小二乗で近似直線を求めたものがL1となる。この直線L1の傾きが満充電容量を表している。図10に示す例では、傾き=0.1Ah/SOC%となり、満充電容量は100倍の10Ahと計算される。また、SOH(劣化度)は、[満充電容量]/[新品電池の満充電容量]の100%比として算出される。 The method for obtaining the full charge capacity will be described with reference to FIG. FIG. 10 is a plot of the data of FIG. 9 on coordinates where the horizontal axis is charge [Ah] and the horizontal axis is SOC [%]. The data in the fifth row in FIG. 9 is the point D1 in FIG. 10, and for the plotted data group, the approximate straight line obtained by the least square is L1. The slope of this straight line L1 represents the full charge capacity. In the example shown in FIG. 10, the slope is 0.1 Ah / SOC%, and the full charge capacity is calculated as 10 Ah, which is 100 times. SOH (degree of deterioration) is calculated as a 100% ratio of [full charge capacity] / [full charge capacity of a new battery].
(ステップS28の説明)
 ステップS28では表示部19の表示更新処理を行う。図11は、表示部19の表示画面の表示例を示したものである。図11に示す例では、SOC、SOH、残稼働時間を表示するようにしている。図11において、81はSOCを示し、82は満充電容量を示し、83はSOHを示し、84は残使用時間を示している。
(Description of step S28)
In step S28, display update processing of the display unit 19 is performed. FIG. 11 shows a display example of the display screen of the display unit 19. In the example shown in FIG. 11, the SOC, SOH, and remaining operation time are displayed. In FIG. 11, 81 indicates SOC, 82 indicates full charge capacity, 83 indicates SOH, and 84 indicates remaining usage time.
 SOCについては、数値によるパーセント表示だけでなく、視覚的に分かりやすいように電池表示85のバー表示86でSOCを表示するようにした。そのため、符号86で示す部分の大きさで使用できる量を示している。同様にSOHについても、数値によるパーセント表示とともに、電池表示88のバー表示87でSOHを表示するようにした。 As for SOC, not only the percentage display by numerical value but also the SOC display with the bar display 86 of the battery display 85 for easy visual understanding. Therefore, the amount that can be used is indicated by the size of the portion denoted by reference numeral 86. Similarly, SOH is displayed on the bar display 87 of the battery display 88 as well as the percentage display by numerical values.
 この表示部19の表示は、充電率の計算が行われる度に更新されるが、ステップS22→ステップS28と進んだ場合には、満充電容量が算出されていないため、今回の処理タイミングにおけるSOH、満充電容量の値は未確定となっている。その場合には、表示色を変えて前回稼働したときの最終値を表示するようにすれば良い。または、表示色を変える代わりに、点滅表示するようにしても良い。ユーザは表示色によりSOH、満充電容量が最新のものでないことを認識することができる。 The display on the display unit 19 is updated every time the charging rate is calculated. However, when the process proceeds from step S22 to step S28, the full charge capacity has not been calculated, so the SOH at the current processing timing is not calculated. The value of the full charge capacity has not yet been determined. In that case, the display color may be changed to display the final value when the previous operation was performed. Alternatively, instead of changing the display color, a blinking display may be used. The user can recognize from the display color that the SOH and the full charge capacity are not the latest.
 なお、SOCとしては、図1のSOC推定マップ16で計測した最新SOC値に、「100×(現在の電荷―SOC電荷蓄積部に蓄積された最新データの電荷)/(満充電容量)」を加えた値としても良い。残使用時間は次式(7)で算出されるものとしても良い。平均電流は最近30分(30分でなく1時間でも良い)の電流の平均値としても良い。
   残使用時間=(現在のSOC-最低SOC)×満充電容量/平均電流×100
                              …(7)
As the SOC, “100 × (current charge−charge of latest data stored in the SOC charge storage unit) / (full charge capacity)” is added to the latest SOC value measured by the SOC estimation map 16 of FIG. It may be an added value. The remaining usage time may be calculated by the following equation (7). The average current may be the average value of currents for the last 30 minutes (or 30 minutes instead of 30 minutes).
Remaining usage time = (current SOC-minimum SOC) x full charge capacity / average current x 100
... (7)
 上述した実施の形態では、電池が一個の場合を例に説明したが、電池が複数個、直並列接続されている場合についても同様に適用することができる。以下、図12に示す例を用いて、電池が複数個、直並列接続された場合について述べる。 In the above-described embodiment, the case where there is one battery has been described as an example, but the present invention can be similarly applied to a case where a plurality of batteries are connected in series and parallel. Hereinafter, a case where a plurality of batteries are connected in series and parallel will be described using the example shown in FIG.
 図12では、2直列の電池が2並列の計4個が接続されている例である。すなわち、直列接続された電池911A,911Bと、直列接続された電池912A,912Bとが並列接続されている。各直列接続された所に、電流計901、902が設けられている。各電池911A,911B,912A,912Bに対して、電流と電圧とを同時に周期的に計測できる計測部903,904,905,906を設ける。 FIG. 12 shows an example in which a total of four 2 series batteries are connected in parallel. That is, the batteries 911A and 911B connected in series and the batteries 912A and 912B connected in series are connected in parallel. Ammeters 901 and 902 are provided at the places connected in series. For each of the batteries 911A, 911B, 912A, and 912B, measurement units 903, 904, 905, and 906 that can periodically measure current and voltage simultaneously are provided.
 なお、直列接続された電池912A,912Bに設けられた計測部903と計測部904との間では、電流センサ、電圧センサのAD(Analog to Digital)回路の計測開始が同期して行われる。同様に、直列接続された電池911A,911Bに設けられた計測部905と計測部906との間では、電流センサ、電圧センサのAD回路の計測開始が同期して行われる。そのため、同期部920から同期信号が各計測部903,904,905,906に入力される。さらに、各計測部903~906に対して、上述した図2に示す処理を行わせる計算部907~910を設ける。表示部913は、計算部907~910の計算結果に基づいて図13に示すような表示を行う。 In addition, the measurement start of the AD (Analog-to-Digital) circuit of a current sensor and a voltage sensor is performed synchronously between the measurement unit 903 and the measurement unit 904 provided in the batteries 912A and 912B connected in series. Similarly, between the measurement unit 905 and the measurement unit 906 provided in the batteries 911A and 911B connected in series, the measurement start of the AD circuit of the current sensor and the voltage sensor is performed in synchronization. Therefore, a synchronization signal is input from the synchronization unit 920 to each measurement unit 903, 904, 905, 906. Furthermore, calculation units 907 to 910 that perform the processing shown in FIG. 2 are provided for the measurement units 903 to 906, respectively. The display unit 913 performs display as shown in FIG. 13 based on the calculation results of the calculation units 907 to 910.
 次に、電池群全体での残使用時間の計算方法について述べる。それぞれの電池911A,911B,912A,912Bについての満充電容量およびSOCは、図12に示した計算部907~910において算出される。電池全体としての容量および残稼働時間は、次式(8),(9)によって計算する。平均電流は、例えば最近30分(30分でなく1時間でも良い)の電流の平均値とする。
  容量[Ah]={電池911A満充電容量×電池911A充電率
       +電池911B満充電容量×電池911B充電率
       +電池912A満充電容量×電池912A充電率
       +電池912B満充電容量×電池912B充電率}/100  …(8)
  残稼働時間=容量/平均電流  …(9)
Next, a method for calculating the remaining usage time in the entire battery group will be described. The full charge capacity and SOC for each of the batteries 911A, 911B, 912A, and 912B are calculated by calculation units 907 to 910 shown in FIG. The capacity and remaining operation time of the entire battery are calculated by the following equations (8) and (9). The average current is, for example, the average value of currents for the last 30 minutes (or 30 minutes instead of 30 minutes).
Capacity [Ah] = {Battery 911A full charge capacity x Battery 911A charge rate + Battery 911B full charge capacity x Battery 911B charge rate + Battery 912A full charge capacity x Battery 912A charge rate + Battery 912B full charge capacity x Battery 912B charge rate} / 100 (8)
Remaining operation time = capacity / average current (9)
 図13は表示例を示す図である。表示部913には、各電池のぞれぞれの劣化状態を一括で表示する劣化状態画面101、各電池のぞれぞれの充電率状態を一括で表示する充電率表示画面102、電池群全体での残使用時間を表示する残使用時間表示103、どの電池が劣化しているかを表示する表示画面104から構成されている。 FIG. 13 is a diagram showing a display example. The display unit 913 includes a deterioration state screen 101 that collectively displays the deterioration state of each battery, a charge rate display screen 102 that collectively displays the charge rate state of each battery, and a battery group. The remaining usage time display 103 displays the total remaining usage time, and a display screen 104 displays which battery is deteriorated.
 劣化状態画面101は、2直列2並列接続された電池911A,911B,912A,912BのSOH(劣化度:ここでは、[満充電容量]/[新品電池の満充電容量]の100%比)をそれぞれ表示する。図13において、図12の電池911Aに該当するSOH表示は表示105Aであり、バー表示107によりSOHを表すととも、数値表示「SOH70%」を重ねて表示するようにした。表示105B,106A,106Bは、それぞれ電池911B,912A,912Bに該当するSOH表示である。 Degradation state screen 101 shows the SOH of batteries 911A, 911B, 912A, and 912B connected in two series and two in parallel (degree of degradation: 100% ratio of [full charge capacity] / [full charge capacity of new battery] here) Display each. In FIG. 13, the SOH display corresponding to the battery 911 </ b> A of FIG. 12 is the display 105 </ b> A, and the SOH is displayed by the bar display 107 and the numerical display “SOH 70%” is displayed in an overlapping manner. The displays 105B, 106A, and 106B are SOH displays corresponding to the batteries 911B, 912A, and 912B, respectively.
 充電率表示画面102についても劣化状態画面101と同様の構成となっており、表示108A,108B,109A,109Bは、それぞれ電池911B,912A,912Bに該当する充電率表示である。バー表示110により充電率を表すととも、数値表示「SOC70%」を重ねて表示するようにした。 The charging rate display screen 102 has the same configuration as the deterioration state screen 101, and the displays 108A, 108B, 109A, and 109B are charging rate displays corresponding to the batteries 911B, 912A, and 912B, respectively. The charging rate is indicated by the bar display 110 and the numerical value display “SOC 70%” is displayed in an overlapping manner.
 劣化電池を表示する表示画面104は、SOHの値が予め定められた閾値以下となった電池番号を表示する。この閾値としては、例えば50%と固定の値にしても良い。また、満充電容量の値が確定していない電池が存在する場合には、図13の劣化状態画面101の該当する電池のSOHの値は、前回稼働した時の値を灰色で表示し、残使用時間表示103の値は、暫定的に前回稼働した時の満充電容量を使用して計算して、灰色で表示する。値が確定した後に、黒で値を表示する。 The display screen 104 displaying the deteriorated battery displays a battery number whose SOH value is equal to or less than a predetermined threshold value. As this threshold value, for example, a fixed value of 50% may be used. If there is a battery for which the value of the full charge capacity has not been determined, the SOH value of the corresponding battery on the deterioration state screen 101 in FIG. The value of the usage time display 103 is tentatively calculated using the full charge capacity at the previous operation and is displayed in gray. After the value is confirmed, the value is displayed in black.
 上述したように、本実施の形態では、電池充放電時の電池の電流値および端子電圧値を計測し、計測された電流値および端子電圧値に基づいて、電池状態としての充電率、劣化度および満充電容量の少なくとも一つを算出する電池状態推定方法であって、計測された電流値の1秒当たりの変化が所定値以上であった場合には、電流変化の発生から所定時間が経過するまでの期間に計測された電流値および端子電圧値は使用せず、前記期間以外の電池充放電期間において計測された電流値および端子電圧値に基づいて、電池の充電率、劣化度および満充電容量の少なくとも一つを算出するようにした。 As described above, in the present embodiment, the battery current value and the terminal voltage value at the time of charging and discharging the battery are measured, and the charging rate and the deterioration degree as the battery state are measured based on the measured current value and the terminal voltage value. And a battery state estimation method for calculating at least one of a full charge capacity, and when a change in measured current value per second is equal to or greater than a predetermined value, a predetermined time has elapsed since the occurrence of the current change. The current value and terminal voltage value measured during the period until the battery is not used, and the battery charge rate, deterioration degree, and fullness are measured based on the current value and terminal voltage value measured during the battery charge / discharge period other than the above period. At least one of the charge capacities was calculated.
 このように、充放電中に検出された電流値および端子電圧を用いて上述した電池状態の算出を行うようにしたので、電力系統や電気自動車で、明確な電池休止状況が無かった場合でも、電池状態を推定することができる。 As described above, since the battery state is calculated using the current value and the terminal voltage detected during charging / discharging, even when there is no clear battery suspension state in the power system or electric vehicle, The battery state can be estimated.
 さらに、所定値以上の電流変化があった直後の電流値、端子電圧値は過渡的な値となるため、それらを用いて電池状態の算出を行うと、誤差の大きな信頼に欠ける値となってしまうが、本実施の形態では、充放電中に電流値および端子電圧値を計測する際に、1秒当たりの電流変化が所定値以上の場合には、所定時間経過するまでの過渡的な期間に検出されたされた電流値および端子電圧値を用いないようにしているので、電池状態の算出をより高精度に行うことができる。なお、稼働開始時の電流の流れ始めにおいても、所定値以上の電流変化があった場合と同様の処理を行うようにしても良い。 Furthermore, since the current value and the terminal voltage value immediately after a current change of a predetermined value or more are transient values, calculating the battery state using them results in a value with a large error and lacking reliability. However, in the present embodiment, when measuring the current value and the terminal voltage value during charging / discharging, if the current change per second is greater than or equal to a predetermined value, a transient period until a predetermined time elapses. Since the detected current value and terminal voltage value are not used, the battery state can be calculated with higher accuracy. Note that the same processing as when there is a change in current of a predetermined value or more may be performed at the beginning of current flow at the start of operation.
 電池管理システムを構成としては、電池Bの電流値を検出する電流計10と、電池Bの端子電圧値を検出する電圧検出部12と、電流計10で検出される電流値の1秒当たりの変化が所定値以上である電流変化を検出する計測タイミング指定部15と、計測タイミング指定部15による電流変化の検出時から所定時間が経過するまでの期間に検出された電流値および端子電圧値は使用せず、その期間以外の電池充放電期間において検出された電流値および端子電圧値に基づいて、電池状態としての充電率、劣化度および満充電容量の少なくとも一つを算出する電池状態算出部(例えば、満充電容量を算出する満充電容量計算部18)と、を備える。 As a configuration of the battery management system, an ammeter 10 that detects the current value of the battery B, a voltage detection unit 12 that detects a terminal voltage value of the battery B, and a current value detected by the ammeter 10 per second. A measurement timing designating unit 15 that detects a current change whose change is equal to or greater than a predetermined value, and a current value and a terminal voltage value detected during a period from when the current change is detected by the measurement timing designating unit 15 until a predetermined time elapses. A battery state calculation unit that calculates at least one of a charging rate, a degree of deterioration, and a full charge capacity as a battery state based on a current value and a terminal voltage value that are not used and are detected in a battery charge / discharge period other than that period (For example, a full charge capacity calculation unit 18 for calculating a full charge capacity).
 また、図12に記載のように電池が複数備えられている場合には、各電池911A,911B,912A,912Bに対して電流と電圧とを同時期に周期的に計測できる計測部903,904,905,906を設ける。そして、複数の電池の各々について、電池状態を算出するようにすれば良い。その結果、各電池の電池状態を精度良く算出することができる。 In addition, when a plurality of batteries are provided as shown in FIG. 12, measuring units 903 and 904 that can periodically measure current and voltage for each battery 911A, 911B, 912A, and 912B at the same time. , 905, 906 are provided. And a battery state should just be calculated about each of a some battery. As a result, the battery state of each battery can be calculated with high accuracy.
 さらに、電池状態算出部で算出された電池状態を表示する表示装置である表示部19、913を備えたことにより、ユーザは電池状態を容易に認識することができる。満充電容量を表示する際に、充電率に対応した満充電容量の算出が行われていない場合には、直近に算出された満充電容量および該満充電容量に基づく電池の劣化度を表示する。そうすることで、満充電容量や劣化度も、充電率と同様に常に表示されることになり、ユーザは、満充電容量の算出が行われない場合でも電池状態の概略を知ることができる。 Furthermore, by providing the display units 19 and 913 which are display devices that display the battery state calculated by the battery state calculation unit, the user can easily recognize the battery state. When displaying the full charge capacity, if the full charge capacity corresponding to the charging rate is not calculated, the most recently calculated full charge capacity and the degree of deterioration of the battery based on the full charge capacity are displayed. . By doing so, the full charge capacity and the degree of deterioration are always displayed in the same manner as the charge rate, and the user can know the outline of the battery state even when the full charge capacity is not calculated.
 また、直近に算出された満充電容量および該満充電容量に基づく電池の劣化度を表示する場合には、満充電容量および劣化度の表示形態を、充電率に対応した満充電容量を表示する場合の表示形態と異ならせることにより、満充電容量および劣化度については現在値ではなく直近の値であることが容易に分かる。 When displaying the most recently calculated full charge capacity and the degree of deterioration of the battery based on the full charge capacity, the full charge capacity corresponding to the charge rate is displayed as a display form of the full charge capacity and the degree of deterioration. By making it different from the display form in the case, it can be easily understood that the full charge capacity and the deterioration degree are not the current values but the latest values.
 さらに、複数備えられた電池の各々について電池状態を表示することで、どの電池が劣化しているのかが容易に分かり、電池交換を等のメンテナンスを適切なタイミングで行うことができる。 Furthermore, by displaying the battery status for each of a plurality of batteries, it is easy to determine which battery has deteriorated, and maintenance such as battery replacement can be performed at an appropriate timing.
 なお、上述した実施の形態では、電池Bは管理単位を表しており、例えば、図14の電池モジュール9に含まれる複数の電池セルの各々を電池Bとしても良いし、各セルグループを電池Bとしても良いし、電池ブロック9A,9Bのそれぞれを電池Bとしても良いし、もちろん電池モジュール9を電池Bといても良い。図14に示した例では、電池セルは全て直列接続されているが、直列接続と並列接続とを含む構成であっても良い。また、図13に示すような表示を行う場合、電池モジュール9に含まれる全ての電池セルに関して各々表示しても良いが、電池交換の単位毎、例えば、図14の電池ブロック9A,9B毎に平均値を表示するのが現実的で好ましい。 In the above-described embodiment, the battery B represents a management unit. For example, each of a plurality of battery cells included in the battery module 9 of FIG. 14 may be the battery B, and each cell group may be the battery B. Alternatively, each of the battery blocks 9A and 9B may be a battery B, and of course, the battery module 9 may be a battery B. In the example shown in FIG. 14, all the battery cells are connected in series, but a configuration including series connection and parallel connection may be used. Further, when the display as shown in FIG. 13 is performed, all the battery cells included in the battery module 9 may be displayed, but for each battery replacement unit, for example, for each of the battery blocks 9A and 9B in FIG. It is realistic and preferable to display the average value.
 上記では、種々の実施の形態および変形例を説明したが、各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, each embodiment may be used alone or in combination. This is because the effects of the respective embodiments can be achieved independently or synergistically. In addition, the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

Claims (13)

  1.  電池充放電時の電池の電流値および端子電圧値を計測し、計測された電流値および端子電圧値に基づいて、電池状態としての充電率、劣化度および満充電容量の少なくとも一つを算出する電池状態推定方法であって、
     前記計測された電流値の1秒当たりの変化が所定値以上であった場合には、前記電流変化の発生から所定時間が経過するまでの期間に計測された電流および端子電圧は使用せず、前記期間以外の電池充放電期間において計測された電流値値および端子電圧値に基づいて、前記電池の充電率、劣化度および満充電容量の少なくとも一つを算出する電池状態推定方法。
    Measure the battery current value and terminal voltage value when charging and discharging the battery, and calculate at least one of the charging rate, deterioration degree, and full charge capacity as the battery state based on the measured current value and terminal voltage value A battery state estimation method comprising:
    When the change per second of the measured current value is greater than or equal to a predetermined value, the current and terminal voltage measured during the period until the predetermined time elapses from the occurrence of the current change is not used, A battery state estimation method for calculating at least one of a charging rate, a deterioration degree, and a full charge capacity of the battery based on a current value value and a terminal voltage value measured in a battery charging / discharging period other than the period.
  2.  電池の電流値を検出する電流検出部と、
     電池の端子電圧値を検出する電圧検出部と、
     前記電流検出部で検出された電流値の1秒当たりの変化が所定値以上である電流変化を検出する電流変化検出部と、
     前記電流変化検出部による電流変化の検出時から所定時間が経過するまでの期間に検出された電流値および端子電圧値は使用せず、前記期間以外の電池充放電期間において検出された電流値および端子電圧値に基づいて、電池状態としての充電率、劣化度および満充電容量の少なくとも一つを算出する電池状態算出部と、を備える電池管理システム。
    A current detector for detecting the current value of the battery;
    A voltage detector for detecting the terminal voltage value of the battery;
    A current change detection unit for detecting a current change in which a change per second in a current value detected by the current detection unit is equal to or greater than a predetermined value;
    The current value and the terminal voltage value detected during a period from when the current change is detected by the current change detection unit until a predetermined time elapses are used, and the current value detected during the battery charge / discharge period other than the period and A battery management system comprising: a battery state calculation unit that calculates at least one of a charge rate, a deterioration degree, and a full charge capacity as a battery state based on a terminal voltage value.
  3.  請求項2に記載の電池管理システムにおいて、
     前記所定時間に、前記電池の分極時定数の内の最も小さな分極時定数、または、2秒を用いた電池管理システム。
    The battery management system according to claim 2,
    A battery management system that uses the smallest polarization time constant of the battery polarization time constant or 2 seconds for the predetermined time.
  4.  請求項2または3に記載の電池管理システムにおいて、
     放電率で0.1Cに相当する電流値を、前記1秒当たりの電流値の変化として用いた電池管理システム。
    The battery management system according to claim 2 or 3,
    A battery management system using a current value corresponding to 0.1 C in terms of discharge rate as a change in current value per second.
  5.  請求項2乃至4のいずれか一項に記載の電池管理システムにおいて、
     前記電池状態算出部で算出された前記電池状態を表示する表示装置を備えた電池管理システム。
    In the battery management system according to any one of claims 2 to 4,
    A battery management system comprising a display device that displays the battery state calculated by the battery state calculation unit.
  6.  請求項2乃至4のいずれか一項に記載の電池管理システムにおいて、
     前記電池状態算出部で算出された充電率の内、現時点から過去に遡った所定数以内の充電率が蓄積される蓄積部を備え、
     前記電池状態算出部による前記満充電容量の算出が、前記蓄積部に蓄積されている充電率の最大値と最小値との差が所定充電率差以上の場合に行われる電池管理システム。
    In the battery management system according to any one of claims 2 to 4,
    Of the charging rate calculated by the battery state calculation unit, comprising a storage unit for storing a charging rate within a predetermined number retroactive from the present time,
    The battery management system in which the calculation of the full charge capacity by the battery state calculation unit is performed when the difference between the maximum value and the minimum value of the charge rate stored in the storage unit is greater than or equal to a predetermined charge rate difference.
  7.  請求項6に記載の電池管理システムにおいて、
     前記所定充電率差を15%とした電池管理システム。
    The battery management system according to claim 6, wherein
    A battery management system in which the predetermined charging rate difference is 15%.
  8.  請求項6または7に記載の電池管理システムにおいて、
     前記電池状態算出部で算出された前記電池状態を表示する表示装置を備え、
     前記表示装置は、
     前記電池状態算出部により充電率が算出されると、充電率の表示を算出された充電率で更新し、
     前記充電率に対応した前記満充電容量の算出が行われていない場合には、直近に算出された満充電容量および該満充電容量に基づく電池の劣化度を表示する電池管理システム。
    The battery management system according to claim 6 or 7,
    A display device that displays the battery state calculated by the battery state calculation unit;
    The display device
    When the charging rate is calculated by the battery state calculation unit, the display of the charging rate is updated with the calculated charging rate,
    A battery management system that displays the most recently calculated full charge capacity and the degree of battery deterioration based on the full charge capacity when the full charge capacity corresponding to the charge rate is not calculated.
  9.  請求項8に記載の電池管理システムにおいて、
     前記直近に算出された満充電容量および該満充電容量に基づく電池の劣化度を表示する場合には、満充電容量および劣化度の表示形態を、前記充電率に対応した満充電容量を表示する場合の表示形態と異ならせた電池管理システム。
    The battery management system according to claim 8, wherein
    When displaying the most recently calculated full charge capacity and the degree of deterioration of the battery based on the full charge capacity, the full charge capacity and the degree of deterioration are displayed as the full charge capacity corresponding to the charge rate. Battery management system different from the display form of the case.
  10.  請求項2に記載の電池管理システムにおいて、
     前記電池は複数の電池セルから成り、
     前記電池状態検出部は、電池の充電率、劣化度および満充電容量の少なくとも一つを前記複数の電池セルの各々について算出する電池管理システム。
    The battery management system according to claim 2,
    The battery is composed of a plurality of battery cells,
    The battery state detection unit is a battery management system that calculates at least one of a battery charge rate, a deterioration degree, and a full charge capacity for each of the plurality of battery cells.
  11.  請求項2に記載の電池管理システムにおいて、
     前記電池は、複数の電池セルから成る電池ブロックを複数備え、
     前記電池状態検出部は、電池の充電率、劣化度および満充電容量の少なくとも一つを前記複数の電池ブロックの各々について算出する電池管理システム。
    The battery management system according to claim 2,
    The battery includes a plurality of battery blocks including a plurality of battery cells,
    The battery state detection unit is a battery management system that calculates at least one of a battery charge rate, a degree of deterioration, and a full charge capacity for each of the plurality of battery blocks.
  12.  請求項10または11に記載の電池管理システムにおいて、
     前記複数の電池の接続に少なくとも直列接続が含まれ、
     前記電流値および端子電圧値の検出が前記直列接続された複数の電池の間で同時期に行われるように、前記電流検出部による検出および前記電圧検出部による各電池の検出をそれぞれ同期させる同期装置を備えた電池管理システム。
    The battery management system according to claim 10 or 11,
    The connection of the plurality of batteries includes at least a series connection,
    Synchronizing the detection by the current detection unit and the detection of each battery by the voltage detection unit so that the detection of the current value and the terminal voltage value are performed simultaneously between the plurality of batteries connected in series. Battery management system with device.
  13.  請求項11に記載の電池管理システムにおいて、
     前記電池状態算出部で算出された前記電池状態を表示する表示装置を備え、
     前記表示装置は、前記電池状態算出部で算出された前記電池状態を前記複数の電池ブロック毎に表示する電池管理システム。
    The battery management system according to claim 11,
    A display device that displays the battery state calculated by the battery state calculation unit;
    The display device is a battery management system that displays the battery state calculated by the battery state calculation unit for each of the plurality of battery blocks.
PCT/JP2011/055251 2011-03-07 2011-03-07 Battery state estimating method and battery management system WO2012120620A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/055251 WO2012120620A1 (en) 2011-03-07 2011-03-07 Battery state estimating method and battery management system
US14/000,030 US20130320989A1 (en) 2011-03-07 2011-03-07 Battery state estimation method and battery control system
KR1020137019499A KR20130121143A (en) 2011-03-07 2011-03-07 Battery state estimating method and battery management system
JP2013503262A JPWO2012120620A1 (en) 2011-03-07 2011-03-07 Battery state estimation method and battery management system
EP11860301.8A EP2685269A4 (en) 2011-03-07 2011-03-07 Battery state estimating method and battery management system
CN2011800684392A CN103392133A (en) 2011-03-07 2011-03-07 Battery state estimating method and battery management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055251 WO2012120620A1 (en) 2011-03-07 2011-03-07 Battery state estimating method and battery management system

Publications (1)

Publication Number Publication Date
WO2012120620A1 true WO2012120620A1 (en) 2012-09-13

Family

ID=46797627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055251 WO2012120620A1 (en) 2011-03-07 2011-03-07 Battery state estimating method and battery management system

Country Status (6)

Country Link
US (1) US20130320989A1 (en)
EP (1) EP2685269A4 (en)
JP (1) JPWO2012120620A1 (en)
KR (1) KR20130121143A (en)
CN (1) CN103392133A (en)
WO (1) WO2012120620A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190727A (en) * 2013-03-26 2014-10-06 Nec Access Technica Ltd Device and method for estimating remaining capacity of storage battery
TWI472784B (en) * 2013-07-05 2015-02-11 Lg Chemical Ltd Method and system for calculating soc of battery
WO2014147475A3 (en) * 2013-03-22 2015-02-26 Toyota Jidosha Kabushiki Kaisha Electrical storage system, and full charge capacity estimation method for electrical storage device
CN104737410A (en) * 2013-09-27 2015-06-24 松下知识产权经营株式会社 Power distribution device and storage battery pack diagnosing method
KR20150102016A (en) * 2012-12-27 2015-09-04 로베르트 보쉬 게엠베하 Method for determining a charge state
JP2016024170A (en) * 2014-07-24 2016-02-08 日立オートモティブシステムズ株式会社 Battery control device
EP2957921A4 (en) * 2013-07-04 2016-03-09 Lg Chemical Ltd Method and system for estimating soc of battery
WO2018051442A1 (en) * 2016-09-14 2018-03-22 株式会社東芝 Electric storage capacity estimation device, method and program
JP2019509611A (en) * 2015-12-30 2019-04-04 ハイパードライブ イノベーション リミテッド Battery management system
JP2019095861A (en) * 2017-11-17 2019-06-20 株式会社東芝 Neural network device
JP2021035126A (en) * 2019-08-21 2021-03-01 東芝エネルギーシステムズ株式会社 Battery capacity estimation device, battery capacity estimation method, and program
CN114035049A (en) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 SOH precision calculation method and device and electronic equipment
EP4059769A1 (en) * 2021-03-18 2022-09-21 Huawei Digital Power Technologies Co., Ltd. Cloud-device synergy-based battery management system, vehicle, and battery management method
JP7388964B2 (en) 2020-03-26 2023-11-29 株式会社日立製作所 Secondary battery equipment and secondary battery system
US11961977B2 (en) 2015-12-30 2024-04-16 Turntide Drives Limited Battery management system

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10924042B2 (en) * 2009-09-23 2021-02-16 The Boeing Company Pneumatic energy harvesting and monitoring
DE102010001529A1 (en) * 2010-02-03 2011-08-04 SB LiMotive Company Ltd., Kyonggi Adaptive method for determining the performance parameters of a battery
WO2012132459A1 (en) * 2011-03-30 2012-10-04 パナソニック株式会社 Vehicle charging device
US9037426B2 (en) * 2011-05-13 2015-05-19 GM Global Technology Operations LLC Systems and methods for determining cell capacity values in a multi-cell battery
JP2012247339A (en) * 2011-05-30 2012-12-13 Renesas Electronics Corp Semiconductor integrated circuit and operation method therefor
DE102012204849A1 (en) * 2012-03-27 2013-10-02 Robert Bosch Gmbh Method and control device for controlling a hybrid drive of a hybrid electric motor vehicle
US9318901B2 (en) 2012-11-30 2016-04-19 Tesla Motors, Inc. Response to detection of an overdischarge event in a series connected battery element
US9343911B2 (en) 2012-11-30 2016-05-17 Tesla Motors, Inc. Response to detection of an overcharge event in a series connected battery element
US9529048B2 (en) * 2012-11-30 2016-12-27 Tesla Motors, Inc. Transient detection of an exceptional charge event in a series connected battery element
US9551758B2 (en) * 2012-12-27 2017-01-24 Duracell U.S. Operations, Inc. Remote sensing of remaining battery capacity using on-battery circuitry
US9077181B2 (en) * 2013-01-11 2015-07-07 GM Global Technology Operations LLC Battery section balancing methods and systems
US20140306712A1 (en) * 2013-04-12 2014-10-16 Broadcom Corporation Tracking aging effect on battery impedance and tracking battery state of health
US9478850B2 (en) 2013-05-23 2016-10-25 Duracell U.S. Operations, Inc. Omni-directional antenna for a cylindrical body
FR3006450B1 (en) * 2013-06-04 2015-05-22 Renault Sa METHOD FOR ESTIMATING THE HEALTH STATUS OF AN ELECTROCHEMICAL CELL FOR STORING ELECTRIC ENERGY
US9726763B2 (en) 2013-06-21 2017-08-08 Duracell U.S. Operations, Inc. Systems and methods for remotely determining a battery characteristic
KR101509001B1 (en) * 2013-10-31 2015-04-07 현대모비스 주식회사 Apparatus and Method Deciding Degradation of High Voltage Battery for Vehicle
JP6221728B2 (en) * 2013-12-19 2017-11-01 日産自動車株式会社 Degradation state detection device
KR102171096B1 (en) 2014-04-21 2020-10-28 삼성전자주식회사 Method and device to estimate battery lifetime during driving of electrical vehicle
US9882250B2 (en) 2014-05-30 2018-01-30 Duracell U.S. Operations, Inc. Indicator circuit decoupled from a ground plane
US9535129B2 (en) * 2014-06-17 2017-01-03 GM Global Technology Operations LLC Systems and methods for estimating battery pack capacity during charge sustaining use
CN104360285B (en) * 2014-11-28 2017-03-01 山东鲁能智能技术有限公司 A kind of battery capacity modification method based on improved ampere-hour integration method
JP6516091B2 (en) * 2014-12-25 2019-05-22 三菱自動車工業株式会社 Charge amount display device of electric vehicle
CN104569841A (en) * 2014-12-26 2015-04-29 国家电网公司 Aging detection method and device for battery pack
WO2016129212A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Cell status estimation device and power supply device
US10386418B2 (en) * 2015-02-19 2019-08-20 Mitsubishi Electric Corporation Battery state estimation device
US11144106B2 (en) 2015-04-13 2021-10-12 Semiconductor Components Industries, Llc Battery management system for gauging with low power
AU2016203834A1 (en) * 2015-06-17 2017-01-12 Gs Yuasa International Ltd. State estimation device and state estimation method
US10297875B2 (en) 2015-09-01 2019-05-21 Duracell U.S. Operations, Inc. Battery including an on-cell indicator
US10137797B2 (en) * 2015-09-28 2018-11-27 Ford Global Technologies, Llc Battery state of charge estimation based on current pulse duration
JP6707843B2 (en) * 2015-11-17 2020-06-10 オムロン株式会社 Battery residual quantity display device, battery system and battery residual quantity display method
WO2017123990A1 (en) * 2016-01-13 2017-07-20 Flextronics Ap, Llc Method of estimation of discharge time duration during high-rate battery discharge
JP6220904B2 (en) * 2016-01-14 2017-10-25 本田技研工業株式会社 Power storage device
WO2017130673A1 (en) * 2016-01-29 2017-08-03 日立オートモティブシステムズ株式会社 Cell state estimation device, cell control device, cell system, and cell state estimation method
JP6647111B2 (en) * 2016-03-29 2020-02-14 古河電気工業株式会社 Secondary battery deterioration estimating apparatus and secondary battery deterioration estimating method
JP6339618B2 (en) 2016-03-29 2018-06-06 古河電気工業株式会社 Secondary battery degradation estimation device and secondary battery degradation estimation method
CN105785278B (en) * 2016-05-12 2018-05-22 苏州协鑫集成科技工业应用研究院有限公司 Battery life evaluation method and device
EP3455641A4 (en) * 2016-05-13 2019-12-11 Schumacher Electric Corporation Battery state detection system and method
WO2017197383A1 (en) 2016-05-13 2017-11-16 Schumacher Electric Corporation Battery state detection system and method
FR3051916B1 (en) * 2016-05-31 2020-07-10 Renault S.A.S. METHOD FOR ESTIMATING THE HEALTH CONDITION OF A BATTERY
JP6326452B2 (en) * 2016-06-15 2018-05-16 本田技研工業株式会社 Battery state estimation device and battery state estimation method
WO2018057532A1 (en) * 2016-09-23 2018-03-29 Cougeller Research Llc Battery charge transfer modeling including time-aligned, filter-response-matched voltage and current measurement
US10483634B2 (en) 2016-11-01 2019-11-19 Duracell U.S. Operations, Inc. Positive battery terminal antenna ground plane
US10608293B2 (en) 2016-11-01 2020-03-31 Duracell U.S. Operations, Inc. Dual sided reusable battery indicator
US10151802B2 (en) 2016-11-01 2018-12-11 Duracell U.S. Operations, Inc. Reusable battery indicator with electrical lock and key
US11024891B2 (en) 2016-11-01 2021-06-01 Duracell U.S. Operations, Inc. Reusable battery indicator with lock and key mechanism
US10818979B2 (en) 2016-11-01 2020-10-27 Duracell U.S. Operations, Inc. Single sided reusable battery indicator
SE540597C2 (en) 2016-11-17 2018-10-02 Husqvarna Ab Battery charging system and method
CN106855612B (en) * 2017-02-21 2019-09-24 山东大学 The fractional order KiBaM battery model and parameter identification method of meter and non-linear capacity characteristic
KR102515606B1 (en) * 2017-10-31 2023-03-28 삼성에스디아이 주식회사 Method, battery pack, and electronic device for displaying battery charge capacity
WO2019130774A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Battery management device, battery system, and vehicle power supply system
EP3522324B1 (en) 2018-02-05 2019-12-25 Beegy GmbH Method and arrangement for load management of electrical devices
KR102373458B1 (en) * 2018-02-07 2022-03-10 주식회사 엘지에너지솔루션 Method and battery management system for estimating parameters of battery equivalent circuit model for a battery
CN108717164B (en) * 2018-04-11 2022-07-01 中国电力科学研究院有限公司 SOC calibration method and system for battery
US11139668B2 (en) 2018-10-01 2021-10-05 Samsung Electronics Co., Ltd. Charging method and apparatus optimized based on electrochemical model
KR102569897B1 (en) 2018-10-08 2023-08-23 현대자동차주식회사 Method and apparatus for diagnosing vehicle battery
JP6867987B2 (en) * 2018-10-09 2021-05-12 株式会社豊田中央研究所 Full charge capacity estimation device for power supply
JP2020065422A (en) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 Display device and vehicle comprising the same
TWI670913B (en) * 2018-11-15 2019-09-01 豐能科技股份有限公司 Battery management system and method thereof
CN111239613B (en) * 2018-11-29 2022-07-05 宏碁股份有限公司 Battery power estimation method and electronic device
DE102019204637A1 (en) * 2019-04-02 2020-10-08 Robert Bosch Gmbh Method for the rapid initialization of an electrical energy storage system
DE102019211142A1 (en) * 2019-07-26 2021-01-28 Siemens Mobility GmbH Method for operating a rail vehicle and rail vehicle
EP3798047A1 (en) * 2019-09-24 2021-03-31 Volvo Car Corporation Facilitating battery maintenance
US11740290B2 (en) 2020-01-14 2023-08-29 Battelle Energy Alliance, Llc Energy storage cell qualification and related systems, methods, and devices
US11313915B2 (en) 2020-03-04 2022-04-26 Semiconductor Components Industries, Llc Methods and system for a battery
FR3110881A1 (en) * 2020-05-26 2021-12-03 Psa Automobiles Sa PROCESS FOR ESTIMATING THE STATE OF CHARGE OF AN ELECTRIC BATTERY, IN PARTICULAR FOR THE ENERGY MANAGEMENT OF CHARGING ELECTRIFIED VEHICLES
US11837754B2 (en) 2020-12-30 2023-12-05 Duracell U.S. Operations, Inc. Magnetic battery cell connection mechanism
CN113253140B (en) * 2021-07-16 2021-09-28 杭州科工电子科技有限公司 Battery health state online estimation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242193A (en) 1993-02-23 1994-09-02 Toyota Motor Corp Remaining capacity meter
JPH1062453A (en) 1996-08-23 1998-03-06 Hioki Ee Corp Current sensor
JP2000258513A (en) 1999-03-09 2000-09-22 Nissan Motor Co Ltd Method for calculating soc of secondary battery for electric automobile
JP2002189066A (en) * 2000-12-22 2002-07-05 Hitachi Ltd Method for estimating remaining capacity of secondary battery
JP2006292492A (en) * 2005-04-08 2006-10-26 Nissan Motor Co Ltd Full charge capacity estimation system for secondary battery
JP2006340560A (en) * 2005-06-06 2006-12-14 Fujitsu Ten Ltd Battery state supervisory system, battery state supervising method, and battery supervising device
JP2007171045A (en) 2005-12-22 2007-07-05 Panasonic Ev Energy Co Ltd Controller for battery, and estimation method of polarized voltage of secondary battery
JP2009168720A (en) * 2008-01-18 2009-07-30 Honda Motor Co Ltd Power storage unit and battery system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935756A (en) * 1995-07-20 1997-02-07 Nippon Soken Inc Charging device
JPH11164488A (en) * 1997-11-26 1999-06-18 Yamaha Motor Co Ltd Charge/discharge controlling device for battery of motor-driven vehicle
JPH11285155A (en) * 1998-03-27 1999-10-15 Suzuki Motor Corp Discriminating device for battery replacement timing, deterioration level display and storage medium with battery performance measuring data stored therein
JP3721853B2 (en) * 1999-05-26 2005-11-30 日産自動車株式会社 Battery life and remaining capacity judgment device
JP3706585B2 (en) * 2002-02-19 2005-10-12 三洋電機株式会社 Battery state display method and battery state display device for hybrid car
JP2007292666A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Device for estimating charged state of secondary battery
JP5100141B2 (en) * 2007-02-01 2012-12-19 三洋電機株式会社 Power supply for vehicle
JP4872743B2 (en) * 2007-03-23 2012-02-08 トヨタ自動車株式会社 Secondary battery state estimation device
JP5035978B2 (en) * 2007-08-24 2012-09-26 株式会社日本自動車部品総合研究所 DCDC converter device for vehicle
JP5389425B2 (en) * 2008-11-27 2014-01-15 三洋電機株式会社 Charge / discharge control method for hybrid car
JP5379535B2 (en) * 2009-03-30 2013-12-25 プライムアースEvエナジー株式会社 Secondary battery charge control method and charger
JP5397013B2 (en) * 2009-05-20 2014-01-22 日産自動車株式会社 Battery control device
WO2010140230A1 (en) * 2009-06-03 2010-12-09 三菱重工業株式会社 Battery state of charge calculation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242193A (en) 1993-02-23 1994-09-02 Toyota Motor Corp Remaining capacity meter
JPH1062453A (en) 1996-08-23 1998-03-06 Hioki Ee Corp Current sensor
JP2000258513A (en) 1999-03-09 2000-09-22 Nissan Motor Co Ltd Method for calculating soc of secondary battery for electric automobile
JP2002189066A (en) * 2000-12-22 2002-07-05 Hitachi Ltd Method for estimating remaining capacity of secondary battery
JP2006292492A (en) * 2005-04-08 2006-10-26 Nissan Motor Co Ltd Full charge capacity estimation system for secondary battery
JP2006340560A (en) * 2005-06-06 2006-12-14 Fujitsu Ten Ltd Battery state supervisory system, battery state supervising method, and battery supervising device
JP2007171045A (en) 2005-12-22 2007-07-05 Panasonic Ev Energy Co Ltd Controller for battery, and estimation method of polarized voltage of secondary battery
JP2009168720A (en) * 2008-01-18 2009-07-30 Honda Motor Co Ltd Power storage unit and battery system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Elementary Course of Statistics", 25 September 2001, UNIVERSITY OF TOKYO PRESS
See also references of EP2685269A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102016A (en) * 2012-12-27 2015-09-04 로베르트 보쉬 게엠베하 Method for determining a charge state
JP2016509207A (en) * 2012-12-27 2016-03-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh How to determine the state of charge
KR102039444B1 (en) * 2012-12-27 2019-11-26 로베르트 보쉬 게엠베하 Method for determining a charge state
WO2014147475A3 (en) * 2013-03-22 2015-02-26 Toyota Jidosha Kabushiki Kaisha Electrical storage system, and full charge capacity estimation method for electrical storage device
JP2014190727A (en) * 2013-03-26 2014-10-06 Nec Access Technica Ltd Device and method for estimating remaining capacity of storage battery
EP2957921A4 (en) * 2013-07-04 2016-03-09 Lg Chemical Ltd Method and system for estimating soc of battery
US10073145B2 (en) 2013-07-04 2018-09-11 Lg Chem, Ltd. Method and system for estimating state of charge of battery
TWI472784B (en) * 2013-07-05 2015-02-11 Lg Chemical Ltd Method and system for calculating soc of battery
CN104737410A (en) * 2013-09-27 2015-06-24 松下知识产权经营株式会社 Power distribution device and storage battery pack diagnosing method
JP2016024170A (en) * 2014-07-24 2016-02-08 日立オートモティブシステムズ株式会社 Battery control device
JP2019509611A (en) * 2015-12-30 2019-04-04 ハイパードライブ イノベーション リミテッド Battery management system
JP7107851B2 (en) 2015-12-30 2022-07-27 ハイパードライブ イノベーション リミテッド Battery management system
US11961977B2 (en) 2015-12-30 2024-04-16 Turntide Drives Limited Battery management system
JPWO2018051442A1 (en) * 2016-09-14 2019-04-04 株式会社東芝 Storage capacity estimation device, method and program
WO2018051442A1 (en) * 2016-09-14 2018-03-22 株式会社東芝 Electric storage capacity estimation device, method and program
JP2019095861A (en) * 2017-11-17 2019-06-20 株式会社東芝 Neural network device
JP2021035126A (en) * 2019-08-21 2021-03-01 東芝エネルギーシステムズ株式会社 Battery capacity estimation device, battery capacity estimation method, and program
JP7346155B2 (en) 2019-08-21 2023-09-19 東芝エネルギーシステムズ株式会社 Battery capacity estimation device, battery capacity estimation method, and program
JP7388964B2 (en) 2020-03-26 2023-11-29 株式会社日立製作所 Secondary battery equipment and secondary battery system
EP4059769A1 (en) * 2021-03-18 2022-09-21 Huawei Digital Power Technologies Co., Ltd. Cloud-device synergy-based battery management system, vehicle, and battery management method
CN114035049A (en) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 SOH precision calculation method and device and electronic equipment

Also Published As

Publication number Publication date
US20130320989A1 (en) 2013-12-05
EP2685269A4 (en) 2014-09-03
EP2685269A1 (en) 2014-01-15
KR20130121143A (en) 2013-11-05
CN103392133A (en) 2013-11-13
JPWO2012120620A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2012120620A1 (en) Battery state estimating method and battery management system
US10656210B2 (en) Secondary battery state detection device and secondary battery state detection method
CN107533109B (en) Battery control device and electric vehicle system
EP3267552B1 (en) Battery control device and vehicle system
US9272635B2 (en) Power storage system and method of calculating full charge capacity
JP6197479B2 (en) Power storage system and method for estimating full charge capacity of power storage device
US10388993B2 (en) Battery degradation accumulation methods
EP3451004A1 (en) Device and method for managing battery to calibrate state of charge of battery
EP3767317A1 (en) Method and apparatus for calculating soh of battery power pack, and electric vehicle
JP5535968B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
JP2006194789A (en) Residual capacity detecting method of buttery, and power supply device
US20160185248A1 (en) Battery control system and vehicle control system
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
JP7235852B2 (en) Information processing device, information processing method, and information processing system
CN104198795A (en) Vehicle power system open-circuit voltage detection method, power system and vehicle
KR100839980B1 (en) System for controlling discharge or charge of battery pack and therefor
JP3453821B2 (en) Battery remaining capacity measurement device
JP2007322171A (en) Battery state estimation device
KR20220147089A (en) How to estimate the health of your battery
JP2020079723A (en) Secondary battery system
US20230307925A1 (en) Management device, power supply system, electrically driven moving body, and management method
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
KR20210051809A (en) Method for estimating of battery&#39;s state of charge and Battery Management System
JP2012141258A (en) Lead-acid battery state detection device and lead-acid battery state detection method
JP4442275B2 (en) How to detect battery status

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860301

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013503262

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011860301

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137019499

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14000030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE