JP2000256642A - Conductive adhesive and semiconductor device made by using it - Google Patents

Conductive adhesive and semiconductor device made by using it

Info

Publication number
JP2000256642A
JP2000256642A JP11064008A JP6400899A JP2000256642A JP 2000256642 A JP2000256642 A JP 2000256642A JP 11064008 A JP11064008 A JP 11064008A JP 6400899 A JP6400899 A JP 6400899A JP 2000256642 A JP2000256642 A JP 2000256642A
Authority
JP
Japan
Prior art keywords
weight
epoxy
conductive adhesive
epoxy resin
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11064008A
Other languages
Japanese (ja)
Other versions
JP4142797B2 (en
Inventor
Yuko Sawada
祐子 澤田
Yasumichi Hatanaka
康道 畑中
Hirofumi Fujioka
弘文 藤岡
Riyouji Shirohana
良治 白花
Naoya Takimi
直也 瀧見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06400899A priority Critical patent/JP4142797B2/en
Publication of JP2000256642A publication Critical patent/JP2000256642A/en
Application granted granted Critical
Publication of JP4142797B2 publication Critical patent/JP4142797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an adhesive excellent in workability, shelf stability, and the relaxation of thermal stress and capable of giving high bonding strength by blending a modified silicon compound having terminal epoxy groups, diallyl bisphenol F and dicyandiamide, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and a conductive filler as the essential constituents. SOLUTION: The modified silicon compound having terminal epoxy groups is obtained by reacting a dimethylpolysiloxane represented by the formula, having terminal hydroxyphenyl groups and a weight-average molecular weight Mw of 2,000 to 10,000 with a mononuclear bisphenol F epoxy resin and has a weight-average molecular weight Mw of 12,000 to 26,000. In the formula R1 and R2 may be the same or different and are each a 1-20C divalent organic group; and n is an integer. The dimethylpolysiloxane of the formula preferably comprises one in which the content of residual impurities such as raw material allylphenol and an internal isomerized material is at most 10 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性接着剤、さら
に詳しくはICやLSI等の半導体素子または半導体モ
ジュールをリードフレーム、プリント配線板、放熱用基
材等の支持部材に接着するのに好適な低応力導電性接着
剤およびこれを用いた半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for bonding a conductive adhesive, more specifically, a semiconductor element or a semiconductor module such as an IC or LSI to a supporting member such as a lead frame, a printed wiring board, and a heat dissipation base. The present invention relates to a low-stress conductive adhesive and a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年、IC,LSI等の半導体素子とリ
ードフレームや基板等の支持部材との接着には、量産時
の作業性やコストの面からAu−Si共晶法や半田法に
代わり、導電性接着剤を用いる方法が一般化している。
2. Description of the Related Art In recent years, a semiconductor element such as an IC or LSI and a supporting member such as a lead frame or a substrate have been replaced with an Au-Si eutectic method or a soldering method in view of workability and cost during mass production. A method using a conductive adhesive has been generalized.

【0003】電子・電気部品の分野において、高密度
化、高集積化、軽量・コンパクト化の要請により、半導
体素子の配線は微細になり、かつ素子そのものは薄く小
さく脆弱になる一方、大電流、大容量化の要求に対して
は半導体素子が大形化し、高い発熱を伴う。また、半導
体素子を搭載するリードフレームは従来の42アロイに
代わって、熱伝導性が良好で低コストの銅製になり、基
板は高密度化、高多層化する傾向にある。
[0003] In the field of electronic and electric components, demands for high density, high integration, light weight and compactness have made the wiring of semiconductor devices finer and the devices themselves thin and small, and at the same time, large currents, In response to a demand for a large capacity, a semiconductor element becomes large in size and generates high heat. In addition, the lead frame on which the semiconductor element is mounted is made of low-cost copper with good thermal conductivity instead of the conventional 42 alloy, and the substrate tends to have higher density and higher multilayer.

【0004】そこで、従来の導電性接着剤を用いてこれ
らの電気・電子部品を搭載した場合、稼動時の環境温度
変化や発熱などにより、電子部品と支持部材との熱膨張
係数の差による応力歪みが生じ、電子部品および支持部
材そのものだけでなく接着剤層にもそりやクラックが発
生する。このため電子部品の信頼性を低下させるという
問題があった。
[0004] Therefore, when these electric and electronic parts are mounted using a conventional conductive adhesive, the stress due to the difference in the thermal expansion coefficient between the electronic parts and the support member due to environmental temperature changes and heat generation during operation. Distortion occurs, and warpage and cracks occur not only in the electronic component and the support member but also in the adhesive layer. For this reason, there is a problem that the reliability of the electronic component is reduced.

【0005】すなわち、これまでは、これらの電子部品
と支持部材との間で生じる応力を吸収できるような低弾
性で、高い接着性を具備し、低粘度で作業性に優れ、ま
た長期保存安定性にも優れた導電性接着剤がなかった。
[0005] In other words, heretofore, low elasticity, high adhesiveness, low viscosity, excellent workability, and long-term storage stability have been obtained so far that the stress generated between these electronic components and the support member can be absorbed. There was no conductive adhesive having excellent properties.

【0006】そこで、かかる問題を解決する手段とし
て、(1)両末端にカルボキシル基を有するジメチルシ
ロキサンと、1分子内に2個以上のエポキシ基を有する
エポキシ樹脂との反応で得られるエポキシ変性シリコー
ン化合物、硬化剤および導電性フィラーを含有してなる
導電性接着剤(特開平3−43482号公報)、(2)
銀粉、エポキシ樹脂、硬化剤および可撓性付与剤よりな
る導電性樹脂ペーストにおいて、可撓性付与剤がエポキ
シ基またはアミノ基またはヒドロキシ基を有するジメチ
ルシロキサン化合物である導電性樹脂ペースト(特開昭
63−161014号公報)、(3)1分子中にヒドロ
キシフェニル基を2個有するシリコーンオイルとエポキ
シ樹脂との反応物からなる可撓化剤、マイクロカプセル
化イミダゾール誘導体および/または融点が70℃以上
の固形イミダゾール誘導体からなる硬化剤を配合してな
る低応力接着剤樹脂組成物を介して、半導体チップとリ
ードフレームとが接続されてなる半導体装置(特開平5
−126020号公報)、(4)両末端にヒドロキシフ
ェニル基を有するジメチルポリシロキサンと1分子中に
2個以上のエポキシ基を有するエポキシ樹脂との反応で
得られるシリコーン変性エポキシ樹脂および硬化剤から
なるシリコーン変性エポキシ樹脂組成物(特開平3―2
58827号公報)などが提案されている。
[0006] In order to solve such a problem, there are provided (1) an epoxy-modified silicone obtained by reacting a dimethylsiloxane having a carboxyl group at both ends with an epoxy resin having two or more epoxy groups in one molecule. A conductive adhesive containing a compound, a curing agent and a conductive filler (JP-A-3-43482), (2)
A conductive resin paste comprising a silver powder, an epoxy resin, a curing agent and a flexibility-imparting agent, wherein the flexibility-imparting agent is a dimethylsiloxane compound having an epoxy group, an amino group or a hydroxy group (Japanese Patent Application Laid-Open No. No. 63-161014), (3) a flexibilizing agent comprising a reaction product of a silicone oil having two hydroxyphenyl groups in one molecule and an epoxy resin, a microencapsulated imidazole derivative and / or a melting point of 70 ° C. or more A semiconductor device in which a semiconductor chip and a lead frame are connected via a low-stress adhesive resin composition containing a curing agent comprising a solid imidazole derivative of
-1262020), and (4) a silicone-modified epoxy resin obtained by reacting a dimethylpolysiloxane having a hydroxyphenyl group at both terminals with an epoxy resin having two or more epoxy groups in one molecule, and a curing agent. Silicone-modified epoxy resin composition (Japanese Unexamined Patent Publication No.
No. 58827) has been proposed.

【0007】しかしながら、(1)の公報記載の接着剤
では、シリコーン末端のカルボキシル基とエポキシ樹脂
のエポキシ基を反応させているため、反応生成物はエス
テル結合をとり、容易に加水分解されて、ジメチルシロ
キサンが分離してしまう問題があった。
However, in the adhesive described in the publication (1), since the carboxyl group at the end of the silicone and the epoxy group of the epoxy resin are reacted, the reaction product takes an ester bond and is easily hydrolyzed. There was a problem that dimethylsiloxane was separated.

【0008】(2)の公報記載のペーストでは、ジメチ
ルシロキサン化合物とエポキシ樹脂との相互溶融性が低
く、かつエポキシ樹脂とシリコーンをあらかじめ反応さ
せていないため、導電性ペ−ストの硬化中や保存中に、
マトリクス樹脂のエポキシ樹脂とシリコーンが分離を起
こす問題があった。
In the paste described in the publication (2), the mutual melting property of the dimethylsiloxane compound and the epoxy resin is low, and the epoxy resin and the silicone are not reacted beforehand. inside,
There was a problem that the epoxy resin of the matrix resin and the silicone were separated.

【0009】(3)の公報記載の接着剤樹脂組成物で
は、エポキシ変性シリコ−ンオイル可撓化剤がエポキシ
樹脂と相互溶融せず、エポキシ樹脂硬化物中に分散して
存在する、いわゆる海島構造をとっているため、硬化物
の弾性率が高く、十分な応力緩和効果が得られないとい
う問題があった。
In the adhesive resin composition described in the publication (3), the so-called sea-island structure in which the epoxy-modified silicone oil flexibilizer does not mutually melt with the epoxy resin but is dispersed in the cured epoxy resin. Therefore, there is a problem that the elastic modulus of the cured product is high and a sufficient stress relaxation effect cannot be obtained.

【0010】(4)の公報記載のエポキシ樹脂組成物で
は、両末端にフェノール性ヒドロキシル基を有するジメ
チルポリシロキサンと1分子中に2個以上のエポキシ基
を有するエポキシ樹脂との反応で得られるシリコーン変
性エポキシ樹脂を用いるが、このシリコーン変性エポキ
シ樹脂の粘度、および均一性が検討されていない。また
低応力導電性接着剤としての最適な性能(低粘度、低応
力、保存安定性、接着力)を与える硬化剤、硬化促進剤
の配合量の詳細な検討がなされていない。さらには導電
性接着剤を半導体装置として用いるための検討もなされ
ていない。
In the epoxy resin composition described in the publication (4), a silicone obtained by reacting a dimethylpolysiloxane having a phenolic hydroxyl group at both terminals with an epoxy resin having two or more epoxy groups in one molecule. Although a modified epoxy resin is used, the viscosity and uniformity of the silicone-modified epoxy resin have not been studied. Further, no detailed study has been made on the blending amounts of a curing agent and a curing accelerator which give optimum performance (low viscosity, low stress, storage stability, adhesive strength) as a low stress conductive adhesive. Further, no study has been made on using a conductive adhesive as a semiconductor device.

【0011】[0011]

【発明が解決しようとする課題】以上のような事実に鑑
み、本発明は上記のような問題点を解消するためになさ
れたもので、両末端エポキシ変性シリコーン化合物が完
全に均一かつ低粘度溶液となり、硬化剤、硬化促進剤は
マトリクス中に分散状態となるため、作業性、保存安定
性に優れるとともに熱応力の緩和に優れ、接着強度が高
い導電性接着剤を提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above facts, the present invention has been made to solve the above-mentioned problems, and is intended to provide a completely uniform and low-viscosity solution of an epoxy-modified silicone compound at both ends. The curing agent and the curing accelerator are in a dispersed state in the matrix, so that the object is to provide a conductive adhesive having excellent workability, excellent storage stability, excellent thermal stress relaxation, and high adhesive strength. .

【0012】さらに、かかる導電性接着剤を用いて半導
体素子又は半導体モジュールと支持部材とを接着してな
る半導体装置を提供することを目的とするものである。
Still another object of the present invention is to provide a semiconductor device in which a semiconductor element or a semiconductor module and a supporting member are adhered to each other using the conductive adhesive.

【0013】[0013]

【課題を解決するための手段】本発明にかかわる導電性
接着剤は、(A)一般式(1):
Means for Solving the Problems The conductive adhesive according to the present invention comprises (A) a general formula (1):

【0014】[0014]

【化2】 Embedded image

【0015】(式中、R1およびR2は炭素数1〜20の
2価の有機基を示し、それぞれ同一であっても異なって
いてもよく、nは整数である。)で示される両末端にヒ
ドロキシフェニル基を有する重量分子量Mwが2000
〜10000のジメチルポリシロキサンと、ビスフェノ
ールF型エポキシ樹脂の1核体との反応で得られる、両
末端エポキシ変性シリコーン化合物で、重量分子量Mw
が12000〜26000のもの、(B)ジアリルビス
フェノールFおよびジシアンジアミド、(C)2―フェ
ニル−4―メチル−5−ヒドロキシメチルイミダゾール
および(D)導電性フィラーを必須成分とするものであ
る。
(Wherein R 1 and R 2 each represent a divalent organic group having 1 to 20 carbon atoms, which may be the same or different, and n is an integer). Weight molecular weight Mw having a hydroxyphenyl group at a terminal is 2000
Epoxy-modified silicone compound obtained by reacting dimethylpolysiloxane of 10,000 to 10,000 with a mononuclear body of a bisphenol F type epoxy resin, having a weight molecular weight Mw
Is 12000-26000, (B) diallylbisphenol F and dicyandiamide, (C) 2-phenyl-4-methyl-5-hydroxymethylimidazole and (D) a conductive filler as essential components.

【0016】また、(A)前記一般式(1)で示される
両末端にヒドロキシフェニル基を有する重量分子量Mw
が2000〜10000のジメチルポリシロキサンが、
その原材料であるアリルフェノールおよび内部異性化物
などの不純物残留量が10重量%以下であることが好ま
しい。
Also, (A) a compound having a weight molecular weight Mw having a hydroxyphenyl group at both terminals represented by the general formula (1)
Is a dimethylpolysiloxane of 2000 to 10000,
It is preferable that the residual amount of impurities such as allylphenol and internal isomers as raw materials is 10% by weight or less.

【0017】さらに、本発明にかかわる半導体装置は、
前記導電性接着剤を用いて半導体素子または半導体モジ
ュ−ルと支持部材とを接着してなるものである。
Further, the semiconductor device according to the present invention comprises:
The semiconductor element or the semiconductor module and the supporting member are bonded to each other using the conductive adhesive.

【0018】[0018]

【発明の実施の形態】以下、本発明の構成を詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail.

【0019】本発明の導電性接着剤に用いる成分(A)
である両末端エポキシ変性シリコーン化合物は、(A)
一般式(1):
Component (A) used in the conductive adhesive of the present invention
The two-terminal epoxy-modified silicone compound is (A)
General formula (1):

【0020】[0020]

【化3】 Embedded image

【0021】(式中、R1およびR2は炭素数1〜20の
2価の有機基を示し、それぞれ同一であっても異なって
いてもよく、nは整数である。)で示される両末端にヒ
ドロキシフェニル基を有する重量平均分子量2000〜
10000のジメチルポリシロキサンと、ビスフェノー
ルF型エポキシ樹脂の1核体との反応で得られる。
(Wherein, R 1 and R 2 each represent a divalent organic group having 1 to 20 carbon atoms, which may be the same or different, and n is an integer). Weight average molecular weight having a hydroxyphenyl group at a terminal
Obtained by the reaction of 10,000 dimethylpolysiloxane with a mononuclear bisphenol F epoxy resin.

【0022】前記一般式(1)中において、R1および
2はメチレン基、エチレン基、トリメチレン基、テト
ラメチレン基、ペンタメチレン基、ヘキサメチレン基、
ヘプタメチレン基、オクタメチレン基、キシリレン基な
どの2価の有機基であるのが好ましく、さらに、より効
果的に応力緩和をはかるという点から、トリメチレン基
であるのが好ましい。
In the general formula (1), R 1 and R 2 represent a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group,
It is preferably a divalent organic group such as a heptamethylene group, an octamethylene group or a xylylene group, and more preferably a trimethylene group from the viewpoint of more effectively relaxing stress.

【0023】一般式(1)で示される両末端にヒドロキ
シフェニル基を有するジメチルポリシロキサンの重量平
均分子量Mwとしては、2000〜10000の範囲で
あるのが好ましい。さらに好ましくは、応力緩和効果の
大きい4500〜7500の範囲である。すなわち、1
0000をこえる場合には、エポキシ樹脂と完全に分離
して反応せず、攪拌しても白濁状態となり、長期保存中
には完全分離する。一方、2000未満の場合には、エ
ポキシ樹脂とジメチルポリシロキサンは反応して相互溶
融するが、反応熱の発生によりさらに反応が加速され
て、エポキシ変性シリコーン樹脂の粘度の上昇が激し
く、また得られる導電性接着剤の応力緩和効果は小さく
なる傾向にある。かかる理由により、両末端にヒドロキ
シフェニル基を有するジメチルポリシロキサンの分子量
を上記の範囲に限定するものである。
The dimethylpolysiloxane having a hydroxyphenyl group at both terminals represented by the general formula (1) preferably has a weight average molecular weight Mw of 2,000 to 10,000. More preferably, it is in the range of 4500 to 7500 having a large stress relaxation effect. That is, 1
When it exceeds 0000, it completely separates from the epoxy resin and does not react, becomes a cloudy state even with stirring, and completely separates during long-term storage. On the other hand, when it is less than 2,000, the epoxy resin and dimethylpolysiloxane react and mutually melt, but the reaction is further accelerated due to the generation of reaction heat, and the viscosity of the epoxy-modified silicone resin increases sharply and is obtained. The stress relaxation effect of the conductive adhesive tends to decrease. For this reason, the molecular weight of dimethylpolysiloxane having hydroxyphenyl groups at both ends is limited to the above range.

【0024】本発明で使用する前記一般式(1)で示さ
れるジメチルシロキサンは、白金系の触媒存在下、アリ
ルフェノールとケイ素に結合した水素を有するシロキサ
ンをヒドロシリル化させる方法により得ることができ
る。
The dimethylsiloxane represented by the general formula (1) used in the present invention can be obtained by a method of hydrosilylating a siloxane having hydrogen bonded to allylphenol and silicon in the presence of a platinum-based catalyst.

【0025】前記一般式(1)で示されるジメチルポリ
シロキサンにおいて、原材料であるアリルフェノールや
内部異性化物などの不純物残留量は10重量%以下であ
ることが好ましい。すなわち不純物残留量が10重量%
よりもさらに多くなると、エポキシ樹脂と不純物との反
応が、エポキシ樹脂とジメチルポリシロキサンとの反応
より速く、分子量の小さい化合物が多く発生することに
より、エポキシ樹脂とジメチルポリシロキサンの反応が
阻害されやすく、また、樹脂溶液全体の均一性が得難く
なる。また、そのような不均一な樹脂を用いた導電性接
着剤は、硬化中に分離したり、応力緩和効果が小さくな
るなどの問題が起こる。
In the dimethylpolysiloxane represented by the general formula (1), the residual amount of impurities such as raw materials such as allylphenol and internal isomers is preferably 10% by weight or less. That is, the residual amount of impurities is 10% by weight.
When the number is even greater, the reaction between the epoxy resin and the impurities is faster than the reaction between the epoxy resin and dimethylpolysiloxane, and a large number of compounds having a small molecular weight are generated, so that the reaction between the epoxy resin and dimethylpolysiloxane is easily inhibited. In addition, it becomes difficult to obtain uniformity of the entire resin solution. In addition, a conductive adhesive using such a non-uniform resin causes problems such as separation during curing and a reduction in stress relaxation effect.

【0026】本発明において前記一般式(1)で示され
る両末端にヒドロキシフェニル基を有するジメチルポリ
シロキサンと反応させるエポキシ樹脂としては、以下の
〜の観点から1核体を主成分とするビスフェノール
F型エポキシ樹脂が好ましい。すなわち架橋密度を上
げない、低弾性率を保つ、低温で反応する、反応
生成物の粘度を低く抑える、室温で低粘度のエポキシ
樹脂、シリコーンとの相互溶融性である。
In the present invention, as the epoxy resin to be reacted with the dimethylpolysiloxane having a hydroxyphenyl group at both ends represented by the above general formula (1), bisphenol F containing a mononuclear compound as a main component is used from the following viewpoints. Type epoxy resins are preferred. In other words, they do not increase the crosslink density, maintain a low elastic modulus, react at a low temperature, suppress the viscosity of the reaction product to a low level, and have mutual melting properties with epoxy resins and silicones having a low viscosity at room temperature.

【0027】ビスフェノールF型エポキシ樹脂は、一般
にビスフェノールFとエピクロロヒドリンとの反応によ
って合成することができる。このビスフェノールF型エ
ポキシ樹脂は、合成の段階で二量体化、三量体化などの
ように多量体化する場合がある。しかし、本発明で用い
るビスフェノールF型エポキシ樹脂の1核体とは、この
ような多量体のエポキシ樹脂の含有量が少なく、1核体
を主成分とするものをいう。
The bisphenol F type epoxy resin can be generally synthesized by a reaction between bisphenol F and epichlorohydrin. This bisphenol F type epoxy resin may be multimerized at the stage of synthesis, such as dimerization or trimerization. However, the mononuclear bisphenol F epoxy resin used in the present invention refers to a mononuclear bisphenol F type epoxy resin having a low content of such a multimeric epoxy resin.

【0028】また、ビスフェノールF型エポキシ樹脂の
1核体は、蒸留により精製し、多量体の含有量を減少さ
せたものであることが好ましい。
Further, it is preferable that the mononuclear body of the bisphenol F type epoxy resin is purified by distillation to reduce the content of the multimer.

【0029】1核体を主成分とするビスフェノールF型
エポキシ樹脂としては例えば大日本インキ(株)のEX
A−830LVPなどが挙げられる。
Examples of the bisphenol F type epoxy resin having a mononuclear body as a main component include, for example, EX manufactured by Dainippon Ink Co., Ltd.
A-830 LVP and the like.

【0030】一般式(1)で示される両末端にヒドロキ
シフェニル基を有するジメチルポリシロキサンとエポキ
シ樹脂とを反応させる方法としては、両成分と触媒を混
合、乾燥下で加熱・攪拌することにより得ることができ
る。
As a method for reacting a dimethylpolysiloxane having a hydroxyphenyl group at both terminals represented by the general formula (1) with an epoxy resin, the two components are mixed with a catalyst, and the mixture is heated and stirred under drying. be able to.

【0031】このとき、エポキシ変性シリコ−ン化合物
を得る反応において、両末端にヒドロキシフェニル基を
有するジメチルポリシロキサンとエポキシ樹脂の配合割
合は、以下の理由により、両末端フェノールジメチルポ
リシロキサンのフェノールの当量に対してエポキシ樹脂
のエポキシ当量が1.5〜2倍になるのが望ましい。す
なわち、反応系を制御し、短時間で均一溶液になる、
ジメチルシロキサンの両末端にエポキシ樹脂が反応し
て付加する、樹脂が硬化する、硬化した樹脂が低弾
性率を保持するという4点である。
At this time, in the reaction for obtaining the epoxy-modified silicone compound, the mixing ratio of the dimethylpolysiloxane having a hydroxyphenyl group at both terminals and the epoxy resin is determined by the following reason. It is desirable that the epoxy equivalent of the epoxy resin be 1.5 to 2 times the equivalent. In other words, controlling the reaction system, it becomes a homogeneous solution in a short time,
The epoxy resin reacts and adds to both ends of dimethylsiloxane, the resin is cured, and the cured resin retains a low elastic modulus.

【0032】また、反応触媒としては、従来からのもの
を用いればよく、例えばトリフェニルフォスフィン、ト
リシクロヘキシルフォスフィンなどのフォスフィン、2
−メチルイミダゾール、2−エチル−4―メチルイミダ
ゾールなどのイミダゾールなどがあげられるが、分散性
が良好で、均一反応させるという点から、トリフェニル
フォスフィンを用いるのが好ましい。また、触媒の添加
量についてはエポキシ樹脂100重量部に対して0.1
〜20重量部であることが好ましく、さらには、適当な
反応速度と発熱、反応の均一性という点から、1重量部
以下であることが好ましい。
As the reaction catalyst, conventional catalysts may be used, for example, phosphines such as triphenylphosphine and tricyclohexylphosphine, and the like.
Examples thereof include imidazoles such as -methylimidazole and 2-ethyl-4-methylimidazole. Triphenylphosphine is preferably used from the viewpoint of good dispersibility and uniform reaction. The amount of the catalyst was 0.1 to 100 parts by weight of the epoxy resin.
The amount is preferably 20 to 20 parts by weight, and more preferably 1 part by weight or less from the viewpoint of an appropriate reaction rate, heat generation and uniformity of the reaction.

【0033】反応温度は100〜130℃であり、反応
の終了は混合溶液が無色透明になること、溶液の粘度、
反応物の分子量を測定することにより確認することがで
きる。
The reaction temperature is 100 to 130 ° C., and when the reaction is completed, the mixed solution becomes colorless and transparent,
It can be confirmed by measuring the molecular weight of the reactant.

【0034】このようにして得られるエポキシ変性シリ
コ−ン化合物は室温で液体であり、粘度は2000〜5
000cps(25℃/10rpm)の範囲となり、好
ましくは3000〜4000cpsの範囲で反応を終了
する。また、反応物の重量平均分子量は12000〜2
6000の範囲となり、さらには16000〜2200
0の範囲であるのが好ましい。また本発明の組成物とし
て用いる際には、一般のエポキシ樹脂と同様に取り扱う
ことができる。
The epoxy-modified silicone compound thus obtained is liquid at room temperature and has a viscosity of 2000-5.
The reaction is completed in the range of 000 cps (25 ° C./10 rpm), and preferably in the range of 3000 to 4000 cps. The weight average molecular weight of the reactant is 12000 to 2
6000 range, and 16000-2200
It is preferably in the range of 0. When used as the composition of the present invention, it can be handled in the same manner as a general epoxy resin.

【0035】次に、本発明に用いる硬化剤は、硬化剤と
しての作用に加え接着性を付与する作用をもつものであ
り、かつ低粘度であるという点からジアリルビスフェノ
ールFを用いる。また、3次元架橋網目構造をなして硬
化する点、また分散性がよく、潜在性を伴わせもつもの
としてジシアンジアミドと併用する必要がある。
Next, as the curing agent used in the present invention, diallyl bisphenol F is used because it has a function of imparting adhesiveness in addition to the function as a curing agent and has a low viscosity. Further, it needs to be used in combination with dicyandiamide as it cures in a three-dimensional crosslinked network structure and has good dispersibility and has potential.

【0036】ジアリルビスフェノ−ルFの使用量は、樹
脂ペーストの低粘度化、接着性の付与という点から、ジ
アリルビスフェノ−ルFおよびジシアンジアミドの混合
物中65〜90重量%であることが好ましく、75〜8
0重量%であることがより好ましい。
The amount of diallyl bisphenol F used is preferably 65 to 90% by weight in the mixture of diallyl bisphenol F and dicyandiamide from the viewpoint of lowering the viscosity of the resin paste and imparting adhesiveness. , 75-8
More preferably, it is 0% by weight.

【0037】本発明の導電性接着剤を得るための硬化剤
(B)の使用量としては、両末端エポキシ変性シリコー
ン化合物(A)100重量部に対して、1〜20重量部
であればよく、均一反応と接着力の付与という点、接着
剤の硬化後、未反応物がアウトガスとなって素子を汚染
するのを防ぐという点から、エポキシ樹脂のエポキシ当
量1当量に対してOH当量が0.5〜1.0当量となる
量であるのが特に好ましい。
The amount of the curing agent (B) used for obtaining the conductive adhesive of the present invention may be 1 to 20 parts by weight based on 100 parts by weight of the epoxy compound modified at both ends with epoxy (A). The OH equivalent is 0 with respect to 1 equivalent of the epoxy equivalent of the epoxy resin in terms of uniform reaction and adhesion, and prevention of unreacted substances outgassing after the curing of the adhesive to contaminate the element. It is particularly preferred that the amount is from 0.5 to 1.0 equivalent.

【0038】また、本発明において用いる硬化促進剤
(C)としては、反応速度を制御し、潜在性を有し、樹
脂の長期保存安定性を保つという点から、イミダゾール
系硬化促進剤を用いるのが好ましく、特に融点が高く、
分散性がよい点から、微粉砕の2−フェニル−4−メチ
ル−5−ヒドロキシメチルイミダゾールを用いることが
好ましい。
As the curing accelerator (C) used in the present invention, an imidazole-based curing accelerator is used from the viewpoint of controlling the reaction rate, having the potential, and maintaining the long-term storage stability of the resin. Are preferred, especially having a high melting point,
From the viewpoint of good dispersibility, it is preferable to use finely pulverized 2-phenyl-4-methyl-5-hydroxymethylimidazole.

【0039】硬化促進剤(C)の使用量は、反応速度を
制御し、未反応分が残留しないという点から、両末端エ
ポキシ変性シリコーン化合物(A)100重量部に対し
て1〜5重量部添加されるのが特に好ましい。
The amount of the curing accelerator (C) used is in the range of 1 to 5 parts by weight based on 100 parts by weight of the epoxy compound modified at both ends with the point that the reaction rate is controlled and unreacted components do not remain. It is particularly preferred that they be added.

【0040】本発明において用いる導電性フィラー
(D)としては、従来から導電性接着剤に用いられてい
るものであればよく、金、銀、銅、ニッケルなどの導電
性金属、導電性カ−ボンブラック微粉末、アルミナ、ガ
ラスなどの絶縁体の表面を導電性金属で被覆したものな
どが挙げられる。なかでも、高い導電性を得るという点
から、金、銀、銅、鉄を用いるのが好ましく、さらに、
酸化されにくく、安価で、形状の加工が容易という点か
ら、銀を用いるのが特に好ましい。
The conductive filler (D) used in the present invention may be any one as long as it has been conventionally used for a conductive adhesive, such as a conductive metal such as gold, silver, copper, or nickel; Examples thereof include those obtained by coating the surface of an insulator such as fine powder of Bon Black, alumina, or glass with a conductive metal. Among them, gold, silver, copper, and iron are preferably used from the viewpoint of obtaining high conductivity.
It is particularly preferable to use silver because it is not easily oxidized, is inexpensive, and is easy to shape.

【0041】これらの導電性フィラーの形状は任意であ
り、フレーク状、球状、樹枝状、繊維状などが用いられ
るが、高充填が可能で、高い導電性を確保するという点
から、フレーク状のものを用いるのが好ましい。また、
さらに高い導電性を付与するための高充填化と、樹脂ペ
ーストの粘度とチクソ性を調整するために、球状を混合
して用いてもよい。
The shape of these conductive fillers is arbitrary, and flakes, spheres, dendrites, fibers, and the like are used. However, flakes are preferable because they can be highly filled and have high conductivity. Preferably, one is used. Also,
A mixture of spherical particles may be used in order to increase the filling for giving higher conductivity and to adjust the viscosity and thixotropy of the resin paste.

【0042】フレーク状の場合の粒径としては、従来か
ら導電性接着剤に用いられているものの範囲であればよ
く、たとえば0.1〜100μmのものを用いるのが、
導電性接着剤としての低粘度で流動性がよい点で好まし
い。また、作業のしやすさなどの点、さらには接着層厚
みの制御の点から、最大粒径で30μm、平均で3〜1
0μmのものを用いるのが好ましい。
The particle size of the flakes may be in the range of those conventionally used for conductive adhesives, for example, 0.1 to 100 μm.
It is preferable because it has low viscosity and good fluidity as the conductive adhesive. Further, from the viewpoint of workability and the like, and from the viewpoint of controlling the thickness of the adhesive layer, the maximum particle size is 30 μm, and the average particle size is 3 to 1
It is preferable to use one having a thickness of 0 μm.

【0043】また、球状フィラーを混合する場合の粒径
としては、平均で0.1〜5μmのものが好ましい。
When the spherical filler is mixed, the average particle size is preferably 0.1 to 5 μm.

【0044】フレーク状と球状の混合割合(重量比)
は、フレーク状7〜10に対して球状3〜0となるのが
好ましい。
Mixing ratio of flake and spherical (weight ratio)
Is preferably spherical 3 to 0 with respect to flakes 7 to 10.

【0045】また、導電性フィラーは、マトリクス樹脂
である両末端エポキシ変性ジメチルシロキサンとジアリ
ルビスフェノールF、ジシアンジアミド、イミダゾール
硬化触媒等となじみがよく、熱処理後もマトリクス樹脂
との接着力がある。また、導電性接着剤としての粘度を
低く保つために、マトリクス樹脂と類似の材料で表面処
理していることが好ましく、特に少量のシリコーン化合
物で銀の表面を処理したものが好ましい。
The conductive filler is well compatible with both ends epoxy-modified dimethylsiloxane, which is a matrix resin, and diallyl bisphenol F, dicyandiamide, imidazole curing catalyst, and the like, and has an adhesive force with the matrix resin even after heat treatment. Further, in order to keep the viscosity of the conductive adhesive low, it is preferable that the surface is treated with a material similar to the matrix resin, and it is particularly preferable that the surface of silver is treated with a small amount of a silicone compound.

【0046】導電性フィラー(D)の使用量は、高い導
電性を付与するための高充填化および樹脂ペーストの粘
度とチクソ性を調整して作業性を良好にするという点か
ら、両末端エポキシ変性シリコーン化合物(A)100
重量部に対して350〜530重量部であることが好ま
しく、400〜470重量部であることがより好まし
い。
The amount of the conductive filler (D) used is preferably an epoxy at both ends in view of high filling for imparting high conductivity and improving the workability by adjusting the viscosity and thixotropy of the resin paste. Modified silicone compound (A) 100
It is preferably from 350 to 530 parts by weight, more preferably from 400 to 470 parts by weight, based on parts by weight.

【0047】本発明の導電性接着剤の製造方法として
は、従来からの方法であればよいが、たとえば両末端エ
ポキシ変性シリコーン化合物(A)、硬化剤(B)およ
び硬化促進剤(C)の所定量を計量してライカイ機であ
らかじめ混合したのち、次に所定量の導電性フィラー
(D)をライカイ機で混合し、最後に3本ロールやニー
ダなどで混練する方法を用いる。
The method for producing the conductive adhesive of the present invention may be any conventional method. For example, the epoxy-modified silicone compound (A), the curing agent (B) and the curing accelerator (C) may be used. A method is used in which a predetermined amount is weighed and preliminarily mixed with a raikai machine, then a predetermined amount of the conductive filler (D) is mixed with the raikai machine, and finally kneaded with a three roll or kneader.

【0048】以上のようにして得られる本発明の導電性
接着剤は、被着剤との接着強度が高く、熱応力緩和効果
に優れる。また、容易に分解したり保存中に分離したり
しないので長期保存安定性に優れる。さらには低粘度で
あるので、粘度調整のための反応性希釈剤や溶剤を用い
る必要がなく、硬化時にボイドの発生やアウトガスの発
生がない。また、チクソ性を有するので作業性に優れ
る。したがって、本発明の導電性接着剤を用いて、Ga
Asチップ、DRAM、CSPなどの半導体素子または
トランジスタ、ダイオードなどを搭載した半導体モジュ
ールと、鉄・ニッケルフレーム、銅フレーム、ガラスエ
ポキシ基板、セラミック基板などの支持部材とを接着す
ると、耐熱衝撃性、放熱性、電気伝導性に優れた半導体
装置を得ることができる。
The conductive adhesive of the present invention obtained as described above has a high adhesive strength to an adherend and is excellent in a thermal stress relaxing effect. In addition, since it does not easily decompose or separate during storage, it has excellent long-term storage stability. Furthermore, since it has a low viscosity, there is no need to use a reactive diluent or solvent for adjusting the viscosity, and there is no generation of voids or outgas during curing. Moreover, since it has a thixotropic property, it is excellent in workability. Therefore, using the conductive adhesive of the present invention, Ga
Adhesion of semiconductor elements such as As chips, DRAM, CSP, etc. or semiconductor modules mounted with transistors, diodes, etc. to supporting members such as iron / nickel frame, copper frame, glass epoxy board, ceramic board, etc. A semiconductor device having excellent properties and electrical conductivity can be obtained.

【0049】図1〜3に本発明の半導体装置の概略断面
図を示すが、これらに限られるものではない。図1にお
いて、1は導電性接着剤、2は銅製フレーム、3はGa
Asチップである。図2において、4はガラスエポキシ
基板、5はシリコンチップであり、6は封止材である。
封止材としては従来から用いられているものであればよ
い。図3において、7はアルミニウム基材、8はアルミ
ナ基板である。
FIGS. 1 to 3 show schematic sectional views of the semiconductor device of the present invention, but the present invention is not limited to these. In FIG. 1, 1 is a conductive adhesive, 2 is a copper frame, 3 is Ga
This is an As chip. In FIG. 2, 4 is a glass epoxy substrate, 5 is a silicon chip, and 6 is a sealing material.
Any conventional sealing material may be used. In FIG. 3, 7 is an aluminum substrate, and 8 is an alumina substrate.

【0050】以下に実施例を用いて本発明をより具体的
に説明するが、本発明はこれらのみに限定されるもので
はない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to only these.

【0051】[0051]

【実施例】まず、表1に実施例において用いた各成分を
示す。
EXAMPLES Table 1 shows each component used in the examples.

【0052】[0052]

【表1】 [Table 1]

【0053】製造例1〜11(両末端エポキシ変性シリ
コーン化合物(A−1)〜(A−11)の製造) 攪拌機、温度計を備えた500mlセパラブルフラスコ
に、表2に示す配合割合で両末端にヒドロキシフェニル
基を有するジメチルポリシロキサンとエポキシ樹脂とを
入れ、攪拌し、乾燥チッソもしくは乾燥エアーをフロー
しながら120℃に加熱し、そのまま2時間攪拌、混合
した。
Production Examples 1 to 11 (Production of Epoxy-Modified Silicone Compounds at Both Ends (A-1) to (A-11)) In a 500 ml separable flask equipped with a stirrer and a thermometer, both components were mixed in the proportions shown in Table 2. A dimethylpolysiloxane having a hydroxyphenyl group at a terminal and an epoxy resin were put therein, stirred, heated to 120 ° C. while flowing dry nitrogen or dry air, and stirred and mixed for 2 hours as it was.

【0054】[0054]

【表2】 [Table 2]

【0055】次に、触媒としてトリフェニルフォスフィ
ンをエポキシ樹脂100重量部に対して1重量部添加し
た。触媒の添加直後に発熱し、溶液の色はオレンジ色に
変わった。E型粘度計を用いて粘度を測定し、目的の粘
度に到達したことにより反応の終了を確認し、得られた
反応物を冷却(空冷)して本発明における両末端エポキ
シ変性シリコーン化合物(A−1)〜(A−11)を得
た。
Next, 1 part by weight of triphenylphosphine was added as a catalyst to 100 parts by weight of the epoxy resin. An exotherm occurred immediately after the catalyst addition and the color of the solution turned orange. The viscosity was measured using an E-type viscometer, and when the target viscosity was reached, the completion of the reaction was confirmed. The obtained reaction product was cooled (air-cooled) to obtain a double-ended epoxy-modified silicone compound (A) according to the present invention. -1) to (A-11) were obtained.

【0056】実施例1〜6 製造例1〜6で得た両末端エポキシ変性シリコーン化合
物(A−1)〜(A−6)を用いて表3に示す配合割合
(重量%)で硬化剤(B)および硬化促進剤(C)を添
加して、ライカイ機で約1時間混練し、マトリクス樹脂
となるシリコーン変性エポキシ樹脂組成物を得た。
Examples 1 to 6 Using the double-ended epoxy-modified silicone compounds (A-1) to (A-6) obtained in Production Examples 1 to 6 at the compounding ratio (% by weight) shown in Table 3, the curing agent ( B) and the curing accelerator (C) were added, and the mixture was kneaded for about 1 hour with a raikai machine to obtain a silicone-modified epoxy resin composition to be a matrix resin.

【0057】得られたシリコーン変性エポキシ樹脂組成
物に導電性フィラー(D)を表3に示す配合割合で添加
してライカイ機で約1時間混練し、さらに、3本ロール
で3〜5回混練し、最後に真空脱泡して本発明の導電性
接着剤を得た。
The conductive filler (D) was added to the obtained silicone-modified epoxy resin composition in the mixing ratio shown in Table 3, and the mixture was kneaded for about 1 hour with a raikai machine, and further kneaded 3 to 5 times with a three-roll mill. Finally, vacuum degassing was performed to obtain the conductive adhesive of the present invention.

【0058】実施例1は両末端フェノールジメチルポリ
シロキサンの分子量2000、OH当量1189のも
の、実施例2は両末端フェノールジメチルポリシロキサ
ンの分子量4500、OH当量1980のもの、実施例
3は両末端フェノールジメチルポリシロキサンの分子量
7000、OH当量2240のもの、実施例4は両末端
フェノールジメチルポリシロキサンの分子量が1000
0、OH当量4000のもの、実施例5は両末端フェノ
ールジメチルポリシロキサンの分子量4500で、不純
物残留量が10重量%以下のもの、実施例6は両末端フ
ェノールジメチルポリシロキサンの分子量7000で、
不純物残留量が10重量%以下のものを用いた。
Example 1 has a molecular weight of phenol dimethylpolysiloxane at both ends of 2,000 and an OH equivalent of 1189, Example 2 has a molecular weight of phenol dimethylpolysiloxane of both ends of 4500 and an OH equivalent of 1980, and Example 3 has a phenol at both ends of phenol. Dimethylpolysiloxane having a molecular weight of 7,000 and an OH equivalent of 2240. In Example 4, the molecular weight of the phenol dimethylpolysiloxane at both ends was 1000.
0, OH equivalent of 4000, Example 5 has a molecular weight of phenol dimethylpolysiloxane at both ends of 4500, and the amount of residual impurities is 10% by weight or less. Example 6 has a molecular weight of phenol dimethylpolysiloxane of both ends of 7,000.
Those having an impurity residual amount of 10% by weight or less were used.

【0059】比較例1〜10 製造例6〜11で得た両末端エポキシ変性シリコーン化
合物(A−6)、(A−7)、(A−8)、(A−
9)、(A−10)、(A−11)を用いて表3に示す
配合割合で硬化剤(B)および硬化促進剤(C)を添加
して、ライカイ機で約1時間混練し、マトリクス樹脂と
なるシリコーン変性エポキシ樹脂組成物を得た。
Comparative Examples 1 to 10 Both ends epoxy-modified silicone compounds (A-6), (A-7), (A-8) and (A-
9) Using (A-10) and (A-11), a curing agent (B) and a curing accelerator (C) were added at the compounding ratio shown in Table 3, and kneaded for about 1 hour with a raikai machine. A silicone-modified epoxy resin composition serving as a matrix resin was obtained.

【0060】[0060]

【表3】 [Table 3]

【0061】得られたシリコーン変性エポキシ樹脂組成
物に導電性フィラー(D)を表3に示す配合割合で添加
してライカイ機で約1時間混練し、さらに、3本ロール
で3回混練し、最後に真空脱泡して比較例の導電性接着
剤を得た。
The conductive filler (D) was added to the obtained silicone-modified epoxy resin composition at the compounding ratio shown in Table 3, kneaded for about 1 hour with a raikai machine, and further kneaded three times with a three-roll mill. Finally, vacuum degassing was performed to obtain a conductive adhesive of Comparative Example.

【0062】比較例1は、両末端フェノールジメチルポ
リシロキサンの分子量500、OH当量230を用いた
もの、比較例2は、両末端フェノールジメチルポリシロ
キサンの分子量12000、OH当量4800のを用い
たもの、比較例3は両末端フェノールジメチルポリシロ
キサンの分子量4500で、不純物残留量が10重量%
以下を用いたもの、比較例4は両末端フェノールジメチ
ルシロキサンの分子量7000で、不純物残留量が10
重量%以下を用いたもの、比較例5は両末端エポキシ変
性シリコーン化合物の合成にビスフェノールAを用いた
もの、比較例6は硬化剤にフェノールノボラック樹脂を
用いたもの、比較例7は硬化剤にジシアンジアミドのみ
用いたもの、比較例8は硬化剤にジアリルビスフェノー
ルFのみを用いたもの、比較例9は硬化促進剤に2E4
Mzを用いたもの、比較例10は硬化促進剤を用いない
ものである。
Comparative Example 1 uses a phenol dimethylpolysiloxane having a molecular weight of 500 at both ends and an OH equivalent of 230. Comparative Example 2 uses a phenol dimethylpolysiloxane having a molecular weight of 12000 and an OH equivalent of 4800. Comparative Example 3 has a molecular weight of 4,500 at both ends of phenol dimethyl polysiloxane and a residual amount of impurities of 10% by weight.
In Comparative Example 4 using the following, the molecular weight of phenol dimethylsiloxane at both ends was 7,000 and the residual amount of impurities was 10
% Or less, Comparative Example 5 used bisphenol A for synthesizing the epoxy compound modified at both ends, Comparative Example 6 used a phenol novolak resin as a curing agent, and Comparative Example 7 used a curing agent as a curing agent. Comparative Example 8 using only diallyl bisphenol F as a curing agent, Comparative Example 9 using 2E4 as a curing accelerator
Comparative Example 10 using Mz does not use a curing accelerator.

【0063】導電性接着剤を製造するために用いた、両
末端エポキシ変性シリコーン化合物、マトリクス樹脂
(シリコーン変性エポキシ樹脂組成物)および得られた
導電性接着剤について以下の評価を行った。結果を表2
および表3に示す。
The following evaluation was carried out on the epoxy compound modified at both ends, the matrix resin (silicone-modified epoxy resin composition) and the obtained conductive adhesive used for producing the conductive adhesive. Table 2 shows the results
And Table 3.

【0064】[評価方法] 両末端エポキシ変性シリコーン化合物の粘度 製造例1〜11で得られた両末端エポキシ変性シリコー
ン化合物(A−1)〜(A−11)の粘度値を、東京計
器製のE型粘度計を用い、回転数10rpm、25℃に
て測定した。
[Evaluation Method] Viscosity of Epoxy-Modified Silicone Compounds at Both Terminals The viscosity values of the epoxy-modified silicone compounds at both ends (A-1) to (A-11) obtained in Production Examples 1 to 11 were measured by using a product of Tokyo Keiki Co., Ltd. Using an E-type viscometer, the measurement was performed at 25 rpm at a rotation speed of 10 rpm.

【0065】両末端エポキシ変性シリコーン化合物の
分子量 製造例1〜11で得られた両末端エポキシ変性シリコー
ン化合物(A−1)〜(A−11)の分子量をTOSO
製GPC(Gel permeation chromatography)で測定し
た。
Molecular weight of epoxy-modified silicone compound at both ends The molecular weight of epoxy-modified silicone compound at both ends (A-1) to (A-11) obtained in Production Examples 1 to 11 was determined by using TOSO
It was measured by GPC (Gel permeation chromatography).

【0066】両末端エポキシ変性シリコーン化合物の
相互溶融性 製造例1〜11で得られた両末端エポキシ変性シリコー
ン化合物(A−1)〜(A−11)を室温にて1日放置
する。反応の終了時点からの透明性(白濁性)、また室
温で1日放置して、2層もしくは3層に分離しているか
どうかを目視で観察し、完全透明を保持している場合を
◎、透明〜半透明を○、完全白濁もしくは分離している
場合を×とした。
Mutual Meltability of Both Terminal Epoxy-Modified Silicone Compounds Both terminal epoxy-modified silicone compounds (A-1) to (A-11) obtained in Production Examples 1 to 11 are allowed to stand at room temperature for one day. The transparency (white turbidity) from the end of the reaction, and standing at room temperature for one day to visually observe whether it has separated into two or three layers. Transparent to translucent was rated as ○, and completely turbid or separated was rated as x.

【0067】マトリクス樹脂(シリコーン変性エポキ
シ樹脂組成物)の硬化性 実施例1〜6、比較例1〜10で得られた両末端エポキ
シ変性シリコーン化合物(A)、硬化剤(B)、硬化促
進剤(C)を混練して得られたマトリクス樹脂(シリコ
ーン変性エポキシ樹脂組成物)をガラス板の上に塗布
し、125℃のオーブン中に2時間保管した。取り出し
て、硬化しているか、液状のままかを確認した。
Curability of Matrix Resin (Silicone-Modified Epoxy Resin Composition) Both ends epoxy-modified silicone compound (A), curing agent (B) and curing accelerator obtained in Examples 1 to 6 and Comparative Examples 1 to 10 The matrix resin (silicone-modified epoxy resin composition) obtained by kneading (C) was applied on a glass plate and stored in an oven at 125 ° C. for 2 hours. It was taken out and it was confirmed whether it was hardened or remained liquid.

【0068】熱応力緩和効果 得られた導電性接着剤を用いて、図3に示す構造の半導
体装置を作製した。2mm×2mmのGaAsチップを
20mm×40mmのアルミナ基板に、アルミナ基板を
アルミニウム基材に、125℃で2時間加熱することに
より接着し、熱応力緩和効果評価用の試験片を得た。
Thermal Stress Relaxation Effect A semiconductor device having the structure shown in FIG. 3 was manufactured using the obtained conductive adhesive. A 2 mm × 2 mm GaAs chip was bonded to a 20 mm × 40 mm alumina substrate by heating the alumina substrate to an aluminum substrate at 125 ° C. for 2 hours to obtain a test piece for evaluating a thermal stress relaxation effect.

【0069】前記試験片を、−30℃および60℃に各
々30分間保持するヒートサイクルに100回かけ、超
音波探傷装置にて接着部の剥離の様子を確認し、GaA
sチップ−アルミナ基板間、アルミナ基板−アルミニウ
ム基材間共に剥離、クラックのない場合を◎、若干の剥
離はあるが、実用上問題のない場合を○、接着部に剥
離、クラックが明らかに生じ、実用上問題のある場合を
×とした。
The test piece was subjected to 100 heat cycles of holding at -30 ° C. and 60 ° C. for 30 minutes each, and the state of peeling of the bonded portion was confirmed by an ultrasonic flaw detector.
s: When there is no peeling or cracking between the chip and the alumina substrate and between the alumina substrate and the aluminum base, ◎ indicates that there is slight peeling, but there is slight peeling, but 問題 indicates that there is no practical problem. And a case where there was a problem in practical use was evaluated as x.

【0070】接着強度 得られた導電性接着剤を用いて、ニッケルめっきしたア
ルミニウム板に、2mm角シリコンチップを、125℃
で2時間かけて接着した。接着強度はプッシュプルゲー
ジを用いて室温で測定した。
Adhesive Strength A 2 mm square silicon chip was placed on a nickel-plated aluminum plate using the obtained conductive adhesive at 125 ° C.
For 2 hours. The adhesive strength was measured at room temperature using a push-pull gauge.

【0071】保存安定性 導電性接着剤の粘度上昇の有無をE型粘度計を用いて、
所定日数経過毎に、25℃、10rpmで測定し調べ
た。
Storage stability The presence or absence of an increase in the viscosity of the conductive adhesive was determined using an E-type viscometer.
Every predetermined number of days, the measurement was conducted at 25 ° C. and 10 rpm.

【0072】[評価結果]表3からわかるように、実施
例1〜6では、重量平均分子量Mwが2000〜100
00の両末端フェノールジメチルポリシロキサンとビス
フェノールFエポキシ樹脂とを合成した両末端エポキシ
変性シリコーン化合物、ジアリルビスフェノールF、ジ
シアンジアミド、2−エチル−4−メチル−5−ヒドロ
キシメチルイミダゾールを混合した樹脂組成物を用いる
ことにより応力緩和効果が大きく、接着強度が大きく、
樹脂粘度が低くて作業性がよく、保存安定性に優れた導
電性接着剤を与える。特に、両末端フェノールジメチル
ポリシロキサンの分子量が大きい方が応力緩和効果は大
きい。さらには、両末端フェノールジメチルシロキサン
の不純物残留量が10重量%以下の場合、不純物とエポ
キシ樹脂との反応が優先的に起こることがないため、両
末端エポキシ変性シリコーン化合物の相互溶融性が良好
である。
[Evaluation Results] As can be seen from Table 3, in Examples 1 to 6, the weight average molecular weight Mw was from 2000 to 100.
A resin composition obtained by mixing a double-end epoxy-modified silicone compound obtained by synthesizing a double-end phenol dimethylpolysiloxane with a bisphenol F epoxy resin, diallyl bisphenol F, dicyandiamide, and 2-ethyl-4-methyl-5-hydroxymethylimidazole. By using it, the stress relaxation effect is large, the adhesive strength is large,
A conductive adhesive having low resin viscosity, good workability, and excellent storage stability. In particular, the larger the molecular weight of the phenol dimethyl polysiloxane at both ends, the greater the stress relaxation effect. Further, when the residual amount of impurities of the phenol dimethyl siloxane at both ends is 10% by weight or less, the reaction between the impurities and the epoxy resin does not occur preferentially, so that the mutual melting property of the epoxy modified silicone at both ends is good. is there.

【0073】比較例1によると、両末端エポキシ変性シ
リコーン化合物の合成に用いる両末端フェノールジメチ
ルポリシロキサンの分子量が低いため、合成したエポキ
シ変性シリコーン化合物の粘度が高くなり、従って導電
性接着剤の粘度も高くなり、作業性に劣る。また熱応力
緩和効果が小さい。
According to Comparative Example 1, the viscosity of the synthesized epoxy-modified silicone compound was high because the molecular weight of the phenol-dimethylpolysiloxane at both ends used for the synthesis of the epoxy-modified silicone compound at both ends was high, and therefore the viscosity of the conductive adhesive was high. And the workability is inferior. Also, the effect of relaxing thermal stress is small.

【0074】比較例2によると、両末端エポキシ変性シ
リコーン化合物の合成に用いる両末端フェノールジメチ
ルポリシロキサンの分子量が大きいため、エポキシ樹脂
と相互溶融性が低く、合成反応が進行しない。従って、
両末端フェノールジメチルポリシロキサンとエポキシ樹
脂が分離し、エポキシ樹脂のみが硬化剤と反応して、ジ
メチルポリシロキサンは未反応で残り、硬化性に劣ると
と同時に保存安定性にも劣る。
According to Comparative Example 2, since the molecular weight of the phenol dimethylpolysiloxane at both ends used for the synthesis of the epoxy-modified silicone compound at both ends is large, the mutual melting property with the epoxy resin is low and the synthesis reaction does not proceed. Therefore,
The phenol dimethyl polysiloxane at both ends is separated from the epoxy resin, only the epoxy resin reacts with the curing agent, and the dimethyl polysiloxane remains unreacted, resulting in poor curability and poor storage stability.

【0075】比較例3によると、両末端エポキシ変性シ
リコーン化合物の合成において、反応を途中でとめ、分
子量12000以下で用いたため、未反応物が多く残っ
ており、マトリクス樹脂の硬化性が悪く、また、熱応力
緩和効果も低く、接着力も低い。
According to Comparative Example 3, in the synthesis of the epoxy compound modified with epoxy at both ends, the reaction was stopped halfway and the molecular weight was 12,000 or less. Therefore, a large amount of unreacted substances remained, and the curability of the matrix resin was poor. Also, the effect of relaxing thermal stress is low, and the adhesive strength is low.

【0076】比較例4によると、両末端エポキシ変性シ
リコーン化合物の合成において、長時間反応を続けて、
分子量26000以上で用いたため、マトリクス樹脂の
粘度が高くなり、作業性に劣るとともに、接着強度も低
い。
According to Comparative Example 4, the reaction was continued for a long time in the synthesis of the silicone compound modified with epoxy at both ends.
Since it was used with a molecular weight of 26,000 or more, the viscosity of the matrix resin was increased, the workability was poor, and the adhesive strength was low.

【0077】比較例5によると、両末端エポキシ変性シ
リコーン化合物の合成に用いるエポキシ樹脂にビスフェ
ノールA樹脂を用いるため、樹脂の粘度が高くなり、ま
たジメチルポリシロキサンと不均一反応であるため均一
硬化せず、保存安定性にも劣る。
According to Comparative Example 5, bisphenol A resin was used as the epoxy resin used for the synthesis of the epoxy compound modified with epoxy at both ends, so that the viscosity of the resin was increased. And storage stability is inferior.

【0078】比較例6によると、硬化剤に固体のフェノ
ールノボラック樹脂を用いているので、高温で溶融して
も樹脂の粘度は高く、また均一溶液にならないので保存
安定性に劣るとともに、熱応力緩和効果も小さく接着力
も低い。
According to Comparative Example 6, since a solid phenol novolak resin was used as a curing agent, the viscosity of the resin was high even when it was melted at a high temperature, and the resin did not become a homogeneous solution. Low relaxation effect and low adhesive strength.

【0079】比較例7によると、硬化剤にジアリルビス
フェノールFを用いていないため、接着性に劣る。
According to Comparative Example 7, since diallyl bisphenol F was not used as the curing agent, the adhesiveness was poor.

【0080】比較例8によると、硬化剤にジシアンジア
ミドを用いていないため、硬化性に劣る。
According to Comparative Example 8, since dicyandiamide was not used as the curing agent, the curability was poor.

【0081】比較例9によると、硬化促進剤に液体の2E
4Mzを用いているため、潜在性がなく、保存安定性に劣
ると同時に熱応力緩和硬化にも劣る。
According to Comparative Example 9, liquid 2E was used as the curing accelerator.
Since 4Mz is used, it has no potential and has poor storage stability and poor thermal stress relaxation hardening.

【0082】比較例10によると、硬化促進剤を用いて
いないため、樹脂は硬化しない。
According to Comparative Example 10, the resin was not cured because no curing accelerator was used.

【0083】[0083]

【発明の効果】本発明の導電性接着剤によれば、(A)
前記一般式(1)で示される両末端にヒドロキシフェニ
ル基を有するジメチルポリシロキサンと、ビスフェノー
ルF型エポキシ樹脂の1核体との反応で得られる、両末
端エポキシ変性シリコーン化合物で、分子量が1200
0〜26000のもの、(B)ジアリルビスフェノール
Fおよびジシアンジアミド、(C)2−フェニル−4−
メチル−5−ヒドロキシメチルイミダゾール、(D)導
電性フィラーを必須成分とするので、熱応力緩和効果に
優れ、作業性、長期保存安定性にも優れるという効果が
ある。
According to the conductive adhesive of the present invention, (A)
An epoxy-modified silicone compound having a molecular weight of 1200, which is obtained by reacting a dimethylpolysiloxane having a hydroxyphenyl group at both terminals represented by the general formula (1) with a mononuclear body of a bisphenol F type epoxy resin.
0-26000, (B) diallylbisphenol F and dicyandiamide, (C) 2-phenyl-4-
Since methyl-5-hydroxymethylimidazole and the conductive filler (D) are essential components, there is an effect of being excellent in thermal stress relaxation effect, workability, and long-term storage stability.

【0084】また、本発明の導電性接着剤によれば、両
末端にヒドロキシフェニル基を有するジメチルポリシロ
キサンにおいて、現材料であるアリルフェノールおよび
内部異性化物などの不純物残留量が10重量%以下であ
るので、ビスフェノールF型エポキシ樹脂との反応物の
均一性に優れ、マトリクス樹脂の硬化性、熱応力緩和
性、保存安定性に優れるという効果がある。
Further, according to the conductive adhesive of the present invention, in the dimethylpolysiloxane having hydroxyphenyl groups at both ends, the residual amount of impurities such as allylphenol and internal isomers as the current material is 10% by weight or less. Therefore, there is an effect that the uniformity of the reaction product with the bisphenol F type epoxy resin is excellent, and the curability, thermal stress relaxation property and storage stability of the matrix resin are excellent.

【0085】さらに、本発明の半導体装置によれば、前
記導電性接着剤を用いて半導体素子または半導体モジュ
ールとリードフレームや基板などの支持部材を接合する
ことを特徴とするものであるので、信頼性が高いという
効果がある。
Further, according to the semiconductor device of the present invention, the semiconductor element or the semiconductor module and the supporting members such as the lead frame and the substrate are joined by using the conductive adhesive. There is an effect that the property is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の半導体装置の一実施態様の概略断面
図である。
FIG. 1 is a schematic sectional view of one embodiment of a semiconductor device of the present invention.

【図2】 本発明の半導体装置の別の実施態様の概略断
面図である。
FIG. 2 is a schematic sectional view of another embodiment of the semiconductor device of the present invention.

【図3】 本発明の半導体装置のさらに別の実施態様の
概略断面図である。
FIG. 3 is a schematic sectional view of still another embodiment of the semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性接着剤、2 銅製フレーム、3 GaAsチ
ップ、4 ガラスエポキシ基板、5 シリコンチップ、
6 封止材、7 アルミニウム基材、8 アルミナ基
板。
1 conductive adhesive, 2 copper frame, 3 GaAs chip, 4 glass epoxy board, 5 silicon chip,
6 sealing material, 7 aluminum base material, 8 alumina substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤岡 弘文 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 白花 良治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 瀧見 直也 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 4J040 EC281 HA026 HA066 HB38 HC18 HC24 JB10 KA03 KA07 KA16 KA17 KA32 LA01 LA05 LA06 MB05 NA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirofumi Fujioka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Ryoji Shirahana 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Rishi Electric Co., Ltd. (72) Inventor Naoya Takimi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4J040 EC281 HA026 HA066 HB38 HC18 HC24 JB10 KA03 KA07 KA16 KA17 KA32 LA01 LA05 LA06 MB05 NA20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1): 【化1】 (式中、R1およびR2は炭素数1〜20の2価の有機基
を示し、それぞれ同一であっても異なっていてもよく、
nは整数である。)で示される両末端にヒドロキシフェ
ニル基を有する重量分子量Mwが2000〜10000
のジメチルポリシロキサンと、ビスフェノールF型エポ
キシ樹脂の1核体との反応で得られる両末端エポキシ変
性シリコーン化合物で、重量分子量Mwが12000〜
26000のもの、(B)ジアリルビスフェノ−ルFお
よびジシアンジアミド、(C)2―フェニル−4―メチ
ル−5−ヒドロキシメチルイミダゾ−ル、および(D)
導電性フィラーを必須成分とする導電性接着剤。
(A) General formula (1): (Wherein, R 1 and R 2 represent a divalent organic group having 1 to 20 carbon atoms, which may be the same or different,
n is an integer. Weight-average molecular weight Mw having a hydroxyphenyl group at both ends represented by
Is a two-terminal epoxy-modified silicone compound obtained by the reaction of dimethylpolysiloxane with a mononuclear body of a bisphenol F type epoxy resin, having a weight molecular weight Mw of 12,000 to
26000, (B) diallyl bisphenol F and dicyandiamide, (C) 2-phenyl-4-methyl-5-hydroxymethylimidazole, and (D)
A conductive adhesive containing a conductive filler as an essential component.
【請求項2】 両末端にヒドロキシフェニル基を有する
重量分子量Mwが2000〜10000のジメチルポリ
シロキサンが、その原材料であるアリルフェノールおよ
び内部異性化物などの不純物残留量が10重量%以下で
あることを特徴とする請求項1記載の導電性接着剤。
2. Dimethylpolysiloxane having a hydroxyphenyl group at both terminals and having a weight molecular weight Mw of 2,000 to 10,000 is characterized in that its raw materials, such as allylphenol and internal isomers, have a residual amount of impurities of 10% by weight or less. 2. The conductive adhesive according to claim 1, wherein:
【請求項3】 請求項1または2記載の導電性接着剤を
用いて、半導体素子又は半導体モジュールとリードフレ
ームや基板などの支持部材を接合した半導体装置。
3. A semiconductor device in which a semiconductor element or a semiconductor module and a supporting member such as a lead frame and a substrate are joined using the conductive adhesive according to claim 1.
JP06400899A 1999-03-10 1999-03-10 Conductive adhesive and semiconductor device using the same Expired - Fee Related JP4142797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06400899A JP4142797B2 (en) 1999-03-10 1999-03-10 Conductive adhesive and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06400899A JP4142797B2 (en) 1999-03-10 1999-03-10 Conductive adhesive and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2000256642A true JP2000256642A (en) 2000-09-19
JP4142797B2 JP4142797B2 (en) 2008-09-03

Family

ID=13245737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06400899A Expired - Fee Related JP4142797B2 (en) 1999-03-10 1999-03-10 Conductive adhesive and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4142797B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558747B2 (en) * 1999-09-29 2003-05-06 Kabushiki Kaisha Toshiba Method of forming insulating film and process for producing semiconductor device
US6680007B2 (en) * 2001-09-06 2004-01-20 Shin-Etsu Chemical Co., Ltd. Conductive resin compositions and electronic parts using the same
JP2009242508A (en) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp Adhesive and bonded body
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material
WO2023013712A1 (en) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 Curable composition, prepreg, metal foil clad laminated sheet, and printed wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558747B2 (en) * 1999-09-29 2003-05-06 Kabushiki Kaisha Toshiba Method of forming insulating film and process for producing semiconductor device
US6680007B2 (en) * 2001-09-06 2004-01-20 Shin-Etsu Chemical Co., Ltd. Conductive resin compositions and electronic parts using the same
JP2009242508A (en) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp Adhesive and bonded body
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material
US11739238B2 (en) 2016-09-23 2023-08-29 Nichia Corporation Electrically conductive adhesive and electrically conductive material
WO2023013712A1 (en) * 2021-08-05 2023-02-09 三菱瓦斯化学株式会社 Curable composition, prepreg, metal foil clad laminated sheet, and printed wiring board
JP7284945B1 (en) * 2021-08-05 2023-06-01 三菱瓦斯化学株式会社 Curable composition, prepreg, metal foil-clad laminate, and printed wiring board
CN117795003A (en) * 2021-08-05 2024-03-29 三菱瓦斯化学株式会社 Curable composition, prepreg, metal foil-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JP4142797B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP5569576B2 (en) Film adhesive for semiconductor, method for manufacturing semiconductor device, and semiconductor device
EP2334728B1 (en) Lead-free conductive compositions and methods of using them
JP5353449B2 (en) Semiconductor device manufacturing method, semiconductor sealing adhesive, and semiconductor device
JPH09183959A (en) Soft epoxy resin composition
TWI480326B (en) Curable resin compositions useful as underfill sealants for low-k dielectric-containing semiconductor devices
KR100563509B1 (en) Epoxy Resin Compositions, and Laminated Films and Semiconductor Devices Using the Epoxy Resin Compositions
JP5439863B2 (en) Semiconductor sealing adhesive, semiconductor sealing film adhesive, semiconductor device and manufacturing method thereof
JP6233441B2 (en) Liquid epoxy resin composition and electronic component device
KR100498624B1 (en) Resin composition, adhesives prepared therewith for bonding circuit members, and circuit boards
US7247683B2 (en) Low voiding no flow fluxing underfill for electronic devices
EP2258772A1 (en) Epoxy Resin Composition for Semiconductor Encapsulation and Semiconductor Device Using the Same
JP4142797B2 (en) Conductive adhesive and semiconductor device using the same
JPWO2018198992A1 (en) Liquid sealing resin composition, electronic component device, and method of manufacturing electronic component device
US6818318B2 (en) Underfill sealant of epoxy resins, adhesion promotor and curative of N-containing compound and transition metal complex
JPH1117075A (en) Semiconductor device
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
JP4030174B2 (en) Conductive adhesive and semiconductor device using the same
Rabilloud Adhesives for electronics
JP2005097448A (en) Liquid epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP2004277572A (en) Non-solvent liquid silver paste formulation and semiconductor device using it
JP5086514B2 (en) Thermally conductive curable liquid polymer composition and semiconductor device
JP2005075866A (en) Adhesive sheet for semiconductor device
JPH0931161A (en) Liquid epoxy resin composition
JP6015912B2 (en) Liquid epoxy resin composition and semiconductor electronic component
JP2944363B2 (en) Semiconductor device using low-stress adhesive resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees