JP5086514B2 - Thermally conductive curable liquid polymer composition and semiconductor device - Google Patents

Thermally conductive curable liquid polymer composition and semiconductor device Download PDF

Info

Publication number
JP5086514B2
JP5086514B2 JP2003152027A JP2003152027A JP5086514B2 JP 5086514 B2 JP5086514 B2 JP 5086514B2 JP 2003152027 A JP2003152027 A JP 2003152027A JP 2003152027 A JP2003152027 A JP 2003152027A JP 5086514 B2 JP5086514 B2 JP 5086514B2
Authority
JP
Japan
Prior art keywords
curable liquid
component
polymer composition
liquid polymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003152027A
Other languages
Japanese (ja)
Other versions
JP2004051968A (en
Inventor
君男 山川
和己 中吉
裕規 石川
勝利 峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd filed Critical Dow Corning Toray Co Ltd
Priority to JP2003152027A priority Critical patent/JP5086514B2/en
Publication of JP2004051968A publication Critical patent/JP2004051968A/en
Application granted granted Critical
Publication of JP5086514B2 publication Critical patent/JP5086514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱伝導性硬化性液状ポリマー組成物および半導体装置に関し、詳しくは、硬化前は流動性を有し、硬化後は熱伝導性に優れる硬化物を形成する熱伝導性硬化性液状ポリマー組成物、および半導体素子がこの組成物により接着または被覆されてなる、信頼性に優れる半導体装置に関する。
【0002】
【従来の技術】
熱伝導性充填剤を含有する硬化性液状組成物は、電気・電子部品用の放熱性の接着剤、ポッティング剤、保護コーティング剤として使用されている。特に、一分子中に少なくとも2個のアルケニル基を有する液状オルガノポリシロキサン、一分子中に少なくとも2個のケイ素原子結合水素原子を有する液状オルガノポリシロキサン、ヒドロシリル化反応用金属系触媒、および熱伝導性充填剤からなる硬化性液状シリコーン組成物は、熱伝導性に優れた低応力の硬化物を形成することから、半導体素子と放熱板の間の放熱用接着剤、電気・電子部品用の放熱用接着剤、ポッティング剤、保護コーティング剤として使用されている。
【0003】
このような熱伝導性液状組成物において、熱伝導性をさらに向上させる方法としては大量の熱伝導性充填剤を加える方法が一般的である。しかしながら、熱伝導性充填剤の配合量が増えると組成物の粘度が上昇し、その結果、シリンジ等のディスペンス装置からの押し出し性が著しく低下したり、塗布後の形状が安定しないという問題があった。
【0004】
【発明が解決しようとする課題】
本発明者らは、上記の課題について鋭意検討した結果、熱伝導性充填剤と加熱伸長性形状記憶合金製充填剤を併用すると、硬化前の流動性と硬化後の熱伝導性が共に良好であることを見出し、本発明に到達した。
すなわち、本発明の目的は、硬化前は流動性を有し、硬化後は熱伝導性に優れる硬化物を形成する熱伝導性硬化性液状ポリマー組成物、および半導体素子がこの組成物により接着または被覆されてなる、信頼性に優れる半導体装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明の熱伝導性硬化性液状ポリマー組成物は、
(A)硬化性液状ポリマー、
(B)加熱伸長性形状記憶合金製充填剤、および、
(C)熱伝導性充填剤[但し、(B)成分を除く]からなることを特徴とする。
また、本発明の半導体装置は、半導体素子が上記の熱伝導性硬化性液状ポリマー組成物により接着または被覆されてなることを特徴とする。
【0006】
【発明の実施の形態】
はじめに、本発明の熱伝導性硬化性液状ポリマー組成物を詳細に説明する。
(A)硬化性液状ポリマーとしては、熱硬化性液状ポリマー、常温硬化性液状ポリマー、湿気硬化性液状ポリマー、紫外線硬化性液状ポリマー、電子線硬化性液状ポリマー等が挙げられるが、これらの中でも熱硬化性液状ポリマーが好ましい。尚、(A)成分が熱硬化性でない場合には、硬化前、硬化中あるいは硬化後に、(B)形状記憶合金製充填剤の変態温度以上の温度に加熱して、(B)成分を伸長させることが必要である。(A)成分として具体的には、硬化性液状エポキシ樹脂、硬化性液状シリコーン、硬化性液状ポリイミド樹脂、硬化性液状フェノール樹脂、硬化性液状ポリフェニレンサルファイド樹脂、硬化性液状不飽和ポリエステル樹脂、硬化性液状ポリウレタン樹脂、硬化性液状ジアリルフタレート樹脂が例示される。これらの中でも特に、硬化性液状エポキシ樹脂あるいは、硬化してゴム状またはゲル状となる硬化性液状シリコーンが好ましい。硬化性液状エポキシ樹脂は、ビスフェノールタイプ、ビフェニルタイプ、ノボラックタイプ等のいずれでもよく、通常は硬化剤を併用する。硬化性液状シリコーンとしては、付加反応硬化性液状シリコーン組成物、過酸化物硬化性液状シリコーン組成物、縮合反応硬化性液状シリコーン組成物、紫外線硬化性液状シリコーン組成物、放射線硬化性液状シリコーン組成物が例示されるが、付加反応硬化性液状シリコーン組成物が好ましい。本発明組成物中の(A)成分の比率は、2.0〜70重量%の範囲であることが好ましく、5.0〜50重量%がより好ましい。
【0007】
(B)加熱伸長性形状記憶合金製充填剤は、その変態温度以上の温度で加熱することにより伸長して、本発明組成物の熱伝導性を著しく向上させる。従って、(C)成分の配合比率を低減することができる。このような充填剤としては、例えば、Ti−Ni系、Cu−Zn−Al系、Cu−Al−Ni系等の形状記憶合金が挙げられる。この形状記憶合金の形状は、繊維状、鱗片状、板状が例示されるが、繊維状であることが好ましい。本成分が繊維状である場合にその直径は5〜500μmの範囲であることが好ましく、10〜300μmの範囲がより好ましい。本成分が鱗片状または板状である場合にその平均粒径は5〜500μmの範囲であることが好ましく、10〜300μmの範囲がより好ましい。常態における形状は、コイル状(螺旋状)、環状、渦巻き状が例示されるが、コイル状であることが好ましい。コイル状の場合にその芯径は、0.01〜5.0mmの範囲が好ましく、0.1〜1.0mmの範囲がより好ましい。常態時の長さは10μm〜10mmの範囲であることが好ましく、20μm〜2mmの範囲がより好ましい。また、伸長後の長さは、0.1〜50mmの範囲であることが好ましく、0.2〜10mmの範囲がより好ましい。(B)成分は加熱により2〜50倍に伸長するものが好ましく、3〜15倍に伸長するものがより好ましい。このような(B)成分は、その表面がオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物で処理されたものでもよい。また、複数の形状記憶合金製充填剤を併用しても良い。尚、本発明組成物中の(B)成分の比率は、0.01〜30重量%の範囲であることが好ましく、0.1〜20重量%がより好ましい。
【0008】
(C)熱伝導性充填剤は前記した(B)成分以外のものであれば特に限定されないが、シリカ、アルミナ、ガラス、シリケート、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、酸化チタン、カーボンブラック、ダイヤモンドなどの無機質系充填剤;アルミ、水酸化アルミ、硫化アルミ、金、銀、銅、ニッケル、ハンダ、真鍮、パラジウムなどの金属系充填剤;これらの充填剤を含む有機樹脂系充填剤;およびこれらの複合物が例示される。これらの中でも特に、熱伝導性に優れる無機質系充填剤または金属系充填剤が好ましい。その粒子径は、0.1〜500μmの範囲であることが好ましく、0.1〜100μmの範囲がより好ましい。このような(C)成分は、オルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物でその表面が処理されていても良い。また、複数の熱伝導性充填剤を併用しても良い。尚、本発明組成物中の(C)成分の比率は、30〜98重量%の範囲であることが好ましく、50〜95重量%がより好ましい。
【0009】
本発明組成物の性状は好ましくは常温で液状であるが、具体的には、25℃における粘度が0.1〜100,000Pa・sの範囲内であることが好ましく、0.5〜50,000Pa・sの範囲内がより好ましく、0.5〜10,000Pa・sの範囲内がさらに好ましい。硬化後の硬さは特に限定されず、完全に硬化した樹脂状、ゴム状、またはゲル状でもよく、また、一部が架橋したいわゆる半硬化状のゴム状やゲル状であってもよい。但し、半導体装置の接着剤や被覆剤として使用する場合には、半硬化状のゲル状のような柔らかい硬化物を形成する硬化性液状組成物が好ましく、このときの硬化物の硬さは、JIS K6253における硬さが10未満であることが好ましく、0であることがより好ましい。尚、本発明組成物の粘度や流動性は、(A)成分の粘度、(B)成分の形状やサイズ、(C)成分の形状やサイズや材質によって変動するので、流動性を有するように各成分を配合することが必要である。
【0010】
(A)成分が硬化性液状シリコーンである場合、本発明組成物として具体的には、
(a)一分子中に少なくとも2個のアルケニル基を有する液状オルガノポリシロキサン 100重量部、
(b)一分子中に少なくとも2個のケイ素原子結合水素原子を有する液状オルガノポリシロキサン 0.001〜100重量部、
(c)ヒドロシリル化反応用金属系触媒(本触媒中の金属原子が、本組成物に対して重量単位で0.01〜1,000ppmとなる量)、
(B)加熱伸長性形状記憶合金製充填剤
および
(C)熱伝導性充填剤[但し、(B)成分を除く]
からなり、25℃における粘度が好ましくは0.1〜300Pa・sである熱伝導性付加反応硬化性液状シリコーン組成物が挙げられる。
【0011】
(a)成分は、ケイ素原子に結合したアルケニル基を一分子中に少なくとも2個有することを特徴とする。分子構造としては、直鎖状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が挙げられ、これらの中でも直鎖状が好ましい。アルケニル基としては、ビニル基、アリル基、ヘキセニル基が例示される。アルケニル基の結合位置としては、分子鎖末端および/または分子鎖側鎖が挙げられ、特に、分子鎖両末端であることが好ましい。また、アルケニル基以外のケイ素原子に結合した基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等の置換もしくは非置換の一価炭化水素基が例示される。これらの中でも、メチル基、フェニル基が好ましい。(a)成分の25℃における粘度は、10〜1,000,000mPa・sの範囲内が好ましく、100〜50,000mPa・sの範囲内がより好ましい。これは、10mPa・s未満であると硬化後に十分な機械的な強度が得られず、また、1,000,000mPa・sを越えると粘度が高すぎて取扱いが難しくなるためである。
【0012】
(b)成分は一分子中に少なくとも2個のケイ素原子結合水素原子を有しており、(a)成分の硬化剤ないし架橋剤である。従って、(a)成分中のアルケニル基が2個のときはケイ素原子結合水素原子は3個以上であることが好ましい。分子構造としては、直鎖状、一部分枝を有する直鎖状、分枝鎖状、網状が例示される。ケイ素原子結合水素原子の結合位置としては、分子鎖末端および/または分子鎖側鎖が例示される。また、ケイ素原子結合水素原子以外のケイ素原子に結合した基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等の置換もしくは非置換の一価炭化水素基が例示される。これらの中でも、メチル基、フェニル基が好ましい。(b)成分の25℃における粘度は、0.1〜1,000,000mPa・sの範囲内が好ましく、0.2〜10,000mPa・sの範囲内がより好ましい。(b)成分の配合量は、(a)成分100重量部に対して0.001〜100重量部であり、0.001〜30重量部が好ましい。これは、0.001重量部未満であると本発明組成物が充分に硬化せず、また、100重量部を越えると硬化物の物理的強度が低下するためである。尚、本発明組成物を十分に硬化させるためには、(b)成分中のケイ素原子結合水素原子1モルに対して、(a)成分中のアルケニル基が0.1〜10モルであることが好ましく、0.5〜5モルがより好ましい。これは、0.1モル未満であると十分に硬化せず、また、10モルを越えると硬化物の物理的強度が低下するためである。
【0013】
(c)成分は(a)成分中のアルケニル基と(b)成分中のケイ素原子結合水素原子を付加反応させるための触媒であり、白金系触媒、ロジウム系触媒、パラジウム系触媒が挙げられる。中でも白金系触媒が好ましく、具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体等の白金系化合物が例示される。(c)成分の添加量は、(c)成分中の金属原子が本組成物に対して重量単位で0.01〜1,000ppmとなる量であり、0.01〜100ppmとなる量が好ましい。これは、0.01ppm未満であると付加反応が十分に進行せず、さらには硬化させることができなくなり、また、1,000ppmを越える量加えても付加反応が著しく促進されるものではなく、むしろ不経済となるためである。
【0014】
(B)加熱伸長性形状記憶合金製充填剤および該充填剤以外の(C)熱伝導性充填剤は、前記と同様である。(B)成分の配合量は、(a)成分100重量部に対して1〜1,000重量部の範囲が好ましく、1〜500重量部の範囲がより好ましい。また、(C)成分の配合量は、(a)成分100重量部に対して50〜5,000重量部の範囲が好ましく、100〜3,000重量部の範囲がより好ましい。
【0015】
このような熱伝導性付加反応硬化性液状シリコーン組成物は上記した各成分からなるが、本発明の目的を損なわない範囲であれば、その他の成分として、形状記憶性樹脂、シリコーン樹脂やフッ素樹脂等の有機樹脂微粉末、染料、顔料、難燃剤、耐熱剤、溶剤等を配合することができる。形状記憶性樹脂としては、ビニル系重合体,オレフィン系重合体,アクリル系重合体,カプロラクトン系重合体,エステル系重合体,ウレタン系重合体およびこれらの有機樹脂と形状記憶合金との複合物が挙げられる。また、付加反応の速度を調節するために、3−メチル−1−ブチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、フェニルブチノール等のアルキンアルコール;3−メチル−3−ペンテン−1−イン、3,5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の付加反応抑制剤を配合することができる。この付加反応抑制剤の配合量は、(a)成分100重量部に対して0.0001〜5重量部であることが好ましい。さらに、本発明組成物の接着性を向上させるために接着性付与剤を添加しても良い。このような接着性付与剤は特に限定されないが、ケイ素原子に結合したアルケニル基または水素原子と、ケイ素原子に結合したアルコキシ基を一分子中に少なくとも1個ずつ有するオルガノポリシロキサンであることが好ましい。その分子構造は、直鎖状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が挙げられ、特に、直鎖状、分枝鎖状、網状が好ましい。ケイ素原子に結合したアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が例示され、ビニル基が好ましい。ケイ素原子に結合したアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基が例示され、メトキシ基が好ましい。アルケニル基、水素原子およびアルコキシ基以外のケイ素原子に結合した基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等の置換もしくは非置換の一価炭化水素基;3−グリシドキシプロピル基、4−グリシドキシブチル基等のグリシドキシアルキル基,2−(3,4−エポキシシクロヘキシル)エチル基、3−(3,4−エポキシシクロヘキシル)プロピル基等の(3,4−エポキシシクロヘキシル)アルキル基のようなエポキシ基含有一価有機基;4−オキシラニルブチル基、8−オキシラニルオクチル基等のオキシラニルアルキル基が例示される。これらの中でも、各種の基材に対して良好な接着性を付与することができることから、エポキシ基含有一価有機基をさらに有することが好ましい。このようなオルガノポリシロキサンは低粘度の液状物であり、25℃における粘度は、1〜500mPa・sの範囲内であることが好ましい。
【0016】
付加反応は室温もしくは加熱により進行するが、加熱下で行うことにより反応を迅速に行うことができる。この加熱温度は、50〜250℃の範囲内であることが好ましく、80〜200℃の範囲内がより好ましい。
【0017】
以上のような本発明組成物は、(B)成分により熱伝導性が向上するので、(C)熱伝導性充填剤を大幅に増量する必要がなくその配合量を抑えることができる。加えて、加熱伸長前の(B)成分は形状が小さいので、本発明組成物は流動性に優れ、取扱い性、塗布性、作業性が良好であるという特徴を有する。このため本発明組成物は、電気・電子部品用の接着剤、ポッテイング剤、保護コーティング剤として有用である。特に、半導体装置の接着剤や被覆剤、例えば、半導体素子と放熱板の接着剤や被覆剤として好適である。
【0018】
次いで、本発明の半導体装置について詳細に説明する。
本発明の半導体装置は、半導体素子が本発明の熱伝導性硬化性液状ポリマー組成物により接着または被覆されてなることを特徴とする。即ち、本発明組成物の硬化物は熱伝導性に優れ、かつ、基材に対する密着性が良好なので、本発明の半導体装置は放熱性が良好であり、信頼性に優れるという特徴を有する。本発明の半導体装置としては、ダイオード、トランジスタ、サイリスタ、モノリシックIC、ハイブリッドIC、LSI、VLSIが例示される。また、本発明でいう半導体素子としては、ダイオード、トランジスタ、サイリスタ、モノリシックIC、さらにはハイブリッドIC中の半導体素子が例示される。
【0019】
本発明の半導体装置の一例であるLSI(断面図)を図1に示した。図1の半導体装置は、半導体素子1が回路基板2上に搭載されており、この半導体素子1と外部リードに接続した回路配線3とがボンディングワイヤ4により電気的に接続されている。また、この半導体素子1の表面には本発明の熱伝導性硬化性液状ポリマー組成物5が、この半導体素子1を保護しつつ放熱板6との接着剤として被覆するように形成されている。回路基板2の材質としては、ガラス繊維強化エポキシ樹脂、ベークライト樹脂、フェノール樹脂等の有機樹脂;アルミナ等のセラミックス;銅、アルミニウム等の金属が例示される。また、回路配線3の材質としては、銅、銀−パラジウムが例示される。また、ボンディングワイヤ4の材質としては、金、銅、アルミニウムが例示される。放熱板6の材質としてはアルミニウム、銅、ニッケル等の金属が例示される。尚、回路基板2には、半導体素子1の他に、抵抗、コンデンサー、コイル等の電子部品が搭載されていてもよい。
【0020】
本発明の半導体装置を製造する方法としては、半導体素子1を回路基板2上に搭載し、次いで、この半導体素子1と回路配線3とをボンディングワイヤ4により電気的に接続した後、この半導体素子1の表面に熱伝導性硬化性液状ポリマー組成物5を塗布し、放熱板6を取り付ける。次いで、50〜200℃で加熱硬化して、半導体素子1と放熱板6を接着させることが好ましい。
【0021】
【実施例】
本発明の熱伝導性硬化性液状ポリマー組成物および半導体装置を実施例により詳細に説明する。なお、実施例中の粘度は25℃において測定した値である。また、硬化物の熱伝導率および硬さ、半導体装置の信頼性は次のようにして評価した。
【0022】
[硬化物の熱伝導率の評価方法]
熱伝導性硬化性液状ポリマー組成物を15×6cm、厚さ2cmの大きさに加熱成形した硬化物の熱伝導率を、熱伝導率測定装置(京都電子(株)製QTM−500)を用いて測定した。
【0023】
[硬化物の硬さの評価方法]
熱伝導性硬化性液状ポリマー組成物の硬化物の硬さを、JIS K 6253によるタイプAデュロメータ硬さ試験機を用いて測定した。
【0024】
[半導体装置の信頼性の評価方法]
図1で示した半導体装置を作成した。この半導体装置は、半導体素子1を、表面に印刷により形成された回路配線3および端部に外部リードを有するガラス繊維強化エポキシ樹脂製の回路基板2上に搭載した後、半導体素子1と回路配線3とをボンディングワイヤ4により電気的に接続した。次いで、この半導体素子1の表面に熱伝導性硬化性液状ポリマー組成物5をディスペンサーにより塗布した後、アルミニウム製放熱板6を貼り付けて直ちに150℃の熱風循環式オーブンにより加熱して、半導体素子1と放熱板6を接着した。同様の方法により、20個の半導体装置を作成した。
このようにして作成した半導体装置を−65℃で30分間、+150℃で30分間を1サイクルとするサーマルサイクル試験を1000サイクル行なった後、半導体素子1と放熱板6の間の硬化物について、半導体素子1との間の剥離、および放熱板6との間の剥離の有無を顕微鏡で観察して、剥離しているものを不良としてその半導体装置の数(不良率)を求めた。
【0025】
[合成例1]
直径が80μmであり、長さが4mmである線状のCu−Zn−Al系形状記憶合金[日本タングステン(株)製]を、300℃で1時間加熱した後急冷して線状状態を記憶させた。次いでこれを棒に巻きつけて、常態における形状がコイル状であるCu−Zn−Al系形状記憶合金を得た。得られたコイル状形状記憶合金の芯径は0.55mmであり、長さは0.55mmであり、変態温度は120℃であった。
【0026】
[実施例1]
粘度が2000mPa・sであるビスフェノール系エポキシ樹脂[エポキシ当量165g:東都化成(株)製、商品名ZX−1059]100重量部と、常温で固体のジフェニルジヒドロキシシラン(ヒドロキシ当量108g)65重量部を混合して、120℃に加熱して溶解させた。これを室温まで冷却した後、粘度が200mPa・sである両末端トリメチルシロキシ基封鎖ジフェニルシロキサン・ジメチルシロキサン共重合体1100重量部およびアルミニウムトリス(アセチルアセトネート)1.0重量部を加えてこれらを均一に混合して、粘度800mPa・sの硬化性エポキシ樹脂組成物を調製した。次いで、この硬化性エポキシ樹脂組成物100重量部に、平均粒径が10μmである球状アルミナ[アドマテックス(株)製、商品名アドマファインアルミナ]600重量部、および、合成例1で得たコイル状のCu−Zn−Al系形状記憶合金10重量部を配合して室温で均一に混合して、粘度が65Pa・sの熱伝導性硬化性液状エポキシ樹脂組成物を調製した。
この熱伝導性硬化性液状エポキシ樹脂組成物を150℃で3時間加熱して得られた硬化物について、熱伝導率、硬さおよび半導体装置の信頼性を上記の方法により測定した。これらの評価結果を表1に示した。
【0027】
[比較例1]
実施例1において、コイル状のCu−Zn−Al系形状記憶合金10重量部の代わりに、平均粒径が10μmである球状アルミナ10重量部を用いた以外は実施例1と同様にして、粘度が66Pa・sである硬化性液状エポキシ樹脂組成物を調製した。
この硬化性液状エポキシ樹脂組成物を150℃で3時間加熱して得られた硬化物について、熱伝導率、硬さ、および半導体装置の信頼性を上記の方法により測定した。これらの評価結果を表1に示した。
【0028】
[実施例2]
粘度が2000mPa・sである分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基含有量0.24重量%)100重量部、粘度が20mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子含有量0.75重量%)0.6重量部、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体(組成物中の白金金属が重量単位で5ppmとなる量)、実施例1で使用した球状アルミナ600重量部、付加反応抑制剤である3−フェニル−1−ブチン−3−オール0.01重量部を均一に混合した。次いでこれに、合成例1で得たコイル状のCu−Zn−Al系の形状記憶合金10重量部を加えて、室温で均一に混合して、粘度が72Pa・sである熱伝導性硬化性液状シリコーン組成物を調製した。
この熱伝導性硬化性液状シリコーン組成物を150℃で1時間加熱して得られた硬化物について、熱伝導率、硬さおよび半導体装置の信頼性を上記の方法により測定した。これらの評価結果を表1に示した。
【0029】
[比較例2]
実施例2において、コイル状のCu−Zn−Al系の形状記憶合金10重量部の代わりに、実施例1で使用した球状アルミナ10重量部を用いた以外は実施例2と同様にして、粘度が74Pa・sである硬化性液状シリコーン組成物を調製した。
この硬化性液状シリコーン組成物を150℃で1時間加熱して得られた硬化物について、熱伝導率、硬さおよび半導体装置の信頼性を上記の方法により測定した。これらの評価結果を表1に示した。
【0030】
[比較例3]
実施例2において、コイル状のCu−Zn−Al系の形状記憶合金10重量部の代わりに、実施例1で使用した球状アルミナ180重量部を用いた以外は実施例2と同様にして、粘度が345Pa・sである硬化性液状シリコーン組成物を調製した。
この硬化性液状シリコーン組成物を150℃で1時間加熱して得られた硬化物について、熱伝導率、硬さおよび半導体装置の信頼性を上記の方法により評価した。これらの評価結果を表1に示した。得られた硬化性液状シリコーン組成物は実施例2で得た組成物と同等の熱伝導性を示すものの、実施例2の組成物に比べて塗布しにくく、半導体装置の作成時には作業性の低下が認められた。
【0031】
【表1】

Figure 0005086514
【0032】
【発明の効果】
本発明の熱伝導性硬化性液状ポリマー組成物は、硬化前は流動性を有するので作業性に優れ、硬化後は熱伝導性に優れる硬化物を形成するという特徴を有する。また、半導体素子がこのような熱伝導性硬化性液状ポリマー組成物により接着または被覆されてなる本発明の半導体装置は、優れた信頼性を有するという特徴がある。
【図面の簡単な説明】
【図1】 本発明の半導体装置の一例であるLSIの断面図である。
【符号の説明】
1 半導体素子
2 回路基板
3 回路配線
4 ボンディングワイヤ
5 熱伝導性硬化性液状ポリマー組成物
6 放熱板[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a thermally conductive curable liquid polymer composition and a semiconductor device, and more specifically, a thermally conductive curable liquid polymer composition that forms a cured product having fluidity before curing and excellent thermal conductivity after curing. And a semiconductor device having excellent reliability, in which a semiconductor element and a semiconductor element are bonded or covered with the composition.
[0002]
[Prior art]
A curable liquid composition containing a thermally conductive filler is used as a heat-dissipating adhesive, potting agent, and protective coating agent for electric and electronic parts. In particular, a liquid organopolysiloxane having at least two alkenyl groups in one molecule, a liquid organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, a metal catalyst for hydrosilylation reaction, and heat conduction The curable liquid silicone composition consisting of a conductive filler forms a low-stress cured product with excellent thermal conductivity, so that it is a heat-dissipating adhesive between the semiconductor element and the heat sink, and a heat-dissipating adhesive for electrical and electronic components. Used as an agent, potting agent, protective coating agent.
[0003]
In such a thermally conductive liquid composition, a method of adding a large amount of thermally conductive filler is generally used as a method for further improving the thermal conductivity. However, when the blending amount of the heat conductive filler increases, the viscosity of the composition increases. As a result, there is a problem that the extrudability from a dispensing device such as a syringe is remarkably lowered or the shape after application is not stable. It was.
[0004]
[Problems to be solved by the invention]
As a result of intensive studies on the above problems, the present inventors have found that when a heat conductive filler and a heat-extensible shape memory alloy filler are used in combination, both the fluidity before curing and the thermal conductivity after curing are good. The present invention has been found.
That is, the object of the present invention is to provide a thermally conductive curable liquid polymer composition that forms a cured product that has fluidity before curing and is excellent in thermal conductivity after curing, and a semiconductor element bonded or bonded by this composition. An object of the present invention is to provide a semiconductor device that is coated and excellent in reliability.
[0005]
[Means for Solving the Problems]
The thermally conductive curable liquid polymer composition of the present invention comprises:
(A) a curable liquid polymer;
(B) a heat-extensible shape memory alloy filler, and
(C) It is characterized by comprising a thermally conductive filler [except for the component (B)].
Moreover, the semiconductor device of the present invention is characterized in that a semiconductor element is bonded or covered with the above heat conductive curable liquid polymer composition.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
First, the thermally conductive curable liquid polymer composition of the present invention will be described in detail.
Examples of the curable liquid polymer (A) include a thermosetting liquid polymer, a room temperature curable liquid polymer, a moisture curable liquid polymer, an ultraviolet curable liquid polymer, an electron beam curable liquid polymer, and the like. A curable liquid polymer is preferred. If the component (A) is not thermosetting, the component (B) is stretched by heating to a temperature equal to or higher than the transformation temperature of the (B) shape memory alloy filler before, during or after curing. It is necessary to make it. Specific examples of the component (A) include a curable liquid epoxy resin, a curable liquid silicone, a curable liquid polyimide resin, a curable liquid phenol resin, a curable liquid polyphenylene sulfide resin, a curable liquid unsaturated polyester resin, and a curable resin. Examples thereof include a liquid polyurethane resin and a curable liquid diallyl phthalate resin. Among these, a curable liquid epoxy resin or a curable liquid silicone that is cured to become a rubber or gel is preferable. The curable liquid epoxy resin may be any of bisphenol type, biphenyl type, novolac type and the like, and usually a curing agent is used in combination. Examples of the curable liquid silicone include addition reaction curable liquid silicone compositions, peroxide curable liquid silicone compositions, condensation reaction curable liquid silicone compositions, ultraviolet curable liquid silicone compositions, and radiation curable liquid silicone compositions. However, addition reaction curable liquid silicone compositions are preferred. The ratio of the component (A) in the composition of the present invention is preferably in the range of 2.0 to 70% by weight, and more preferably 5.0 to 50% by weight.
[0007]
(B) The heat-extensible shape memory alloy filler is elongated by heating at a temperature equal to or higher than its transformation temperature, and remarkably improves the thermal conductivity of the composition of the present invention. Therefore, the blending ratio of component (C) can be reduced. Examples of such a filler include shape memory alloys such as Ti—Ni, Cu—Zn—Al, and Cu—Al—Ni. Examples of the shape of the shape memory alloy include a fiber shape, a scale shape, and a plate shape, but a fiber shape is preferable. When this component is fibrous, its diameter is preferably in the range of 5 to 500 μm, more preferably in the range of 10 to 300 μm. When this component is scale-like or plate-like, the average particle size is preferably in the range of 5 to 500 μm, more preferably in the range of 10 to 300 μm. The shape in the normal state is exemplified by a coil shape (spiral shape), an annular shape, and a spiral shape, and is preferably a coil shape. In the case of a coil shape, the core diameter is preferably in the range of 0.01 to 5.0 mm, more preferably in the range of 0.1 to 1.0 mm. The normal length is preferably in the range of 10 μm to 10 mm, and more preferably in the range of 20 μm to 2 mm. Further, the length after elongation is preferably in the range of 0.1 to 50 mm, and more preferably in the range of 0.2 to 10 mm. Component (B) is preferably one that extends 2 to 50 times by heating, and more preferably one that extends 3 to 15 times. Such a component (B) may have a surface treated with an organosilicon compound such as organohalosilane, organoalkoxysilane, or organosilazane. A plurality of shape memory alloy fillers may be used in combination. In addition, it is preferable that the ratio of (B) component in this invention composition is the range of 0.01-30 weight%, and 0.1-20 weight% is more preferable.
[0008]
(C) The thermal conductive filler is not particularly limited as long as it is other than the component (B) described above, but silica, alumina, glass, silicate, silicon nitride, boron nitride, aluminum nitride, silicon carbide, titanium oxide, carbon Inorganic fillers such as black and diamond; aluminum, aluminum hydroxide, aluminum sulfide, gold, silver, copper, nickel, solder, brass, palladium and other metal fillers; organic resin fillers containing these fillers And composites thereof. Among these, inorganic fillers or metal fillers having excellent thermal conductivity are particularly preferable. The particle diameter is preferably in the range of 0.1 to 500 μm, and more preferably in the range of 0.1 to 100 μm. The surface of such component (C) may be treated with an organosilicon compound such as organohalosilane, organoalkoxysilane, or organosilazane. A plurality of thermally conductive fillers may be used in combination. In addition, it is preferable that the ratio of (C) component in this invention composition is the range of 30 to 98 weight%, and 50 to 95 weight% is more preferable.
[0009]
The properties of the composition of the present invention are preferably liquid at normal temperature, and specifically, the viscosity at 25 ° C. is preferably in the range of 0.1 to 100,000 Pa · s, preferably 0.5 to 50, The range of 000 Pa · s is more preferable, and the range of 0.5 to 10,000 Pa · s is more preferable. The hardness after curing is not particularly limited, and may be a completely cured resin, rubber, or gel, or may be a partially crosslinked so-called semi-cured rubber or gel. However, when used as an adhesive or coating agent for semiconductor devices, a curable liquid composition that forms a soft cured product such as a semi-cured gel is preferable, and the hardness of the cured product at this time is The hardness in JIS K6253 is preferably less than 10, and more preferably 0. The viscosity and fluidity of the composition of the present invention vary depending on the viscosity of the component (A), the shape and size of the component (B), and the shape, size and material of the component (C). It is necessary to blend each component.
[0010]
When the component (A) is a curable liquid silicone, specifically as the composition of the present invention,
(A) 100 parts by weight of a liquid organopolysiloxane having at least two alkenyl groups in one molecule;
(B) 0.001 to 100 parts by weight of a liquid organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule;
(C) metal catalyst for hydrosilylation reaction (amount in which the metal atom in the catalyst is 0.01 to 1,000 ppm by weight with respect to the composition),
(B) Heat-extensible shape memory alloy filler
and
(C) Thermally conductive filler [excluding component (B)]
And a heat conductive addition reaction curable liquid silicone composition having a viscosity at 25 ° C. of preferably 0.1 to 300 Pa · s.
[0011]
The component (a) has at least two alkenyl groups bonded to silicon atoms in one molecule. Examples of the molecular structure include a straight chain, a partially branched straight chain, a branched chain, a ring, and a network. Of these, a straight chain is preferable. Examples of the alkenyl group include a vinyl group, an allyl group, and a hexenyl group. Examples of the bonding position of the alkenyl group include a molecular chain terminal and / or a molecular chain side chain, and particularly preferably both molecular chain terminals. Examples of groups bonded to silicon atoms other than alkenyl groups include methyl groups, ethyl groups, propyl groups, butyl groups, pentyl groups, hexyl groups, heptyl groups and other alkyl groups; phenyl groups, tolyl groups, xylyl groups, naphthyl groups. An aryl group such as a benzyl group; an aralkyl group such as a benzyl group or a phenethyl group; a substituted or unsubstituted alkyl group such as a chloromethyl group, a 3-chloropropyl group, or a 3,3,3-trifluoropropyl group; A valent hydrocarbon group is exemplified. Among these, a methyl group and a phenyl group are preferable. The viscosity of component (a) at 25 ° C. is preferably in the range of 10 to 1,000,000 mPa · s, more preferably in the range of 100 to 50,000 mPa · s. This is because if it is less than 10 mPa · s, sufficient mechanical strength cannot be obtained after curing, and if it exceeds 1,000,000 mPa · s, the viscosity is too high and handling becomes difficult.
[0012]
Component (b) has at least two silicon-bonded hydrogen atoms in one molecule, and is a curing agent or crosslinking agent for component (a). Therefore, when there are two alkenyl groups in component (a), it is preferable that there are three or more silicon-bonded hydrogen atoms. Examples of the molecular structure include a straight chain, a partially branched straight chain, a branched chain, and a network. Examples of the bonding position of the silicon atom-bonded hydrogen atom include a molecular chain terminal and / or a molecular chain side chain. Examples of groups bonded to silicon atoms other than silicon-bonded hydrogen atoms include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl groups; phenyl groups, tolyl groups, and xylyl groups. Group, aryl group such as naphthyl group; aralkyl group such as benzyl group and phenethyl group; substituted or non-substituted halogenated alkyl group such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, etc. Substituted monovalent hydrocarbon groups are exemplified. Among these, a methyl group and a phenyl group are preferable. The viscosity of the component (b) at 25 ° C. is preferably in the range of 0.1 to 1,000,000 mPa · s, and more preferably in the range of 0.2 to 10,000 mPa · s. (B) The compounding quantity of a component is 0.001-100 weight part with respect to 100 weight part of (a) component, and 0.001-30 weight part is preferable. This is because when the amount is less than 0.001 part by weight, the composition of the present invention is not sufficiently cured, and when it exceeds 100 parts by weight, the physical strength of the cured product is lowered. In order to sufficiently cure the composition of the present invention, the alkenyl group in component (a) is 0.1 to 10 moles per mole of silicon-bonded hydrogen atoms in component (b). Is preferable, and 0.5 to 5 mol is more preferable. This is because when it is less than 0.1 mol, it is not sufficiently cured, and when it exceeds 10 mol, the physical strength of the cured product is lowered.
[0013]
The component (c) is a catalyst for addition reaction of the alkenyl group in the component (a) and the silicon atom-bonded hydrogen atom in the component (b), and examples thereof include a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst. Of these, platinum-based catalysts are preferred. Specifically, platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, chloroplatinic acid alcohol solution, platinum olefin complex, platinum alkenylsiloxane complex Examples thereof include platinum-based compounds. Component (c) is added in such an amount that the metal atom in component (c) is 0.01 to 1,000 ppm by weight with respect to the composition, and preferably 0.01 to 100 ppm. . If the amount is less than 0.01 ppm, the addition reaction does not proceed sufficiently and further cannot be cured, and addition of more than 1,000 ppm does not significantly accelerate the addition reaction. Rather, it is uneconomical.
[0014]
(B) Heat-extensible shape memory alloy filler and (C) thermally conductive filler other than the filler are the same as described above. (B) The compounding quantity of a component has the preferable range of 1-1000 weight part with respect to 100 weight part of (a) component, and the range of 1-500 weight part is more preferable. Moreover, the compounding quantity of (C) component has the preferable range of 50-5,000 weight part with respect to 100 weight part of (a) component, and the range of 100-3,000 weight part is more preferable.
[0015]
Such a heat conductive addition reaction curable liquid silicone composition is composed of the above-mentioned components, but as long as the object of the present invention is not impaired, as other components, a shape memory resin, a silicone resin, or a fluororesin Organic resin fine powders such as dyes, pigments, flame retardants, heat resistance agents, solvents and the like can be blended. Shape memory resins include vinyl polymers, olefin polymers, acrylic polymers, caprolactone polymers, ester polymers, urethane polymers, and composites of these organic resins with shape memory alloys. Can be mentioned. In order to control the rate of the addition reaction, alkyne alcohols such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenylbutynol; Enyne compounds such as 3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane, an addition reaction inhibitor such as benzotriazole can be blended. The addition amount of the addition reaction inhibitor is preferably 0.0001 to 5 parts by weight with respect to 100 parts by weight of component (a). Furthermore, in order to improve the adhesiveness of this invention composition, you may add an adhesiveness imparting agent. Such an adhesion-imparting agent is not particularly limited, but is preferably an organopolysiloxane having at least one alkenyl group or hydrogen atom bonded to a silicon atom and at least one alkoxy group bonded to a silicon atom in one molecule. . Examples of the molecular structure include a straight chain, a partially branched straight chain, a branched chain, a ring, and a network, and a straight chain, a branched chain, and a network are particularly preferable. Examples of the alkenyl group bonded to the silicon atom include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group, and a vinyl group is preferable. Examples of the alkoxy group bonded to the silicon atom include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group is preferable. Examples of groups bonded to silicon atoms other than alkenyl groups, hydrogen atoms and alkoxy groups include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl groups; phenyl groups, tolyl groups, Aryl groups such as xylyl group and naphthyl group; aralkyl groups such as benzyl group and phenethyl group; substitution of halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group; Unsubstituted monovalent hydrocarbon group; glycidoxyalkyl group such as 3-glycidoxypropyl group, 4-glycidoxybutyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3 An epoxy group-containing monovalent organic group such as a (3,4-epoxycyclohexyl) alkyl group such as a 4-epoxycyclohexyl) propyl group; - oxiranyl-butyl group, is oxiranylalkyl alkyl groups such as 8-oxiranyl-octyl group are exemplified. Among these, since favorable adhesiveness can be provided with respect to various base materials, it is preferable to further have an epoxy group-containing monovalent organic group. Such an organopolysiloxane is a low-viscosity liquid, and the viscosity at 25 ° C. is preferably in the range of 1 to 500 mPa · s.
[0016]
The addition reaction proceeds at room temperature or by heating, but the reaction can be carried out rapidly by performing it under heating. The heating temperature is preferably in the range of 50 to 250 ° C, more preferably in the range of 80 to 200 ° C.
[0017]
In the composition of the present invention as described above, since the thermal conductivity is improved by the component (B), it is not necessary to greatly increase the amount of the (C) thermal conductive filler, and the blending amount can be suppressed. In addition, since the component (B) before being heated and stretched has a small shape, the composition of the present invention is excellent in fluidity, and has good characteristics such as handleability, applicability, and workability. Therefore, the composition of the present invention is useful as an adhesive, potting agent, and protective coating agent for electric / electronic parts. In particular, it is suitable as an adhesive or coating agent for semiconductor devices, for example, an adhesive or coating agent for semiconductor elements and heat sinks.
[0018]
Next, the semiconductor device of the present invention will be described in detail.
The semiconductor device of the present invention is characterized in that a semiconductor element is bonded or covered with the heat conductive curable liquid polymer composition of the present invention. That is, since the cured product of the composition of the present invention has excellent thermal conductivity and good adhesion to the substrate, the semiconductor device of the present invention has the characteristics of good heat dissipation and excellent reliability. Examples of the semiconductor device of the present invention include diodes, transistors, thyristors, monolithic ICs, hybrid ICs, LSIs, and VLSIs. Examples of the semiconductor element in the present invention include diodes, transistors, thyristors, monolithic ICs, and semiconductor elements in hybrid ICs.
[0019]
An LSI (cross-sectional view) which is an example of the semiconductor device of the present invention is shown in FIG. In the semiconductor device of FIG. 1, a semiconductor element 1 is mounted on a circuit board 2, and the semiconductor element 1 and circuit wiring 3 connected to an external lead are electrically connected by a bonding wire 4. Further, the surface of the semiconductor element 1 is formed with the thermally conductive curable liquid polymer composition 5 of the present invention so as to cover the semiconductor element 1 as an adhesive with the heat sink 6 while protecting the semiconductor element 1. Examples of the material of the circuit board 2 include organic resins such as glass fiber reinforced epoxy resin, bakelite resin, and phenol resin; ceramics such as alumina; metals such as copper and aluminum. Examples of the material of the circuit wiring 3 include copper and silver-palladium. Examples of the material of the bonding wire 4 include gold, copper, and aluminum. Examples of the material of the heat sink 6 include metals such as aluminum, copper, and nickel. In addition to the semiconductor element 1, electronic components such as resistors, capacitors, and coils may be mounted on the circuit board 2.
[0020]
As a method of manufacturing the semiconductor device of the present invention, the semiconductor element 1 is mounted on the circuit board 2, and then the semiconductor element 1 and the circuit wiring 3 are electrically connected by the bonding wire 4. A heat conductive curable liquid polymer composition 5 is applied to the surface of 1 and a heat sink 6 is attached. Subsequently, it is preferable to heat-harden at 50-200 degreeC and to adhere the semiconductor element 1 and the heat sink 6.
[0021]
【Example】
The heat conductive curable liquid polymer composition and semiconductor device of the present invention will be described in detail with reference to examples. In addition, the viscosity in an Example is the value measured in 25 degreeC. Further, the thermal conductivity and hardness of the cured product and the reliability of the semiconductor device were evaluated as follows.
[0022]
[Method for evaluating thermal conductivity of cured product]
Using a thermal conductivity measuring device (QTM-500, manufactured by Kyoto Electronics Co., Ltd.), the thermal conductivity of a cured product obtained by thermoforming the thermally conductive curable liquid polymer composition to a size of 15 × 6 cm and a thickness of 2 cm is used. Measured.
[0023]
[Method for evaluating hardness of cured product]
The hardness of the cured product of the thermally conductive curable liquid polymer composition was measured using a type A durometer hardness tester according to JIS K 6253.
[0024]
[Method for evaluating reliability of semiconductor device]
The semiconductor device shown in FIG. 1 was produced. In this semiconductor device, the semiconductor element 1 is mounted on the circuit wiring 3 formed by printing on the surface and the circuit board 2 made of glass fiber reinforced epoxy resin having an external lead at the end. 3 was electrically connected by a bonding wire 4. Next, after applying the heat conductive curable liquid polymer composition 5 to the surface of the semiconductor element 1 with a dispenser, the aluminum radiator plate 6 is pasted and immediately heated in a hot air circulation oven at 150 ° C. 1 and the heat sink 6 were bonded together. Twenty semiconductor devices were produced by the same method.
After 1000 cycles of a thermal cycle test in which the semiconductor device thus prepared was subjected to a cycle of −65 ° C. for 30 minutes and + 150 ° C. for 30 minutes, about a cured product between the semiconductor element 1 and the heat sink 6, The presence / absence of peeling with the semiconductor element 1 and peeling with the heat sink 6 was observed with a microscope, and the number of the semiconductor devices (defective rate) was determined by assuming that the peeling was defective.
[0025]
[Synthesis Example 1]
A linear Cu—Zn—Al shape memory alloy (manufactured by Nippon Tungsten Co., Ltd.) having a diameter of 80 μm and a length of 4 mm was heated at 300 ° C. for 1 hour and then rapidly cooled to memorize the linear state. I let you. Subsequently, this was wound around a rod to obtain a Cu—Zn—Al-based shape memory alloy having a coil shape in a normal state. The obtained coiled shape memory alloy had a core diameter of 0.55 mm, a length of 0.55 mm, and a transformation temperature of 120 ° C.
[0026]
[Example 1]
100 parts by weight of a bisphenol epoxy resin having a viscosity of 2000 mPa · s [epoxy equivalent 165 g: manufactured by Toto Kasei Co., Ltd., trade name ZX-1059] and 65 parts by weight of diphenyldihydroxysilane (hydroxy equivalent 108 g) which is solid at room temperature Mix and heat to 120 ° C. to dissolve. After cooling this to room temperature, 1100 parts by weight of a triphenylsiloxy group-blocked diphenylsiloxane / dimethylsiloxane copolymer having a viscosity of 200 mPa · s and 1.0 part by weight of aluminum tris (acetylacetonate) were added, and these were added. The mixture was uniformly mixed to prepare a curable epoxy resin composition having a viscosity of 800 mPa · s. Next, 100 parts by weight of this curable epoxy resin composition, 600 parts by weight of spherical alumina (manufactured by Admatechs Co., Ltd., trade name Admafine Alumina) having an average particle size of 10 μm, and the coil obtained in Synthesis Example 1 A heat conductive curable liquid epoxy resin composition having a viscosity of 65 Pa · s was prepared by blending 10 parts by weight of a Cu-Zn-Al shape memory alloy in a uniform shape at room temperature.
About the hardened | cured material obtained by heating this heat conductive curable liquid epoxy resin composition at 150 degreeC for 3 hours, heat conductivity, hardness, and the reliability of the semiconductor device were measured by said method. The evaluation results are shown in Table 1.
[0027]
[Comparative Example 1]
In Example 1, viscosity was changed in the same manner as in Example 1 except that 10 parts by weight of spherical alumina having an average particle size of 10 μm was used instead of 10 parts by weight of the coiled Cu—Zn—Al-based shape memory alloy. A curable liquid epoxy resin composition having a viscosity of 66 Pa · s was prepared.
About the hardened | cured material obtained by heating this curable liquid epoxy resin composition at 150 degreeC for 3 hours, the heat conductivity, hardness, and the reliability of the semiconductor device were measured by said method. The evaluation results are shown in Table 1.
[0028]
[Example 2]
Molecular chain both ends dimethylvinylsiloxy group-blocked dimethylpolysiloxane having a viscosity of 2000 mPa · s (vinyl group content 0.24% by weight) 100 parts by weight, molecular chain both ends trimethylsiloxy group-blocked dimethyl having a viscosity of 20 mPa · s 0.6 parts by weight of siloxane / methylhydrogensiloxane copolymer (silicon-bonded hydrogen atom content: 0.75% by weight), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (Amount in which platinum metal in the composition is 5 ppm by weight), 600 parts by weight of spherical alumina used in Example 1, 0.01 weight of 3-phenyl-1-butyn-3-ol which is an addition reaction inhibitor The parts were mixed uniformly. Next, 10 parts by weight of the coiled Cu—Zn—Al-based shape memory alloy obtained in Synthesis Example 1 is added thereto and mixed uniformly at room temperature, and the heat conductive curability having a viscosity of 72 Pa · s. A liquid silicone composition was prepared.
About the hardened | cured material obtained by heating this heat conductive curable liquid silicone composition at 150 degreeC for 1 hour, the heat conductivity, hardness, and the reliability of the semiconductor device were measured by said method. The evaluation results are shown in Table 1.
[0029]
[Comparative Example 2]
In Example 2, in place of 10 parts by weight of the coiled Cu—Zn—Al-based shape memory alloy, the viscosity was changed in the same manner as in Example 2 except that 10 parts by weight of the spherical alumina used in Example 1 was used. A curable liquid silicone composition having a viscosity of 74 Pa · s was prepared.
About the hardened | cured material obtained by heating this curable liquid silicone composition at 150 degreeC for 1 hour, the heat conductivity, hardness, and the reliability of the semiconductor device were measured by said method. The evaluation results are shown in Table 1.
[0030]
[Comparative Example 3]
In Example 2, the viscosity was changed in the same manner as in Example 2 except that 180 parts by weight of the spherical alumina used in Example 1 was used instead of 10 parts by weight of the coiled Cu—Zn—Al-based shape memory alloy. A curable liquid silicone composition having a 345 Pa · s was prepared.
About the hardened | cured material obtained by heating this curable liquid silicone composition at 150 degreeC for 1 hour, thermal conductivity, hardness, and the reliability of the semiconductor device were evaluated by said method. The evaluation results are shown in Table 1. Although the obtained curable liquid silicone composition exhibits the same thermal conductivity as the composition obtained in Example 2, it is more difficult to apply than the composition of Example 2, and the workability is reduced when a semiconductor device is produced. Was recognized.
[0031]
[Table 1]
Figure 0005086514
[0032]
【Effect of the invention】
The thermally conductive curable liquid polymer composition of the present invention is characterized in that it has fluidity before curing and is excellent in workability and forms a cured product having excellent thermal conductivity after curing. Further, the semiconductor device of the present invention in which a semiconductor element is bonded or covered with such a heat conductive curable liquid polymer composition has a feature of having excellent reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an LSI which is an example of a semiconductor device of the present invention.
[Explanation of symbols]
1 Semiconductor device
2 Circuit board
3 Circuit wiring
4 Bonding wire
5 Thermally conductive curable liquid polymer composition
6 Heat sink

Claims (10)

(A)硬化性液状ポリマー、(B)(A)成分の硬化温度よりも低い変態温度を有する加熱伸長性形状記憶合金製充填剤、および、(C)熱伝導性充填剤[但し、(B)成分を除く]からなることを特徴とする、熱伝導性硬化性液状ポリマー組成物。(A) a curable liquid polymer, (B) (A) a heat-extensible shape memory alloy filler having a transformation temperature lower than the curing temperature of the component , and (C) a thermally conductive filler [provided that (B A heat conductive curable liquid polymer composition characterized by comprising: (B)成分が、常態においてコイル状であることを特徴とする、請求項1記載の熱伝導性硬化性液状ポリマー組成物。  The thermally conductive curable liquid polymer composition according to claim 1, wherein the component (B) is normally coiled. (B)成分がCu−Zn−Al系形状記憶合金製充填剤であり、(C)成分がアルミナであることを特徴とする、請求項1記載の熱伝導性硬化性液状ポリマー組成物。  The thermally conductive curable liquid polymer composition according to claim 1, wherein the component (B) is a Cu-Zn-Al shape memory alloy filler, and the component (C) is alumina. (A)成分が硬化性液状エポキシ樹脂であることを特徴とする、請求項1記載の熱伝導性硬化性液状ポリマー組成物。  The heat conductive curable liquid polymer composition according to claim 1, wherein the component (A) is a curable liquid epoxy resin. (A)成分が硬化性液状シリコーンであることを特徴とする、請求項1記載の熱伝導性硬化性液状ポリマー組成物。  The heat conductive curable liquid polymer composition according to claim 1, wherein the component (A) is a curable liquid silicone. 硬化性液状シリコーンが付加反応硬化性液状シリコーン組成物であることを特徴とする、請求項5記載の熱伝導性硬化性液状ポリマー組成物。  6. The heat conductive curable liquid polymer composition according to claim 5, wherein the curable liquid silicone is an addition reaction curable liquid silicone composition. 付加反応硬化性液状シリコーン組成物が、
(a)一分子中に少なくとも2個のアルケニル基を有する液状オルガノポリシロキサン
100重量部、
(b)一分子中に少なくとも2個のケイ素原子結合水素原子を有する液状オルガノポリシロキサン 0.001〜100重量部、
(c)ヒドロシリル化反応用金属系触媒(本触媒中の金属原子が、本組成物に対して重量単位で0.01〜1,000ppmとなる量)、
からなることを特徴とする、請求項6記載の熱伝導性硬化性液状ポリマー組成物。
The addition reaction curable liquid silicone composition is
(A) Liquid organopolysiloxane having at least two alkenyl groups in one molecule
100 parts by weight,
(B) 0.001 to 100 parts by weight of a liquid organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule;
(C) metal catalyst for hydrosilylation reaction (amount in which the metal atom in the catalyst is 0.01 to 1,000 ppm by weight with respect to the composition),
The thermally conductive curable liquid polymer composition according to claim 6, comprising:
(B)成分の配合量が、(a)成分100重量部に対して1〜1,000重量部であり、(C)成分の配合量が、(a)成分100重量部に対して50〜5,000重量部であることを特徴とする、請求項7記載の熱伝導性硬化性液状ポリマー組成物。  The amount of component (B) is 1 to 1,000 parts by weight per 100 parts by weight of component (a), and the amount of component (C) is 50 to 100 parts by weight of component (a). The thermally conductive curable liquid polymer composition according to claim 7, characterized in that the amount is 5,000 parts by weight. 半導体装置の接着剤または被覆剤である、請求項1〜8のいずれか1項に記載の熱伝導性硬化性液状ポリマー組成物。  The thermally conductive curable liquid polymer composition according to any one of claims 1 to 8, which is an adhesive or coating agent for a semiconductor device. 半導体素子が、請求項1〜8のいずれか1項に記載の熱伝導性硬化性液状ポリマー組成物により接着または被覆されてなることを特徴とする半導体装置。  A semiconductor device, wherein the semiconductor element is bonded or covered with the thermally conductive curable liquid polymer composition according to any one of claims 1 to 8.
JP2003152027A 2002-05-31 2003-05-29 Thermally conductive curable liquid polymer composition and semiconductor device Expired - Fee Related JP5086514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152027A JP5086514B2 (en) 2002-05-31 2003-05-29 Thermally conductive curable liquid polymer composition and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002158434 2002-05-31
JP2002158434 2002-05-31
JP2003152027A JP5086514B2 (en) 2002-05-31 2003-05-29 Thermally conductive curable liquid polymer composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004051968A JP2004051968A (en) 2004-02-19
JP5086514B2 true JP5086514B2 (en) 2012-11-28

Family

ID=31949123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152027A Expired - Fee Related JP5086514B2 (en) 2002-05-31 2003-05-29 Thermally conductive curable liquid polymer composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5086514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101801728B1 (en) * 2016-04-05 2017-11-27 주식회사 에이치알에스 Liquid silicone addition type adhesive composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370604C (en) * 2004-04-15 2008-02-20 鸿富锦精密工业(深圳)有限公司 Heat interface material and its producing method
JP5101860B2 (en) * 2006-10-26 2012-12-19 パナソニック株式会社 Epoxy resin composition and semiconductor device
JP5181852B2 (en) * 2008-06-12 2013-04-10 株式会社デンソー Thermally conductive adhesive and adhesive structure
CN103582921B (en) * 2012-06-05 2016-06-22 道康宁公司 For the tacky soft gel in power supply changeover device
JP6378379B2 (en) * 2017-02-24 2018-08-22 ダウ シリコーンズ コーポレーション Soft adhesive gel for use in power converters
JP6801507B2 (en) * 2017-02-24 2020-12-16 富士通株式会社 Electronic devices and their manufacturing methods, heat conductive parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101801728B1 (en) * 2016-04-05 2017-11-27 주식회사 에이치알에스 Liquid silicone addition type adhesive composition

Also Published As

Publication number Publication date
JP2004051968A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
TWI513770B (en) Thermally conductive silicone rubber composition
US6235862B1 (en) Adhesive silicone sheet, method for the preparation thereof and semiconductor devices
KR101280277B1 (en) Insulating liquid die-bonding agent and semiconductor device
KR102149708B1 (en) Thermal conductive composite silicone rubber sheet
JPH09296113A (en) Electroconductive silicone rubber composition, production of semiconductor apparatus and semiconductor apparatus therefor
JP2014003152A (en) Method for forming thermal interface material and heat dissipation structure
KR102479137B1 (en) thermally conductive composition
JP2010070599A (en) Liquid die bonding agent
JP4393817B2 (en) Thermally conductive filler, thermally conductive silicone elastomer composition, and semiconductor device
JP5086514B2 (en) Thermally conductive curable liquid polymer composition and semiconductor device
JPH1025417A (en) Curable liquid composition, cured article obtained therefrom, and electronic part
JP2002265786A (en) Curable organopolysiloxane composition and process for manufacturing semiconductor device
JP3691587B2 (en) Curable organopolysiloxane composition and semiconductor device
US7375158B2 (en) Thermoconductive curable liquid polymer composition and semiconductor device produced with the use of this composition
US11485861B2 (en) Method for applying thermally conductive composition on electronic components
CN116004014A (en) Thermally conductive silicone composition
JP2000080335A (en) Silicone adhesive sheet, its manufacture and semiconductor device
CN118139930A (en) Curable thermally conductive composition containing diamond particles
JP6656509B1 (en) Method for producing conductive filler, conductive addition-curable silicone composition, and semiconductor device
JP6664640B1 (en) Method for producing conductive filler, conductive filler, conductive addition reaction-curable silicone elastomer composition, and semiconductor device
JP2011153253A (en) Electronic device and method of manufacturing the same
WO2004015002A2 (en) Thermoconductive filler, thermocoductive silicone elastomer composition, and semiconductor devices
CN115820223A (en) Thermally conductive silicone composition
JP2003115501A (en) Crosslinked silicone-based adhesive sheet and semiconductor device
JPH06102749B2 (en) Epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees