JP2000252756A - Bias circuit and operational amplifier using same - Google Patents

Bias circuit and operational amplifier using same

Info

Publication number
JP2000252756A
JP2000252756A JP11048034A JP4803499A JP2000252756A JP 2000252756 A JP2000252756 A JP 2000252756A JP 11048034 A JP11048034 A JP 11048034A JP 4803499 A JP4803499 A JP 4803499A JP 2000252756 A JP2000252756 A JP 2000252756A
Authority
JP
Japan
Prior art keywords
circuit
output
source
bias
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11048034A
Other languages
Japanese (ja)
Inventor
Shin Kikuchi
伸 菊池
Masato Shinohara
真人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11048034A priority Critical patent/JP2000252756A/en
Publication of JP2000252756A publication Critical patent/JP2000252756A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the source voltage and threshold voltage dependency of the output stage in an operational amplifier by inverting and amplifying the output of a source follower circuit and regarding the output part of an inverting amplifying circuit, outputted to the gate of a constant current source as a load of the source follower circuit, as a bias output. SOLUTION: The inverting amplifier circuit which inverts and amplifies the output of the source follower circuit and outputs it to the gate of the constant current source as the load of the source follower circuit is included and the output part of the inverting amplifier circuit is regarded as the bias output. In the bias circuit 32, a resistance 16 (R1) and an NMOS 15 (MN 12) are a means for stabilizing the gate voltage of the MP 13; and the outputs of the MP 11 and MN 11 are received and its inversion and amplification output is inputted to the gate of the MP 13. Here, R1 as a constituent element of the inverting amplifier circuit is replaceable with a constant current source and the MN 12 is replaceable with an NPN transistor, etc. Then a bias voltage is applied from the output terminal 18 of the inverting amplifier circuit to the gate of the MP 3 of an operational amplifier output part 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バイアス回路及び
そのバイアス回路を用いたオペアンプに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bias circuit and an operational amplifier using the bias circuit.

【0002】[0002]

【従来の技術】従来CMOSを用いたオペアンプでは、
駆動能力がとぼしい為、図2のような回路を出力段とし
て用いている。図中100は、いわゆるシングレンドの
差動増幅回路であり、1が差動増幅回路の出力である。
差動増幅回路の出力は、PMOS3(MP2)とPMO
Sの定電流現2(MP3)からなるソースフォロワに入
力され、レベルシフト出力7を得る。さらに、レベルシ
フト出力7は、PMOS4(MP1)のソース接地へ、
差動増幅回路の出力1はNMOS5(MN1)のソース
接地へ入力され、出力を得る。C1は位相補償用容量で
あり、出力端子6と差動増幅回路の出力部1の間に挿入
されている。また、MP2を定電流駆動させるための電
源回路として、PMOS51(MP51)、PMOS5
2(MP52)、及びNMOS53(NP53)の直列
接続から成る回路が提案されている。このMP51から
NM53に流れる電流をバイアス線54により、MP3
に反映させる。9は電源電位(VDD)であり、10は
接地電位(GND)である。そして、ソース接地回路M
P1,MN1からの出力はドレイン出力のため、大きな
ダイナミックレンジと低い出力インピーダンスを得る。
2. Description of the Related Art Conventionally, in an operational amplifier using CMOS,
Since the driving capability is low, a circuit as shown in FIG. 2 is used as an output stage. In the figure, 100 is a so-called single-ended differential amplifier circuit, and 1 is the output of the differential amplifier circuit.
The outputs of the differential amplifier circuit are PMOS3 (MP2) and PMO
It is input to a source follower composed of the constant current source 2 (MP3) of S, and a level shift output 7 is obtained. Further, the level shift output 7 is connected to the source ground of the PMOS 4 (MP1).
The output 1 of the differential amplifier circuit is input to the source ground of the NMOS 5 (MN1) to obtain an output. C1 is a capacitor for phase compensation, which is inserted between the output terminal 6 and the output section 1 of the differential amplifier circuit. Further, as a power supply circuit for driving MP2 at a constant current, PMOS51 (MP51), PMOS5
2 (MP52) and a circuit comprising a series connection of NMOS53 (NP53) have been proposed. The current flowing from the MP 51 to the NM 53 is supplied to the MP 3 by the bias line 54.
To reflect. Reference numeral 9 denotes a power supply potential (VDD), and reference numeral 10 denotes a ground potential (GND). And the source grounding circuit M
Since the outputs from P1 and MN1 are drain outputs, a large dynamic range and low output impedance are obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例では、出力ソース接地回路MP1、MN1に流れる
電流が電源電圧に大きく依存する、という不具合があっ
た。その為、位相補償C1 の効き方等の周波数特性が変
化し、電源が低い場合、発振等の問題が生ずる。
However, in the above conventional example, there is a problem that the current flowing through the output source ground circuits MP1 and MN1 greatly depends on the power supply voltage. Therefore, the frequency characteristic changes of the braking effectiveness how such phase compensation C 1, when power is low, problems such as oscillation occurs.

【0004】以下、図2及び図3を用いて説明を行う。A description will be given below with reference to FIGS. 2 and 3.

【0005】図2中MP3に流れる電流は、MP5に流
れる電流のカレントミラーであり、電源電圧依存があ
る。ここで仮に、MP3が電源電圧依存のない理想定電
流源1x であると仮定すると図3のように模式的に表せ
る。ここで、図2中のMP1、MN1に流れる電流を見
積る為の等価回路と同等であり、図3中V1 (52)
は、MP2により成るソースホロワによるレベルシフト
電圧であり、Ix 及びMP2のしきい値に応じた一定電
圧である。図3からわかるようにMP1、MN1に流れ
る電流は、各々のしきい値と電源に大きく依存し、その
値をIY とすると
In FIG. 2, the current flowing to MP3 is a current mirror of the current flowing to MP5 and depends on the power supply voltage. Here, if it is assumed that MP3 is an ideal constant current source 1x that does not depend on the power supply voltage, it can be schematically represented as shown in FIG. Here, this is equivalent to an equivalent circuit for estimating the current flowing through MP1 and MN1 in FIG. 2, and V 1 (52) in FIG.
Is a level shift voltage due to the source follower made by MP2, a constant voltage corresponding to the threshold value of I x and MP2. The current flowing in the MP1, MN1 can be seen from FIG. 3 largely depends on each of the threshold and the power supply, when the value as I Y

【0006】[0006]

【外1】 となり、(1),(2)より、IY は電源に対しほぼ2
乗で変化する事がわかり、プロセスばらつきによるVth
変動にも大きく影響されることがわかる。
[Outside 1] From (1) and (2), I Y is approximately 2
To understand is possible to change a power of, V due to process variations th
It can be seen that the variation is greatly affected.

【0007】ここでKn ,Kp はそれぞれMN1,MP
1のトランジスタの特性によって決まる係数、VN1はM
N1のゲート・ソース間電圧、VP1はMP1のゲート・
ソース間電圧、Vthはしきい値電圧である。
[0007] where K n, K p, respectively MN1, MP
V N1 is a coefficient determined by the characteristics of the transistor
The gate-source voltage of N1, V P1 is the gate-source voltage of MP1.
The source-to-source voltage, Vth, is a threshold voltage.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の第1の手段として、カレントミラー回路と、カレント
ミラー回路に定電流を供給する定電流源と、カレントミ
ラー回路を負荷とする第1のソース接地回路と、カレン
トミラー回路のゲート部を入力として、第1のソース接
地回路の入力部に出力を行う第1のソースフォロワ回路
と、第1のソース接地回路の出力を反転増幅し、前記第
1のソースフォロワ回路と、第1のソースフォロワ回路
の出力を反転増幅し、前記第1のソースフォロワ回路の
負荷である定電流源のゲートに出力する反転増幅回路と
を有し、反転増幅回路の出力部をバイアス出力とするこ
とを特徴とするバイアス回路を提供する。
As a first means for solving the above problems, a current mirror circuit, a constant current source for supplying a constant current to the current mirror circuit, and a first mirror using the current mirror circuit as a load. A first source follower circuit that receives the input of the source ground circuit, the gate of the current mirror circuit, and outputs the input to the input of the first source ground circuit, and inverts and amplifies the output of the first grounded source circuit; A first source follower circuit; and an inverting amplifier circuit that inverts and amplifies an output of the first source follower circuit and outputs the result to a gate of a constant current source that is a load of the first source follower circuit. Provided is a bias circuit, wherein an output section of an amplifier circuit is a bias output.

【0009】また、第2の手段として、上記の第1の手
段で説明したバイアス回路において、反転増幅回路はソ
ース接地又はエミッタ接地であることを特徴とするバイ
アス回路を提供する。
As a second means, there is provided the bias circuit described in the first means, wherein the inverting amplifier circuit is a source ground or an emitter ground.

【0010】また、第3の手段として、上記第1の手段
で説明したバイアス回路と、差動増幅出力を行う差動増
幅手段と、差動増幅手段からの出力信号の出力を行う出
力手段とを有し、バイアス回路のバイアス出力によって
前記出力手段を駆動することを特徴とするオペアンプを
提供する。
[0010] As a third means, the bias circuit described in the first means, the differential amplifying means for performing differential amplification output, and the output means for outputting an output signal from the differential amplifying means are provided. , And the output means is driven by a bias output of a bias circuit.

【0011】また、第4の手段として上記第3の手段で
説明したオペアンプにおいて、出力手段は第2のソース
フォロワ回路と第2のソースフォロワ回路の出力を入力
とする第2のソース接地回路を有し、第2のソースフォ
ロワ回路の負荷である定電流源のゲートにバイアス回路
からバイアス電圧が印加されていることを特徴とするオ
ペアンプを提供する。
In the operational amplifier described in the third means as the fourth means, the output means includes a second source follower circuit and a second grounded source circuit having an output of the second source follower circuit as an input. And a bias voltage applied from a bias circuit to a gate of a constant current source which is a load of a second source follower circuit.

【0012】[0012]

【発明の実施の形態】(第1の実施例)本発明の実施形
態を図1に示す。図中31は図2で説明した従来のオペ
アンプであり、32は本発明に係るバイアス回路であ
る。
(First Embodiment) An embodiment of the present invention is shown in FIG. In the figure, reference numeral 31 denotes the conventional operational amplifier described with reference to FIG. 2, and reference numeral 32 denotes a bias circuit according to the present invention.

【0013】図1中のMN11,MP12,MP13は
図2で説明したMN1,MP1,MP2,MP3と同一
の結線関係である。バイアス回路2において、理想的な
定電流源17より、流れた電流I1 はNMOS10(M
N10),NMOS11(MN11)のカレントミラー
により、ソース接地回路であるMN11,PMOS12
(MP11)も又、理想的な定電流動作を行っている。
MP11のゲート電圧MN11(MN10)のゲート電
圧が各々I1 及びVDDにより一義的に決定する事より、
PMOS13(MP12)のソース・ゲート電圧が決定
し、よってMP12,PMOS14(MP13)に流れ
る電流も決定する。
MN11, MP12 and MP13 in FIG. 1 have the same connection relationship as MN1, MP1, MP2 and MP3 described in FIG. In the bias circuit 2, the current I 1 flowing from the ideal constant current source 17 is applied to the NMOS 10 (M
N10) and NMOS11 (MN11), the current mirror of MN11 and PMOS12
(MP11) also performs an ideal constant current operation.
Since the gate voltage of the gate voltage MN11 (MN10) of MP11 is uniquely determined by I 1 and V DD, respectively,
The source-gate voltage of the PMOS 13 (MP12) is determined, and thus the current flowing through the MP12 and the PMOS 14 (MP13) is also determined.

【0014】抵抗16(R1 ),NMOS15(MN1
2)は、MP13のゲート電圧を安定させる手段であ
り、MP11,MN11の出力を受け、その反転増幅出
力をMP13のゲートに入力させる。ここで、R1 ,M
N12は、反転増幅回路の構成要素であり、R1 は、定
電流源に、MN12はNPNトランジスタ等に置換が可
能である。さらには、反転増幅回路が1以上のゲインが
あれば本発明の効果を満足できる。そして、反転増幅回
路の出力部である出力端子18から、オペアンプ出力部
31のMP3のゲートにバイアス電圧が印加される。
A resistor 16 (R 1 ) and an NMOS 15 (MN 1
2) means for stabilizing the gate voltage of MP13, which receives the outputs of MP11 and MN11 and inputs the inverted amplified output to the gate of MP13. Where R 1 , M
N12 is a component of the inverting amplifier circuit, R 1 is a constant current source, MN12 are possible substitution to the NPN transistor and the like. Furthermore, if the inverting amplifier circuit has a gain of 1 or more, the effect of the present invention can be satisfied. Then, a bias voltage is applied to the gate of MP3 of the operational amplifier output unit 31 from the output terminal 18 which is the output unit of the inverting amplifier circuit.

【0015】次に、数式を用いて説明する。Next, a description will be given using mathematical expressions.

【0016】MN10,MN11のゲート電圧をV1
NN11,MP11の電流をnI1 ,MP11のゲート電圧
をV2 ,MP12,MP13の電流をI2 ,MP13のゲート
電圧をV4 ,MN1 のゲート電圧をV01,MP1のゲー
ト電圧をV02とする。
The gate voltages of MN10 and MN11 are set to V 1 ,
The current of NN 11 and MP 11 is nI 1 , the gate voltage of MP 11 is V 2 , the current of MP 12 and MP 13 is I 2 , the gate voltage of MP 13 is V 4 , and the gate voltage of MN 1 is V 01 and MP 1 The gate voltage is set to V02 .

【0017】MP11,MN11を流れる電流nI1
は、 nI1 =Kn (V1 −Vth2 =KP (VDD−V2 −Vth2 …(3) とあらわされ、電流nI1 は、定電流源17から流れる
定電流I1 のカレントミラー電流なので、電流nI1
定電流になるので、(3)式は以下のように定義するこ
とができる。
The current nI 1 flowing through MP11 and MN11
Is expressed as nI 1 = K n (V 1 −V th ) 2 = K P (V DD −V 2 −V th ) 2 (3), and the current nI 1 is a constant current flowing from the constant current source 17. Since the current nI 1 is a constant current because it is a current mirror current of I 1, the equation (3) can be defined as follows.

【0018】[0018]

【外2】 [Outside 2]

【0019】ここで、K′nはMN11のトランジスタ
の特性によって決まる係数、K′PはMP11のトラン
ジスタの特性によって決まる係数、K′P はMP11の
トランジスタの特性によって決まる係数Vthはしきい値
電圧である。
[0019] Here, K'n the coefficient determined by the characteristics of the transistors MN11, K 'P is a coefficient determined by the characteristics of the transistor MP11, K' P is the coefficient V th is a threshold determined by the characteristics of the transistor MP11 Voltage.

【0020】(4)(5)式より、V1 ,V2 は V1 =a+Vth…(6) V2 =VDD−Vth−b…(7) とあらわされ、MP12のゲート・ソース間電圧は V2 −V1 =VDD−2Vth−b−a…(8) とあらわされる。From equations (4) and (5), V 1 and V 2 are expressed as follows: V 1 = a + V th (6) V 2 = V DD -V th -b (7) The inter-voltage is expressed as V 2 -V 1 = V DD -2V th -ba (8).

【0021】(8)式の、MP12のゲート・ソース間
電圧を用いることにより、MP13,MP12を流れる
電流I2 は、 I2 =K′′P (VDD−3Vth−b−a)2 …(9) となり(ここで、K′′P はMP13のトランジスタの
特性によって決まる係数)、又MP3とMP13はカレ
ントミラー回路となっているので、MP3,MP2を流
れる電流mI2 (ミラー比m)は mI2 =mK′′P (VDD−3Vth−b−a)2 …(10) とあらわされ、 MP2のゲート・ソース間電圧Vgs(MP2) Vgs(MP2)=VDD−2Vth−b−a…(11) となる。
[0021] Equation (8), by using a gate-source voltage of MP12, current I 2 flowing through the MP13, MP12 is, I 2 = K '' P (V DD -3V th -b-a) 2 (Where K ″ P is a coefficient determined by the characteristics of the transistor of MP13), and since MP3 and MP13 are current mirror circuits, the current mI 2 flowing through MP3 and MP2 (mirror ratio m ) Is expressed as mI 2 = mK ″ P (V DD −3 V th −ba) 2 (10), and the gate-source voltage V gs of MP 2 (MP 2) V gs (MP 2) = V DD − 2V th -ba ... (11)

【0022】又、MP1のゲート電位V02は V02=V01+Vgs(MP2)…(12) となり、(11)(12)式より V02=V01+VDD−2Vth−b−a…(13) となり、(11)式を変形すると (VDD−V02−Vth)+(V01−Vth)=a+b…(14) となる。[0022] In addition, the gate potential V 02 of MP1 is V 02 = V 01 + V gs (MP2) ... (12) , and the (11) (12) than V 02 = V 01 + V DD -2V th -b-a .. (13), and by transforming equation (11), (V DD −V 02 −V th ) + (V 01 −V th ) = a + b (14)

【0023】MP1,MN1で構成されるソース接地回
路を流れる電流をIx とすると、 IX =Kp (VDD−V02−Vth2 …(16) =Kn(V01−Vth2 …(17) となり、(15)(16)(17)式より電流Ix
[0023] MP1, the current flowing through the source circuit configured When I x at MN1, I X = K p ( V DD -V 02 -V th) 2 ... (16) = Kn (V 01 -V th ) 2 ... (17), and from the equations (15), (16) and (17), the current I x is

【0024】[0024]

【外3】 となり、Vth,VDDに全く依存しない事がわかる。[Outside 3] And it can be seen that it does not depend on V th and V DD at all.

【0025】ここで、オペアンプの出力部31の最終出
力段であるMP1,MN1で構成されるソース接地回路
に流れる電流は、電源電圧しきい値電圧による変化はな
いが、(10)式からも分かるように、MP2,MP3
で構成されるソースフォロワ回路を流れる電流は、電源
電圧、しきい値電圧により変動する。しかしながら、通
常のオペアンプの出力部の場合、MP1,MN1で構成
されるソース接地回路側にほとんどの電流が使用され、
MP2,MP3で構成されるソースフォロワ回路に流れ
る電流はわずかであるため、全体の消費電流変化として
は目立たない。又、位相補償の効果を左右するのは、M
P1,MN1のトランジスタであり、オペアンプ出力部
を安定化させる効果はきわめて大きい。
Here, the current flowing through the common source circuit composed of MP1 and MN1, which is the final output stage of the output section 31 of the operational amplifier, does not change due to the power supply voltage threshold voltage. As you can see, MP2, MP3
The current flowing through the source follower circuit composed of the power supply voltage and the threshold voltage fluctuates. However, in the case of the output section of a normal operational amplifier, most of the current is used on the side of the common source circuit composed of MP1 and MN1,
Since a small amount of current flows through the source follower circuit composed of MP2 and MP3, the change in the total current consumption is inconspicuous. The effect of the phase compensation depends on M
The transistors are P1 and MN1, and the effect of stabilizing the output section of the operational amplifier is extremely large.

【0026】[0026]

【発明の効果】以上説明したように、本発明のバイアス
回路を用いることにより、オペアンプ出力段の電流を電
源電圧、しきい値に依存しない事が可能となる。又、バ
イアス回路内で使用する定電流源と同等の特性を実現で
きる。すなわち、例えば温特のない定電流源を使用すれ
ば、温特もない出力段が形成できる。
As described above, by using the bias circuit of the present invention, the current of the output stage of the operational amplifier can be made independent of the power supply voltage and the threshold value. Further, characteristics equivalent to those of the constant current source used in the bias circuit can be realized. That is, for example, if a constant current source having no temperature characteristic is used, an output stage having no temperature characteristic can be formed.

【0027】これにより、全体消費電流の安定化及びオ
ペアンプの位相補償の効果を安定化させることが可能と
なり、低出力インピーダンス、プロセスバラツキに対し
安定かつ電源変動に強い高性能オペアンプの設計が可能
となる。
As a result, it is possible to stabilize the effects of the overall current consumption and the phase compensation of the operational amplifier, and it is possible to design a high-performance operational amplifier that is stable against low output impedance and process variation and is resistant to power supply fluctuation. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を説明するための図である。FIG. 1 is a diagram for explaining an embodiment of the present invention.

【図2】図9000従来のオペアンプ回路を説明するた
めの図である。
FIG. 2 is a diagram for explaining a conventional operational amplifier circuit of FIG.

【図3】図9001従来のオペアンプの一部分を説明す
る為の図である。
FIG. 3 is a diagram for explaining a part of a conventional operational amplifier.

【符号の説明】[Explanation of symbols]

10 NMOS 11 NMOS 12 PMOS 13 PMOS 14 PMOS 15 NMOS 16 抵抗 17 定電流源 Reference Signs List 10 NMOS 11 NMOS 12 PMOS 13 PMOS 14 PMOS 15 NMOS 16 Resistance 17 Constant current source

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J066 AA01 AA43 AA47 AA58 CA02 CA05 CA26 CA54 CA82 FA05 FA10 HA09 HA17 HA25 HA29 KA02 KA05 KA09 KA12 KA47 MA18 MA21 ND11 ND24 PD01 TA01 5J090 AA01 AA43 AA47 AA58 CA02 CA05 CA26 CA54 CA82 CN04 FA05 FA10 FN01 HA09 HA17 HA25 HA29 KA02 KA05 KA09 KA12 KA47 MA18 MA21 TA01 5J091 AA01 AA43 AA47 AA58 CA02 CA05 CA26 CA54 CA82 FA05 FA10 HA09 HA17 HA25 HA29 KA02 KA05 KA09 KA12 KA47 MA18 MA21 TA01  ──────────────────────────────────────────────────続 き Continued from the front page F term (reference) 5J066 AA01 AA43 AA47 AA58 CA02 CA05 CA26 CA54 CA82 FA05 FA10 HA09 HA17 HA25 HA29 KA02 KA05 KA09 KA12 KA47 MA18 MA21 ND11 ND24 PD01 TA01 5J090 AA01 AA43 CA54 CA02 CA02 CA02 FA05 FA10 FN01 HA09 HA17 HA25 HA29 KA02 KA05 KA09 KA12 KA47 MA18 MA21 TA01 5J091 AA01 AA43 AA47 AA58 CA02 CA05 CA26 CA54 CA82 FA05 FA10 HA09 HA17 HA25 HA29 KA02 KA05 KA09 KA12 KA47 MA18 MA21 TA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 カレントミラー回路と、 前記カレントミラー回路に定電流を供給する定電流源
と、 前記カレントミラー回路を負荷とする第1のソース接地
回路と、 前記カレントミラー回路のゲート部を入力として、前記
第1のソース接地回路の入力部に出力を行う第1のソー
スフォロワ回路と、 前記第1のソース接地回路の出力を反転増幅し、前記第
1のソースフォロワ回路の負荷である定電流源のゲート
に出力する反転増幅回路とを有し、 前記反転増幅回路の出力部をバイアス出力とすることを
特徴とするバイアス回路。
1. A current mirror circuit, a constant current source for supplying a constant current to the current mirror circuit, a first grounded source circuit having the current mirror circuit as a load, and a gate section of the current mirror circuit A first source follower circuit that outputs to an input section of the first grounded source circuit; and a constant source that inverts and amplifies the output of the first grounded source circuit and is a load of the first source follower circuit. A bias circuit, comprising: an inverting amplifier circuit that outputs a signal to a gate of a current source; wherein an output section of the inverting amplifier circuit is used as a bias output.
【請求項2】 請求項1において、前記反転増幅回路は
ソース接地又はエミッタ接地であることを特徴とするバ
イアス回路。
2. The bias circuit according to claim 1, wherein the inverting amplifier circuit is a source ground or an emitter ground.
【請求項3】 請求項1記載のバイアス回路と、 差動増幅出力を行う差動増幅手段と、 前記差動増幅手段からの出力信号の出力を行う出力手段
とを有し、 前記バイアス回路のバイアス出力によって前記出力手段
を駆動することを特徴とするオペアンプ。
3. The bias circuit according to claim 1, comprising: a bias circuit according to claim 1, a differential amplifier unit for performing differential amplification output, and an output unit for outputting an output signal from the differential amplifier unit. An operational amplifier characterized in that said output means is driven by a bias output.
【請求項4】 請求項2において、前記出力手段は第2
のソースフォロワ回路と前記第2のソースフォロワ回路
の出力を入力とする第2のソース接地回路を有し、前記
第2のソースフォロワ回路の負荷である定電流源のゲー
トに前記バイアス回路からバイアス電圧が印加されてい
ることを特徴とするオペアンプ。
4. The apparatus according to claim 2, wherein said output means is a second one.
And a second source grounding circuit that receives an output of the second source follower circuit as an input. The bias of the bias circuit is applied to the gate of a constant current source that is a load of the second source follower circuit. An operational amplifier to which a voltage is applied.
JP11048034A 1999-02-25 1999-02-25 Bias circuit and operational amplifier using same Withdrawn JP2000252756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11048034A JP2000252756A (en) 1999-02-25 1999-02-25 Bias circuit and operational amplifier using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11048034A JP2000252756A (en) 1999-02-25 1999-02-25 Bias circuit and operational amplifier using same

Publications (1)

Publication Number Publication Date
JP2000252756A true JP2000252756A (en) 2000-09-14

Family

ID=12792039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11048034A Withdrawn JP2000252756A (en) 1999-02-25 1999-02-25 Bias circuit and operational amplifier using same

Country Status (1)

Country Link
JP (1) JP2000252756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034558A1 (en) * 2001-10-11 2003-04-24 Hamamatsu Photonics K.K. Light emitting element drive circuit
CN106230389A (en) * 2016-09-27 2016-12-14 无锡中科微电子工业技术研究院有限责任公司 high-gain low-noise amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034558A1 (en) * 2001-10-11 2003-04-24 Hamamatsu Photonics K.K. Light emitting element drive circuit
US7075338B2 (en) 2001-10-11 2006-07-11 Hamamatsu Photonics K.K. Light emitting element driving circuit with current mirror circuit
CN106230389A (en) * 2016-09-27 2016-12-14 无锡中科微电子工业技术研究院有限责任公司 high-gain low-noise amplifier
CN106230389B (en) * 2016-09-27 2023-09-26 无锡中科微电子工业技术研究院有限责任公司 High gain low noise amplifier

Similar Documents

Publication Publication Date Title
US6437645B1 (en) Slew rate boost circuitry and method
JP4766769B2 (en) Semiconductor integrated circuit
US7348851B2 (en) Miller-compensated amplifier
US7872519B2 (en) Voltage divider circuit
JP4450542B2 (en) Operational transconductance amplifier for output buffer
JPH0360209A (en) Amplifier circuit and semiconductor integrated circuit including the same
JP4070533B2 (en) Semiconductor integrated circuit device
JP4865804B2 (en) Small signal amplifier with large signal output boost stage
JP2003298368A (en) Amplifier circuit
KR20060056419A (en) Am intermediate frequency variable gain amplifier circuit, variable gain amplifier circuit, and semiconductor integrated circuit thereof
JP4694942B2 (en) Constant current circuit
JP4578896B2 (en) Clock buffer circuit
US20040239426A1 (en) Operational amplifier generating desired feedback reference voltage allowing improved output characteristic
JP7366692B2 (en) power circuit
US7453104B2 (en) Operational amplifier including low DC gain wideband feed forward circuit and high DC gain narrowband gain circuit
KR20060004260A (en) Self biased differential amplifier
US11632091B2 (en) Operational amplifier
JP2000252756A (en) Bias circuit and operational amplifier using same
JP6132881B2 (en) Voltage variable gain amplification circuit and differential input voltage amplification method
US7119605B2 (en) Dynamic transconductance boosting technique for current mirrors
CN114157253A (en) Operational amplifier
JP4532847B2 (en) Differential amplifier
JP5788739B2 (en) Voltage variable gain amplifier circuit
JP4867066B2 (en) Amplifier circuit
JP3383136B2 (en) Constant amplitude clock generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509