JP2000252483A - Method and device for measuring solar battery cell - Google Patents

Method and device for measuring solar battery cell

Info

Publication number
JP2000252483A
JP2000252483A JP11049391A JP4939199A JP2000252483A JP 2000252483 A JP2000252483 A JP 2000252483A JP 11049391 A JP11049391 A JP 11049391A JP 4939199 A JP4939199 A JP 4939199A JP 2000252483 A JP2000252483 A JP 2000252483A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
side electrode
conductive side
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11049391A
Other languages
Japanese (ja)
Other versions
JP3513043B2 (en
Inventor
Hidetoshi Washio
英俊 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP04939199A priority Critical patent/JP3513043B2/en
Publication of JP2000252483A publication Critical patent/JP2000252483A/en
Application granted granted Critical
Publication of JP3513043B2 publication Critical patent/JP3513043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for easily measuring the output of a double-sided junction type solar battery cell. SOLUTION: A measuring device of a solar battery cell with first and second conductivity type electrodes on one surface is provided with a selection switch 19 for selecting between first and second conductivity type electrodes, and a means for measuring the current or the voltage between an electrode on the other surface and a selective first or second conductivity type electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、第1導電領域側の
電極とこれと極性の異なる第2導電領域の電極からなる
両面接合型太陽電池セルの測定方法及び測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a double-sided junction solar cell comprising an electrode on a first conductive region and an electrode on a second conductive region having a polarity different from that of the first conductive region.

【0002】[0002]

【従来の技術】図4(a)に従来型シリコン太陽電池の
断面図、図4(b)に従来型シリコン太陽電池の裏面図
を示す。図1は一般的にBSFR(Back surf
acefield and Reflector)型太
陽電池と呼ばれる。この太陽電池セル20は、P型シリ
コン基板21の表面に光エネルギーにより発生するキャ
リアーを効率よく取り込む為、N+拡散層22がN型不
純物を熱拡散することにより形成されており、その上に
は、発生した電気を効率よく取り出す為、表面電極24
が櫛型状に形成されている。さらに、N+拡散層22と
表面電極24は、入射する光の表面反射を低減する為、
反射防止膜25によって覆われている。また、P型シリ
コン基板21の裏面には、キャリア−の発生量を増加さ
せる為、P+拡散層23がP型不純物を熱拡散すること
により形成されており、その上には、裏面から抜け出し
てしまう長波長光を反射させ、かつ発生した電気を取り
出す為、図4(b)に示すように裏面電極26が太陽電
池裏面のほぼ全面に形成されている。
2. Description of the Related Art FIG. 4A is a sectional view of a conventional silicon solar cell, and FIG. 4B is a rear view of the conventional silicon solar cell. FIG. 1 generally shows BSFR (Back surf).
acefield and Reflector type solar cells. In this solar cell 20, an N + diffusion layer 22 is formed by thermally diffusing an N-type impurity in order to efficiently take in carriers generated by light energy on the surface of a P-type silicon substrate 21. In order to efficiently take out the generated electricity, the surface electrode 24
Are formed in a comb shape. Further, the N + diffusion layer 22 and the surface electrode 24 reduce the surface reflection of incident light,
It is covered with an antireflection film 25. On the back surface of the P-type silicon substrate 21, a P + diffusion layer 23 is formed by thermally diffusing a P-type impurity in order to increase the amount of generated carriers. In order to reflect the generated long-wavelength light and to extract the generated electricity, a back electrode 26 is formed on almost the entire back surface of the solar cell as shown in FIG.

【0003】図5(a)(b)に従来型の太陽電池測定
装置を示す。図5(a)は従来型の太陽電池測定装置の
上面図、図5(b)は従来型の太陽電池測定装置の側面
図のである。この測定装置30は、上部からは疑似太陽
光を載置した太陽電池20に照射して電圧対電流特性を
測定する。測定装置は、太陽電池セル20を載置するた
めの銅材料からなるセル載置部31と、セルを真空引き
してセル載置部31に固定するための真空吸着部32
と、セルの温度を検知する熱電対33と、セル取り出し
開口34とからなる熱伝導性ブロック35、電圧検知用
プローブ36と電流検知用プローブ37を備える昇降装
置39、昇降装置の昇降開始と停止、及び真空吸着部3
2のオンオフを行うスイッチ40とからなる。
FIGS. 5A and 5B show a conventional solar cell measuring apparatus. FIG. 5A is a top view of a conventional solar cell measuring device, and FIG. 5B is a side view of the conventional solar cell measuring device. The measuring device 30 measures voltage-current characteristics by irradiating the solar cell 20 on which pseudo sunlight is placed from above. The measuring device includes a cell mounting portion 31 made of a copper material for mounting the solar cell 20 and a vacuum suction portion 32 for evacuating the cell and fixing the cell to the cell mounting portion 31.
, A thermocouple 33 for detecting the temperature of the cell, a heat conductive block 35 comprising a cell take-out opening 34, an elevating device 39 having a voltage detecting probe 36 and a current detecting probe 37, and starting and stopping of the elevating device , And vacuum suction unit 3
2 for turning on and off the switch.

【0004】図6に直列4端子法の基本回路を示す。図
5の測定装置(測定時の接続は図示せず)を用いて図6
のように電気接続し疑似太陽光を照射して電圧対電流特
性を測定する。すなわち、セルの表面電極24と裏面電
極に電圧計と電流計28を接続して、開放電圧の測定時
には電流計回路を切断して測定し、短絡電流測定時には
電圧計回路を切断して測定する。
FIG. 6 shows a basic circuit of the series four-terminal method. 6 using the measuring device of FIG. 5 (connection at the time of measurement is not shown).
And irradiate the artificial sunlight to measure the voltage-current characteristics. That is, a voltmeter and an ammeter 28 are connected to the front electrode 24 and the back electrode of the cell, and the open-circuit voltage is measured by cutting the ammeter circuit, and the short-circuit current is measured by cutting the voltmeter circuit. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
測定装置は、従来の太陽電池セルに適したものであった
ため、両面接合型太陽電池セルの測定には使用できない
という問題点を有していた。両面接合型太陽電池セルの
測定に従来の測定装置を使用すると以下のような問題が
発生する。
However, since the conventional measuring device was suitable for the conventional solar cell, it had a problem that it could not be used for measuring a double-sided junction type solar cell. . When a conventional measuring device is used for measuring a double-sided junction solar cell, the following problems occur.

【0006】両面接合型太陽電池セルの裏面側にはP電
極とN電極の導電極性の異なる裏面電極があるため、短
絡してしまう。また、従来の測定装置では、このような
2種類の電極に対応した端子がないため、太陽電池のセ
ルを移動させたり、一部の電極を絶縁したりする必要が
あり、測定が繁雑であった。
The back side of the double-sided junction type solar cell has a back side electrode having a different conductivity polarity between the P electrode and the N electrode, which causes a short circuit. In addition, the conventional measuring device does not have terminals corresponding to these two types of electrodes, so it is necessary to move the cells of the solar cell or to insulate some of the electrodes, making the measurement complicated. Was.

【0007】本発明の目的は、上記問題点に鑑み、両面
接合型太陽電池セルの出力を簡単に測定できる測定方法
及び測定装置を提供することにある。
An object of the present invention is to provide a measuring method and a measuring apparatus which can easily measure the output of a double-sided junction solar cell in view of the above problems.

【0008】[0008]

【課題を解決するための手段】請求項1記載の太陽電池
セルの測定方法は、一方面に第1導電側電極と第2導電
側電極とを有する太陽電池セルの測定方法であって、第
1導電側電極と第2導電側電極とを選択し、他方面の電
極と選択された第1導電側電極または第2導電側電極と
の間の電流または電圧を測定することを特徴とする。
According to a first aspect of the present invention, there is provided a method for measuring a solar cell having a first conductive side electrode and a second conductive side electrode on one surface. The method is characterized in that a first conductive side electrode and a second conductive side electrode are selected, and a current or a voltage between the electrode on the other surface and the selected first conductive side electrode or the selected second conductive side electrode is measured.

【0009】請求項2記載の太陽電池セルの測定方法
は、請求項1記載の太陽電池セルの測定方法において、
他方面の電極にプローブが接続されたのに応答して第1
導電側電極と第2導電側電極のいづれかを選択すること
を特徴とする。
According to a second aspect of the present invention, in the method for measuring a solar cell according to the first aspect,
In response to the probe being connected to the electrode on the other side, the first
It is characterized in that either the conductive side electrode or the second conductive side electrode is selected.

【0010】請求項3記載の太陽電池セルの測定装置
は、一方面に第1導電側電極と第2導電側電極とを有す
る太陽電池セルの測定装置であって、第1導電側電極と
第2導電側電極とを選択する手段と、他方面の電極と選
択された第1導電側電極または第2導電側電極との間の
電流または電圧を測定する手段と、を有することを特徴
とする。
According to a third aspect of the present invention, there is provided a solar cell measuring apparatus having a first conductive side electrode and a second conductive side electrode on one surface, wherein the first conductive side electrode and the second conductive side electrode are connected to each other. A means for selecting a second conductive side electrode; and a means for measuring a current or a voltage between the electrode on the other surface and the selected first conductive side electrode or the selected second conductive side electrode. .

【0011】請求項4記載の太陽電池セルの測定装置
は、請求項3記載の太陽電池セルの測定装置において、
互いに電気的に分離された第1導電側電極に対応する端
子と第2導電側電極に対応する端子とを有することを特
徴とする。
According to a fourth aspect of the present invention, there is provided a solar cell measuring apparatus according to the third aspect.
It has a terminal corresponding to the first conductive side electrode and a terminal corresponding to the second conductive side electrode which are electrically separated from each other.

【0012】[0012]

【発明の実施の形態】図1(a)に両面接合型太陽電池
の断面図、図1(b)に両面接合型太陽電池の裏面図を
示す。図1は従来のBSFR型太陽電池を改良した太陽
電池であり、一般的に両面接合型太陽電池と呼ばれる。
図1の太陽電池セル1の表面側の構造は従来のBSFR
型太陽電池とまったく変わらず、P型シリコン基板2の
表面側には、N+拡散層3、この拡散層に接続された表
面電極4、反射防止膜5が設けられている。一方、P型
シリコン基板2の裏面には、P型不純物を熱拡散するこ
とにより形成されたP+拡散層6,N型不純物を熱拡散
することにより形成されたN+拡散層7それぞれが部分
的に形成されている。それらの上には酸化膜層8が形成
され、その酸化膜層8の開口を介して、図1(b)に示
すように、電気的に分離された、P+拡散層6上には裏
面P電極9AとN+拡散層7上には裏面N電極9Bとか
らなる裏面電極9が設けられている。
FIG. 1A is a sectional view of a double-sided junction solar cell, and FIG. 1B is a rear view of the double-sided junction solar cell. FIG. 1 shows a solar cell obtained by improving a conventional BSFR type solar cell, which is generally called a double-sided junction solar cell.
The structure on the front side of the solar cell 1 in FIG. 1 is a conventional BSFR
In the same manner as the solar cell of the type, an N + diffusion layer 3, a surface electrode 4 connected to the diffusion layer, and an antireflection film 5 are provided on the surface side of the P-type silicon substrate 2. On the other hand, a P + diffusion layer 6 formed by thermally diffusing P-type impurities and an N + diffusion layer 7 formed by thermally diffusing N-type impurities are partially formed on the back surface of P-type silicon substrate 2. Is formed. An oxide film layer 8 is formed on them, and through the opening of the oxide film layer 8, as shown in FIG. On the electrode 9A and the N + diffusion layer 7, a back electrode 9 including a back N electrode 9B is provided.

【0013】図2に両面接合型太陽電池セルの測定装置
を示す。図2(a)は測定装置の上面図、図2(b)は
側面図である。この測定装置10は、図示しない温度調
整器の上に載置され、両面接合型太陽電池セルを測定で
きるように、太陽電池セルの裏面側が接触する部分に、
電気的に互いに分離された電流端子12I,13I、電
圧端子12V,13Vが設けられ、図1の太陽電池セル
1がこの測定装置に載置されると、裏面P電極9Aと裏
面N電極9Bとが、それぞれ、端子12I,12Vと端
子13I,13Vとに接続される。この測定装置は、太
陽電池を載置するためのセル載置部11Aと上記4つの
各端子を電気的に分離するための熱伝導性の良い電気絶
縁部11Bからなる熱伝導性ブロック11が設けられ、
熱伝導性ブロック11は、銅などの熱伝導性のよい材料
でできており、さらに、太陽電池セルの温度を検知して
設定温度に維持するための熱電対15、セル載置部11
Aに載置された太陽電池セル1を固着するために真空引
きを行う真空吸着部16、太陽電池セルの取り出すため
の開口18が設けられている。なお、セル載置部11A
の表面は、シート状またはテープ状の熱伝導性のよい絶
縁材料でおおわれて極性の異なる裏面電極が互いに短絡
しないようにしている。また、図1の太陽電池セル1の
表面電極4に接続されるべき電圧検知用プローブ14V
と電流検知用プローブ14Iを上昇または下降させるた
めの昇降装置17が設けられ、測定時には、電圧検知用
プローブ14Vと電流検知用プローブ14Iを下降させ
て表面電極4に接触すると共に下降しきったことを検知
して、切り替えスイッチ19が動作し、セル載置部11
Aに載置された太陽電池セル1は真空引きされて固定さ
れる。
FIG. 2 shows an apparatus for measuring a double-sided junction solar cell. FIG. 2A is a top view of the measuring device, and FIG. 2B is a side view. The measuring device 10 is mounted on a temperature controller (not shown), and a portion where the back surface side of the solar cell contacts, so that a double-sided junction type solar cell can be measured,
Current terminals 12I and 13I and voltage terminals 12V and 13V which are electrically separated from each other are provided. When the solar cell 1 of FIG. 1 is mounted on this measuring device, the back P electrode 9A and the back N electrode 9B Are connected to terminals 12I and 12V and terminals 13I and 13V, respectively. This measuring device is provided with a heat conductive block 11 including a cell mounting portion 11A for mounting a solar cell and an electric insulating portion 11B having good heat conductivity for electrically separating the four terminals. And
The heat conductive block 11 is made of a material having good heat conductivity such as copper, and further has a thermocouple 15 for detecting the temperature of the solar cell and maintaining the temperature at a set temperature, and a cell mounting portion 11.
A vacuum suction unit 16 for evacuating the solar cell 1 mounted on A is provided, and an opening 18 for taking out the solar cell is provided. In addition, the cell mounting part 11A
Is covered with a sheet-like or tape-like insulating material having good thermal conductivity so that back electrodes having different polarities are not short-circuited to each other. Further, a voltage detection probe 14V to be connected to the surface electrode 4 of the solar cell 1 of FIG.
And a lifting / lowering device 17 for raising or lowering the current detection probe 14I. At the time of measurement, the voltage detection probe 14V and the current detection probe 14I are lowered to come into contact with the surface electrode 4 and to be completely lowered. Upon detection, the changeover switch 19 is operated, and the cell mounting portion 11
The solar cell 1 placed on A is evacuated and fixed.

【0014】昇降装置17の下降の完了により、測定の
準備が整う。この時の回路構成を、図3に示す。疑似太
陽光SSを照射して熱電対15により所定温度に制御す
る。切り替えスイッチ19は、表面電極4からの出力を
検知するための電圧検知用プローブ14Vと電流検知用
プローブ14Iを選択する場合(測定モード1)と端子
13Iと13Vとを選択する場合(測定モード2)があ
る。測定モード1では、表面電極4と裏面P電極9Aと
の間に発生する電流及び電圧を4端子法で測定し、測定
モード2では、裏面P電極9Aと裏面N電極9Bとの間
に発生する電流及び電圧を4端子法で測定する。なお、
切り替えスイッチ19を、13Iと14I双方に接続
し、13Iと13V双方に接続するような測定モード
(測定モード3)を設ければ、表面電極4と裏面P電極
9A及び裏面N電極9Bとの間に発生する電流及び電圧
を4端子法で測定できる。各測定モードでは、可変電圧
源E0を変化させて各電圧値と電流値を読み取る。ま
た、切り替えスイッチ19は、本実施の形態の場合、昇
降装置17の下降の完了に応答して、直ちにいずれかの
測定モードにして測定可能にしたが、手動で切り替えス
イッチ19を操作してもよいが、本実施の形態のように
することで、迅速な測定が可能になる。また、太陽電池
のセルの電極の配置が、この測定装置の各端子に対応す
るのであれば、両面接合型太陽電池に限らず、広く他の
太陽電池セルの測定に用いることができる。
Upon completion of the lowering of the elevating device 17, the preparation for measurement is completed. The circuit configuration at this time is shown in FIG. The thermocouple 15 controls the temperature to a predetermined temperature by irradiating the artificial sunlight SS. The changeover switch 19 is used to select the voltage detection probe 14V and the current detection probe 14I for detecting the output from the surface electrode 4 (measurement mode 1) and to select the terminals 13I and 13V (measurement mode 2). ). In the measurement mode 1, the current and voltage generated between the front electrode 4 and the back P electrode 9A are measured by a four-terminal method, and in the measurement mode 2, the current and voltage are generated between the back P electrode 9A and the back N electrode 9B. The current and voltage are measured by a four-terminal method. In addition,
If a measurement mode (measurement mode 3) is provided in which the changeover switch 19 is connected to both 13I and 14I and to both 13I and 13V, the connection between the front electrode 4 and the back P electrode 9A and the back N electrode 9B is established. Current and voltage generated by the four-terminal method can be measured. In each measurement mode, each voltage value and current value are read by changing the variable voltage source E0. Further, in the case of the present embodiment, the changeover switch 19 is set to one of the measurement modes immediately in response to the completion of the lowering of the elevating device 17 so that the measurement can be performed. Good, but with the present embodiment, quick measurement is possible. In addition, as long as the arrangement of the electrodes of the solar cell corresponds to each terminal of this measuring device, the present invention can be used not only for the double-sided junction type solar cell but also for the measurement of other solar cells widely.

【0015】[0015]

【発明の効果】本発明によれば、一方面側に両方の極性
の電極を有する太陽電池セルを簡単に測定する事ができ
る。
According to the present invention, a solar cell having electrodes of both polarities on one side can be easily measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】両面接合型太陽電池の断面図と裏面図である。FIG. 1 is a cross-sectional view and a rear view of a double-sided junction solar cell.

【図2】本発明の測定装置の上面図と側面図である。FIG. 2 is a top view and a side view of the measuring device of the present invention.

【図3】本発明の直流4端子法(6端子)の基本回路で
ある。
FIG. 3 is a basic circuit of the DC four-terminal method (six terminals) of the present invention.

【図4】従来のBSFR型太陽電池の断面図と裏面図で
ある。
FIG. 4 is a cross-sectional view and a back view of a conventional BSFR solar cell.

【図5】従来型太陽電池測定装置の上面図と側面図であ
る。
FIG. 5 is a top view and a side view of a conventional solar cell measurement device.

【図6】直流4端子法の基本回路である。FIG. 6 is a basic circuit of the DC four-terminal method.

【符号の説明】[Explanation of symbols]

1 太陽電池セル 2 P型シリコン基板 3 N+拡散層 4 表面電極 5 反射防止膜 6 P+拡散層 7 N+拡散層 8 酸化膜層 9 裏面電極 REFERENCE SIGNS LIST 1 solar cell 2 P-type silicon substrate 3 N + diffusion layer 4 surface electrode 5 antireflection film 6 P + diffusion layer 7 N + diffusion layer 8 oxide film layer 9 back electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一方面に第1導電側電極と第2導電側電
極とを有する太陽電池セルの測定方法であって、 第1導電側電極と第2導電側電極とを選択し、他方面の
電極と選択された第1導電側電極または第2導電側電極
との間の電流または電圧を測定することを特徴とする太
陽電池セルの測定方法。
1. A method for measuring a solar cell having a first conductive side electrode and a second conductive side electrode on one surface, wherein the first conductive side electrode and the second conductive side electrode are selected, and the other surface is selected. A method of measuring a current or a voltage between the first electrode and the selected first conductive side electrode or the second conductive side electrode.
【請求項2】 他方面の電極にプローブが接続されたの
に応答して第1導電側電極と第2導電側電極のいづれか
を選択することを特徴とする請求項1記載の太陽電池セ
ルの測定方法。
2. The solar cell according to claim 1, wherein one of the first conductive side electrode and the second conductive side electrode is selected in response to a probe being connected to the electrode on the other surface. Measuring method.
【請求項3】 一方面に第1導電側電極と第2導電側電
極とを有する太陽電池セルの測定装置であって、 第1導電側電極と第2導電側電極とを選択する手段と、 他方面の電極と選択された第1導電側電極または第2導
電側電極との間の電流または電圧を測定する手段と、を
有することを特徴とする太陽電池セルの測定装置。
3. A measuring apparatus for a solar cell having a first conductive side electrode and a second conductive side electrode on one surface, a means for selecting a first conductive side electrode and a second conductive side electrode, A means for measuring a current or a voltage between the electrode on the other surface and the selected first conductive side electrode or the selected second conductive side electrode.
【請求項4】 互いに電気的に分離された第1導電側電
極に対応する端子と第2導電側電極に対応する端子とを
有することを特徴とする請求項3記載の太陽電池セルの
測定装置。
4. The measuring device for a solar cell according to claim 3, further comprising a terminal corresponding to the first conductive side electrode and a terminal corresponding to the second conductive side electrode which are electrically separated from each other. .
JP04939199A 1999-02-26 1999-02-26 Method and apparatus for measuring solar cell Expired - Fee Related JP3513043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04939199A JP3513043B2 (en) 1999-02-26 1999-02-26 Method and apparatus for measuring solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04939199A JP3513043B2 (en) 1999-02-26 1999-02-26 Method and apparatus for measuring solar cell

Publications (2)

Publication Number Publication Date
JP2000252483A true JP2000252483A (en) 2000-09-14
JP3513043B2 JP3513043B2 (en) 2004-03-31

Family

ID=12829742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04939199A Expired - Fee Related JP3513043B2 (en) 1999-02-26 1999-02-26 Method and apparatus for measuring solar cell

Country Status (1)

Country Link
JP (1) JP3513043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270873A (en) * 2001-03-13 2002-09-20 Fuji Electric Corp Res & Dev Ltd Method and apparatus for continuously and automatically measuring solar battery cell characteristics
JP2015036671A (en) * 2013-08-16 2015-02-23 横河電機株式会社 Photoelectromotive force measuring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270873A (en) * 2001-03-13 2002-09-20 Fuji Electric Corp Res & Dev Ltd Method and apparatus for continuously and automatically measuring solar battery cell characteristics
JP2015036671A (en) * 2013-08-16 2015-02-23 横河電機株式会社 Photoelectromotive force measuring system

Also Published As

Publication number Publication date
JP3513043B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JP4628628B2 (en) Apparatus for localizing manufacturing errors in photovoltaic elements
Potthoff et al. Detection of the voltage distribution in photovoltaic modules by electroluminescence imaging
US4045245A (en) Solar cell package
US4783421A (en) Method for manufacturing electrical contacts for a thin-film semiconductor device
RU2555212C2 (en) Heterojunction photovoltaic cell having back contact
JP2008091674A (en) Reverse-bias treatment device and reverse-bias treatment method for photoelectric conversion element
EP4376097A1 (en) Solar cell and photovoltaic module
JP2000252483A (en) Method and device for measuring solar battery cell
WO2024060831A1 (en) Solar cell
Barnett et al. High current, thin silicon-on-ceramic solar cell
Kunz et al. Advances in evaporated solid-phase-crystallized poly-Si thin-film solar cells on glass (EVA)
Burton et al. CdS‐Cu2 S Solar Cells Fabricated on Cd2SnO4‐Silica Substrates
Basore et al. All-aluminum screen-printed IBC cells: Design concept
JP2001257371A (en) Method for manufacturing solar cell, solar cell and condensing type solar cell module
JPH0693517B2 (en) Amorphous semiconductor solar cell
Saim et al. Properties of indium-tin-oxide (ITO)/silicon heterojunction solar cells by thick-film techniques
JP2001135839A (en) Manufacturing method of thin film photoelectric conversion module and defect recovery device of thin film photoelectric conversion module
JPH06204529A (en) Solar cell
Faes et al. Direct contact to TCO with SmartWire connection technology
JP2012256734A (en) Selection method, solar cell module manufacturing method, and evaluation device
JP4272320B2 (en) Defect repair method for thin film photoelectric conversion module and method for manufacturing thin film photoelectric conversion module
JPH1012901A (en) Method and device for removing short-circuiting part of solar battery
CN113994223A (en) Method for electrically characterizing a diced photovoltaic cell
Kray et al. Progress in high-efficiency emitter-wrap-through cells on medium quality substrates
Dai et al. High efficiency n-silicon solar cells using rear junction structures

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees