JP2000252263A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000252263A
JP2000252263A JP11053281A JP5328199A JP2000252263A JP 2000252263 A JP2000252263 A JP 2000252263A JP 11053281 A JP11053281 A JP 11053281A JP 5328199 A JP5328199 A JP 5328199A JP 2000252263 A JP2000252263 A JP 2000252263A
Authority
JP
Japan
Prior art keywords
side wall
gate
wall spacer
semiconductor device
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11053281A
Other languages
Japanese (ja)
Other versions
JP3595716B2 (en
Inventor
Hideumi Kanetaka
高 秀 海 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5328199A priority Critical patent/JP3595716B2/en
Publication of JP2000252263A publication Critical patent/JP2000252263A/en
Application granted granted Critical
Publication of JP3595716B2 publication Critical patent/JP3595716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma etching method wherein a side wall spacer shoulder part formed around a gate during a manufacturing process of a semiconductor device having an LDD structure is so removed as the upper part of gate is exposed with high dimension control precision. SOLUTION: A first process wherein a silicon nitride film 1 formed with a gate covered using a first atmosphere which contains chlorine, hydrogen bromide, sulfur hexafluoride, and oxygen by a voluminal ratio about 12:3:1:1 with a pressure less than 156 mTorr is anisotropic-etched to provide a side wall spacer, a second process wherein the shoulder part of a side wall spacer 1B is taper-etched for removal using a second atmosphere containing chlorine, sulfur hexafluoride, an oxygen by a voluminal ratio about 12:3:1 with a pressure less than 150 mTorr, and a third process wherein a side wall spacer 1C is isotropic-etched for shaping using a third atmosphere containing sulfur hexafluoride, hydrogen bromide, and oxygen by a voluminal ratio about 8:1:1 with a pressure 150 mTorr or more, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に係り、特に、LDD構造を有する半導体装置の製造
プロセスにおいて、細線効果を抑制するゲートのサリサ
イド(Self-Aligned Silicide)化を行うための側壁ス
ペーサのプラズマエッチング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a semiconductor device having an LDD structure, in which a gate is formed into a salicide (Self-Aligned Silicide) for suppressing a thin line effect. The present invention relates to a plasma etching method for a sidewall spacer.

【0002】[0002]

【従来の技術】従来、半導体装置の高集積化及び動作の
高速化のために、電界効果型トランジスタのゲート長が
短縮化されることに伴い、ゲートと配線との接触抵抗が
増大し、半導体装置の高集積化及び動作の高速化を妨げ
る細線効果が発生するという問題があった。
2. Description of the Related Art Conventionally, as the gate length of a field-effect transistor is shortened in order to increase the degree of integration and speed of operation of a semiconductor device, the contact resistance between the gate and the wiring increases, and There is a problem that a thin line effect occurs which hinders high integration and high-speed operation of the device.

【0003】LDD構造を有する半導体装置において
は、この細線効果を抑制すべく、ゲートと配線との接触
面積を大きくするために、ゲートのサリサイド化が行わ
れている。ゲートのサリサイド化とは、ゲート上面のみ
ならずゲート側面上部までをゲートと配線との接続部に
するために、ゲート側面上部までゲートが露出するよう
な側壁スペーサをゲート周囲に形成し、この側壁を利用
して自己整合的にゲート上部のシリサイド化を行うもの
である。これにより、ゲートと配線との接触抵抗を低減
し、細線効果を抑制することができる。
In a semiconductor device having an LDD structure, in order to suppress the thin line effect, a salicide gate is used in order to increase a contact area between a gate and a wiring. In order to make the gate salicide, not only the upper surface of the gate but also the upper portion of the gate side as a connection portion between the gate and the wiring, a sidewall spacer is formed around the gate so that the gate is exposed to the upper portion of the gate side. Is used to perform silicidation of the upper part of the gate in a self-aligned manner. Thereby, the contact resistance between the gate and the wiring can be reduced, and the thin line effect can be suppressed.

【0004】以下、従来のゲートのサリサイド化のため
の側壁スペーサのプラズマエッチング方法について説明
する。
A conventional plasma etching method of a side wall spacer for saliciding a gate will be described below.

【0005】図3は、従来のゲートのサリサイド化のた
めの側壁スペーサのプラズマエッチング工程におけるゲ
ート部分の構造を示した断面図である。具体的には、図
3(a)はエッチング前の構造、図3(b)はエッチン
グ後の構造をそれぞれ示した断面図である。
FIG. 3 is a cross-sectional view showing a structure of a gate portion in a conventional plasma etching process of a side wall spacer for salicidation of a gate. Specifically, FIG. 3A is a cross-sectional view showing the structure before etching, and FIG. 3B is a cross-sectional view showing the structure after etching.

【0006】エッチング前のゲート部分は、図3(a)
に示すように、シリコン基板(Si)5表面近傍のチャ
ネル領域上にゲート絶縁酸化膜(Gate−Ox.)4
が形成され、ゲート絶縁酸化膜4上にポリシリコンゲー
ト電極(poly−Si)3が形成されている。また、
ポリシリコンゲート電極3及びシリコン基板5の表面を
覆ってシリコン酸化膜(SiO2)2が形成され、さら
にシリコン酸化膜2の表面を覆って、側壁スペーサとな
るシリコン窒化膜(SiN)1が形成されている。
FIG. 3A shows a gate portion before etching.
As shown in FIG. 3, a gate insulating oxide film (Gate-Ox.) 4 is formed on a channel region near the surface of a silicon substrate (Si) 5.
Is formed, and a polysilicon gate electrode (poly-Si) 3 is formed on the gate insulating oxide film 4. Also,
A silicon oxide film (SiO 2 ) 2 is formed covering the surface of the polysilicon gate electrode 3 and the silicon substrate 5, and a silicon nitride film (SiN) 1 serving as a side wall spacer is formed covering the surface of the silicon oxide film 2. Have been.

【0007】このシリコン窒化膜1をエッチングしてゲ
ート側面上部までゲートが露出するような側壁スペーサ
を形成するためには、通常の側壁スペーサが形成される
エッチングにとどまらず、側壁スペーサ肩部が除去され
るように、エッチングを行わなければならない。
In order to form a side wall spacer by etching the silicon nitride film 1 so that the gate is exposed to the upper part of the side surface of the gate, not only etching for forming a normal side wall spacer but also a shoulder portion of the side wall spacer is removed. Etching must be performed as described.

【0008】従来のゲートのサリサイド化のための側壁
スペーサのプラズマエッチング工程においては、図3
(a)及び(b)に示すように、側壁スペーサ肩部を除
去するために、六フッ化硫黄(SF6)、臭化水素(H
Br)、酸素(O2)をおよそ8:1:1の体積比で含
有する雰囲気を使用して、150mTorr以上の高圧
力の下でエッチングを行う。この高圧力の下でのエッチ
ングは等方的に進行し、側壁スペーサ肩部が除去された
時点でエッチングを終了すると、ゲート側面上部までゲ
ートが露出するような側壁スペーサ1A’が形成され、
この側壁スペーサ1A’を利用してゲート上部のサリサ
イド化を行うことができる。
In a conventional plasma etching process of a side wall spacer for salicidation of a gate, FIG.
As shown in (a) and (b), sulfur hexafluoride (SF 6 ), hydrogen bromide (H
Etching is performed under a high pressure of 150 mTorr or more using an atmosphere containing Br) and oxygen (O 2 ) in a volume ratio of about 8: 1: 1. The etching under the high pressure proceeds isotropically, and when the etching is completed when the shoulder of the side wall spacer is removed, a side wall spacer 1A ′ is formed such that the gate is exposed to the upper side of the gate.
Using the side wall spacer 1A ', the upper part of the gate can be salicided.

【0009】[0009]

【発明が解決しようとする課題】図4は、従来のゲート
のサリサイド化のための側壁スペーサのプラズマエッチ
ング工程におけるエッチング前後の側壁スペーサ部分の
構造を示した拡大断面図である。
FIG. 4 is an enlarged cross-sectional view showing the structure of a side wall spacer portion before and after etching in a conventional side wall spacer plasma etching process for saliciding a gate.

【0010】上述のように、側壁スペーサ肩部を除去す
るためのエッチングは等方的に進行することから、図4
に示すように、側壁スペーサ1A’を形成するシリコン
窒化膜1のエッチングによる水平方向の後退量が大き
く、予めこの後退量を見込んで、堆積するシリコン窒化
膜1の膜厚を厚めに設定する必要があった。
As described above, the etching for removing the shoulder of the side wall spacer proceeds isotropically.
As shown in FIG. 6, the silicon nitride film 1 forming the side wall spacer 1A 'has a large amount of retreat in the horizontal direction due to etching, and it is necessary to set the film thickness of the silicon nitride film 1 to be thicker in anticipation of this retreat amount in advance. was there.

【0011】また、等方的にエッチングが進行するの
で、側壁スペーサ肩部及び下部の形状もスソを引き易
く、寸法制御精度にも問題があり、今後、素子をさらに
微細化する場合への対応が非常に困難であった。
Further, since the etching progresses isotropically, the shape of the shoulder portion and the lower portion of the side wall spacer is easily pulled out, and there is a problem in the dimensional control accuracy. Was very difficult.

【0012】本発明は上記問題点に鑑みてなされたもの
で、その目的は、LDD構造を有する半導体装置の製造
中にゲート周囲に形成する側壁スペーサ肩部を、ゲート
上部が露出するように除去するプラズマエッチング方法
において、高い寸法制御精度で、側壁スペーサ肩部をエ
ッチングすることが可能な半導体装置の製造方法を提供
することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to remove a shoulder of a side wall spacer formed around a gate during manufacturing of a semiconductor device having an LDD structure so that an upper portion of the gate is exposed. An object of the present invention is to provide a method of manufacturing a semiconductor device capable of etching a shoulder of a side wall spacer with high dimensional control accuracy in a plasma etching method.

【0013】[0013]

【課題を解決するための手段】本発明に係る半導体装置
の製造方法によれば、LDD構造を有する半導体装置の
製造工程中にゲート周囲に形成する側壁スペーサ肩部
を、ゲート上部が露出するように除去する半導体装置の
製造方法において、塩素、臭化水素、六フッ化硫黄、酸
素をおよそ12:3:1:1の体積比で含有し、圧力1
50mTorr未満の第1の雰囲気を使用して、ゲート
を覆って形成されたシリコン窒化膜を異方性エッチング
し、側壁スペーサに加工する第1の工程と、塩素、臭化
水素、酸素をおよそ12:3:1の体積比で含有し、圧
力150mTorr未満の第2の雰囲気を使用して、側
壁スペーサ肩部をテーパエッチングして除去する第2の
工程と、六フッ化硫黄、臭化水素、酸素をおよそ8:
1:1の体積比で含有し、圧力150mTorr以上の
第3の雰囲気を使用して、側壁スペーサを等方性エッチ
ングして整形する第3の工程とを備えたことを特徴と
し、この構成により、高い寸法制御精度で、側壁スペー
サ肩部をエッチングすることが可能となる。
According to a method of manufacturing a semiconductor device according to the present invention, a shoulder of a side wall spacer formed around a gate during a manufacturing process of a semiconductor device having an LDD structure is exposed so that an upper portion of the gate is exposed. In a method of manufacturing a semiconductor device, chlorine, hydrogen bromide, sulfur hexafluoride, and oxygen are contained in a volume ratio of about 12: 3: 1: 1 and a pressure of 1: 1.
Using a first atmosphere of less than 50 mTorr, a first step of anisotropically etching the silicon nitride film formed over the gate and processing the silicon nitride film into a sidewall spacer, and removing chlorine, hydrogen bromide, and oxygen by about 12 A second step of tapering and removing the shoulder of the side wall spacer using a second atmosphere containing a volume ratio of 3: 3 and a pressure of less than 150 mTorr, and sulfur hexafluoride, hydrogen bromide, Oxygen about 8:
A third step of shaping the side wall spacer by isotropic etching using a third atmosphere containing a volume ratio of 1: 1 and a pressure of 150 mTorr or more. The shoulder of the side wall spacer can be etched with high dimensional control accuracy.

【0014】従って、シリコン窒化膜は、側壁スペーサ
の幅とほぼ等しい膜厚に形成されたものとするとよい。
Therefore, it is preferable that the silicon nitride film is formed to have a thickness substantially equal to the width of the side wall spacer.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る半導体装置の
製造方法の実施の一形態について、図面を参照しながら
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a method for manufacturing a semiconductor device according to the present invention will be described below with reference to the drawings.

【0016】図1は、本発明に係る半導体装置の製造方
法の各製造工程におけるゲート部分の構造を示した断面
図である。具体的には、図1(a)は、本発明に係る半
導体装置の製造方法による加工前のゲート部分の構造、
図1(b)は、本発明に係る半導体装置の製造方法の第
1の工程による加工後の構造、図1(c)本発明に係る
半導体装置の製造方法の第2の工程による加工後の構
造、図1(d)本発明に係る半導体装置の製造方法の第
3の工程による加工後の構造をそれぞれ示した断面図で
ある。
FIG. 1 is a cross-sectional view showing the structure of a gate portion in each manufacturing step of the method for manufacturing a semiconductor device according to the present invention. Specifically, FIG. 1A shows a structure of a gate portion before processing by a method of manufacturing a semiconductor device according to the present invention,
FIG. 1B shows the structure after processing in the first step of the method for manufacturing a semiconductor device according to the present invention, and FIG. 1C shows the structure after processing in the second step in the method for manufacturing the semiconductor device according to the present invention. FIG. 1D is a cross-sectional view illustrating a structure after processing in a third step of the method for manufacturing a semiconductor device according to the present invention.

【0017】本発明に係る半導体装置の製造方法による
加工前のゲート部分は、図1(a)に示すように、シリ
コン基板(Si)5表面近傍のチャネル領域上にゲート
絶縁酸化膜(Gate−Ox.)4が形成され、ゲート
絶縁酸化膜4上にポリシリコンゲート電極(poly−
Si)3が形成されている。また、ポリシリコンゲート
電極3及びシリコン基板5の表面を覆ってシリコン酸化
膜(SiO2)2が形成され、さらにシリコン酸化膜2
の表面を覆って、形成しようとする側壁スペーサの幅と
ほぼ同等の厚さのシリコン窒化膜(SiN)1が形成さ
れている。
As shown in FIG. 1A, the gate portion before processing by the method for manufacturing a semiconductor device according to the present invention has a gate insulating oxide film (Gate-type oxide film) on a channel region near the surface of a silicon substrate (Si) 5. Ox.) 4 is formed, and a polysilicon gate electrode (poly-
Si) 3 is formed. Further, a silicon oxide film (SiO 2 ) 2 is formed to cover the surface of the polysilicon gate electrode 3 and the surface of the silicon substrate 5, and the silicon oxide film 2 is further formed.
, A silicon nitride film (SiN) 1 having a thickness substantially equal to the width of the side wall spacer to be formed is formed.

【0018】図1(b)に示すように、本発明に係る半
導体装置の製造方法の第1の工程においては、側壁スペ
ーサとなるシリコン窒化膜1を垂直方向に加工したシリ
コン窒化膜1Aとするために、塩素(Cl2)、臭化水
素(HBr)、六フッ化硫黄(SF6)、酸素(O2)を
およそ12:3:1:1の体積比で含有する第1の雰囲
気を使用して、150mTorr未満の低圧力で、シリ
コン窒化膜1の異方性エッチングを行う。但し、第1の
工程における第1の雰囲気では、シリコン窒化膜1とそ
の下地酸化膜であるシリコン酸化膜2との選択比が小さ
く、過剰なエッチングはすることができないため、シリ
コン酸化膜2が露出した時点で、又はそれ以前にエッチ
ングを止める。
As shown in FIG. 1B, in the first step of the method for manufacturing a semiconductor device according to the present invention, a silicon nitride film 1A serving as a side wall spacer is formed into a silicon nitride film 1A processed in a vertical direction. For this purpose, a first atmosphere containing chlorine (Cl 2 ), hydrogen bromide (HBr), sulfur hexafluoride (SF 6 ), and oxygen (O 2 ) in a volume ratio of about 12: 3: 1: 1 is used. The anisotropic etching of the silicon nitride film 1 is performed at a low pressure of less than 150 mTorr. However, in the first atmosphere in the first step, the selectivity between the silicon nitride film 1 and the underlying silicon oxide film 2 is small and excessive etching cannot be performed. Stop etching at or before exposure.

【0019】次に、図1(c)に示すように、本発明に
係る半導体装置の製造方法の第2の工程においては、シ
リコン窒化膜1Aと下地のシリコン酸化膜2との十分な
選択比を得るために、塩素(Cl2)、臭化水素(HB
r)、酸素(O2)をおよそ12:3:1の体積比で含
有する第2の雰囲気を使用して、150mTorr未満
の低圧力で、シリコン窒化膜1Aの側壁スペーサ肩部を
テーパエッチングして除去し、シリコン窒化膜1Bとす
る。しかし、第2の工程におけるエッチングは、テーパ
エッチングであるために、除去した側壁スペーサ肩部の
シリコン酸化膜2表面にシリコン窒化膜1bが薄皮状に
残存してしまう。
Next, as shown in FIG. 1C, in the second step of the method for manufacturing a semiconductor device according to the present invention, a sufficient selectivity between the silicon nitride film 1A and the underlying silicon oxide film 2 is obtained. To obtain chlorine (Cl 2 ), hydrogen bromide (HB
r), using a second atmosphere containing oxygen (O 2 ) at a volume ratio of about 12: 3: 1, taper-etch the side wall spacer shoulder of the silicon nitride film 1A at a low pressure of less than 150 mTorr. To form a silicon nitride film 1B. However, since the etching in the second step is a taper etching, the silicon nitride film 1b remains in the form of a thin film on the surface of the silicon oxide film 2 at the removed side wall spacer shoulder.

【0020】そこで、図1(d)に示すように、本発明
に係る半導体装置の製造方法の第3の工程においては、
シリコン窒化膜1B,1bを等方的にエッチングするた
めに、六フッ化硫黄(SF6)、臭化水素(HBr)、
酸素(O2)をおよそ8:1:1の体積比で含有する雰
囲気を使用して、150mTorr以上の高圧力の下で
エッチングを行い、第2の工程において除去した側壁ス
ペーサ肩部のシリコン酸化膜2表面に薄皮状に残存した
シリコン窒化膜1bを除去して、側壁スペーサ1Cの整
形を行う。第3の工程におけるエッチング条件は、従来
のエッチング条件と同様であるが、既に第2の工程にお
いて側壁スペーサ肩部を除去した後であるので、エッチ
ング時間はかなり短くなる。第1,第2,第3の工程の
具体的なエッチング時間は、シリコン窒化膜1の膜厚等
の条件に応じて定められる。
Therefore, as shown in FIG. 1D, in the third step of the method for manufacturing a semiconductor device according to the present invention,
In order to isotropically etch the silicon nitride films 1B and 1b, sulfur hexafluoride (SF 6 ), hydrogen bromide (HBr),
Etching is performed under a high pressure of 150 mTorr or more using an atmosphere containing oxygen (O 2 ) in a volume ratio of about 8: 1: 1, and silicon oxide on the side wall spacer shoulder removed in the second step is etched. The silicon nitride film 1b remaining in the form of a skin on the surface of the film 2 is removed, and the side wall spacer 1C is shaped. The etching conditions in the third step are the same as the conventional etching conditions, but since the shoulder portions of the side wall spacers have already been removed in the second step, the etching time is considerably shortened. The specific etching time in the first, second, and third steps is determined according to conditions such as the thickness of the silicon nitride film 1.

【0021】上述の第1の工程から第3の工程までの各
工程の処理は、同一のエッチング装置内で連続に行うこ
とができる。
The processing of each of the above-described first to third steps can be performed continuously in the same etching apparatus.

【0022】図2は、本発明に係る半導体装置の製造方
法と従来の半導体装置の製造方法とによるゲートのサリ
サイド化のための側壁スペーサのプラズマエッチング前
後におけるゲート部分の構造を示した断面図である。具
体的には、図2(a)は本発明に係る半導体装置の製造
方法による側壁スペーサのプラズマエッチング前後にお
けるゲート部分の構造、図2(b)は従来の半導体装置
の製造方法による側壁スペーサのプラズマエッチング前
後におけるゲート部分の構造をそれぞれ示した断面図で
ある。
FIG. 2 is a sectional view showing a structure of a gate portion before and after plasma etching of a side wall spacer for salicidation of a gate by a method of manufacturing a semiconductor device according to the present invention and a conventional method of manufacturing a semiconductor device. is there. Specifically, FIG. 2A shows the structure of the gate portion before and after plasma etching of the side wall spacer by the semiconductor device manufacturing method according to the present invention, and FIG. 2B shows the structure of the side wall spacer by the conventional semiconductor device manufacturing method. It is sectional drawing which showed the structure of the gate part before and after plasma etching, respectively.

【0023】図2(b)に示すように、従来の半導体装
置の製造方法により側壁スペーサのプラズマエッチング
を行った場合には、側壁スペーサ肩部を除去するための
エッチングは等方的に進行することから、側壁スペーサ
1A’を形成するシリコン窒化膜1のエッチングによる
水平方向の後退量が大きく、形成される側壁スペーサ1
A’の幅bは、当初形成されていたシリコン窒化膜1の
膜厚aよりも小さくなってしまう。従って、予めこの後
退量(a−b)を見込んで、堆積するシリコン窒化膜1
の膜厚aを厚めに設定する必要があり、また、寸法制御
精度にも問題があった。
As shown in FIG. 2B, when plasma etching of the sidewall spacer is performed by the conventional method of manufacturing a semiconductor device, the etching for removing the shoulder of the sidewall spacer proceeds isotropically. Therefore, the amount of retreat in the horizontal direction due to the etching of the silicon nitride film 1 forming the sidewall spacer 1A 'is large, and the sidewall spacer 1 to be formed is formed.
The width b of A ′ is smaller than the thickness a of the silicon nitride film 1 that was originally formed. Therefore, the silicon nitride film 1 to be deposited is anticipated in consideration of the retreat amount (ab) in advance.
It is necessary to set the film thickness a to a relatively large value, and there is also a problem in dimensional control accuracy.

【0024】一方、図2(a)に示すように、本発明に
係る半導体装置の製造方法により側壁スペーサのプラズ
マエッチングを行った場合には、シリコン窒化膜1を側
壁スペーサ1A(図1(b)参照)に加工するエッチン
グ過程において異方性エッチングを行っているため、形
成される側壁スペーサ1Cの幅bは、当初形成されてい
たシリコン窒化膜1の膜厚aとほぼ等しい。従って、予
め堆積するシリコン窒化膜1の膜厚aは、形成しようと
する側壁スペーサ1Cの幅bとほぼ同等に設定すればよ
く、寸法制御精度も非常に高い。
On the other hand, as shown in FIG. 2A, when plasma etching of the sidewall spacer is performed by the method of manufacturing a semiconductor device according to the present invention, the silicon nitride film 1 is replaced with the sidewall spacer 1A (FIG. 1B). Since the anisotropic etching is performed in the etching process of (1), the width b of the formed side wall spacer 1C is substantially equal to the film thickness a of the silicon nitride film 1 formed originally. Therefore, the thickness a of the silicon nitride film 1 to be deposited in advance may be set substantially equal to the width b of the sidewall spacer 1C to be formed, and the dimensional control accuracy is very high.

【0025】[0025]

【発明の効果】本発明に係る半導体装置の製造方法によ
れば、側壁スペーサとなるシリコン窒化膜の異方性エッ
チングを行い、シリコン窒化膜を垂直方向に加工する第
1の工程と、シリコン窒化膜と下地のシリコン酸化膜と
の十分な選択比を得て、シリコン窒化膜の側壁スペーサ
肩部を除去する第2の工程と、シリコン窒化膜を等方的
にエッチングして、側壁スペーサの整形を行う第3の工
程とにより、LDD構造を有する半導体装置の製造プロ
セスにおいて側壁スペーサ肩部を除去するプラズマエッ
チングを行うこととしたので、高い寸法制御精度で側壁
スペーサ肩部をエッチングして、側壁スペーサの整形を
行うことができ、従来の技術では非常に困難であった素
子のさらなる微細化への対応も可能となった。
According to the method of manufacturing a semiconductor device of the present invention, a first step of performing anisotropic etching of a silicon nitride film serving as a side wall spacer and processing the silicon nitride film in a vertical direction, A second step of obtaining a sufficient selectivity between the film and the underlying silicon oxide film to remove shoulder portions of the side wall spacers of the silicon nitride film; and forming the side wall spacers by isotropically etching the silicon nitride film. In the manufacturing process of the semiconductor device having the LDD structure, the plasma etching for removing the shoulder portion of the side wall spacer is performed, so that the shoulder portion of the side wall spacer is etched with high dimensional control accuracy. The spacer can be shaped, and it has become possible to cope with further miniaturization of the element, which was very difficult with the conventional technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体装置の製造方法の各製造工
程におけるゲート部分の構造を示した断面図。
FIG. 1 is a sectional view showing a structure of a gate portion in each manufacturing process of a method for manufacturing a semiconductor device according to the present invention.

【図2】本発明に係る半導体装置の製造方法と従来の半
導体装置の製造方法とによるゲートのサリサイド化のた
めの側壁スペーサのプラズマエッチング前後におけるゲ
ート部分の構造を示した断面図。
FIG. 2 is a cross-sectional view showing the structure of a gate portion before and after plasma etching of a sidewall spacer for salicidation of a gate by a method for manufacturing a semiconductor device according to the present invention and a conventional method for manufacturing a semiconductor device.

【図3】従来のゲートのサリサイド化のための側壁スペ
ーサのプラズマエッチング工程におけるゲート部分の構
造を示した断面図。
FIG. 3 is a cross-sectional view showing a structure of a gate portion in a conventional plasma etching process of a side wall spacer for salicidation of a gate.

【図4】従来のゲートのサリサイド化のための側壁スペ
ーサのプラズマエッチング工程におけるエッチング前後
の側壁スペーサ部分の構造を示した拡大断面図。
FIG. 4 is an enlarged cross-sectional view showing a structure of a sidewall spacer portion before and after etching in a conventional plasma etching process of a sidewall spacer for salicidation of a gate.

【符号の説明】[Explanation of symbols]

1 シリコン窒化膜(SiN) 2 シリコン酸化膜(SiO2) 3 ポリシリコンゲート電極(poly−Si) 4 ゲート絶縁酸化膜(Gate−Ox.) 5 シリコン基板(Si)Reference Signs List 1 silicon nitride film (SiN) 2 silicon oxide film (SiO 2 ) 3 polysilicon gate electrode (poly-Si) 4 gate insulating oxide film (Gate-Ox.) 5 silicon substrate (Si)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】LDD構造を有する半導体装置の製造工程
中にゲート周囲に形成する側壁スペーサ肩部を、前記ゲ
ート上部が露出するように除去する半導体装置の製造方
法において、 塩素、臭化水素、六フッ化硫黄、酸素をおよそ12:
3:1:1の体積比で含有し、圧力150mTorr未
満の第1の雰囲気を使用して、前記ゲートを覆って形成
されたシリコン窒化膜を異方性エッチングし、前記側壁
スペーサに加工する第1の工程と、 塩素、臭化水素、酸素をおよそ12:3:1の体積比で
含有し、圧力150mTorr未満の第2の雰囲気を使
用して、前記側壁スペーサ肩部をテーパエッチングして
除去する第2の工程と、 六フッ化硫黄、臭化水素、酸素をおよそ8:1:1の体
積比で含有し、圧力150mTorr以上の第3の雰囲
気を使用して、前記側壁スペーサを等方性エッチングし
て整形する第3の工程と、を備えたことを特徴とする半
導体装置の製造方法。
1. A method of manufacturing a semiconductor device, comprising: removing a shoulder portion of a side wall spacer formed around a gate so as to expose an upper portion of the gate during a manufacturing process of a semiconductor device having an LDD structure. Sulfur hexafluoride, oxygen about 12:
Using a first atmosphere containing a volume ratio of 3: 1: 1 and a pressure of less than 150 mTorr, a silicon nitride film formed over the gate is anisotropically etched to form the sidewall spacer. Step 1 and taper etching of the side wall spacer shoulder using a second atmosphere containing chlorine, hydrogen bromide and oxygen in a volume ratio of about 12: 3: 1 and a pressure of less than 150 mTorr. A second step of: containing sulfur hexafluoride, hydrogen bromide, and oxygen in a volume ratio of about 8: 1: 1, and using a third atmosphere at a pressure of 150 mTorr or more to form the side wall spacer isotropically. And a third step of performing shaping by reactive etching.
【請求項2】前記シリコン窒化膜は、前記側壁スペーサ
の幅とほぼ等しい膜厚に形成されたものであることを特
徴とする請求項1に記載の半導体装置の製造方法。
2. The method according to claim 1, wherein said silicon nitride film has a thickness substantially equal to a width of said side wall spacer.
JP5328199A 1999-03-01 1999-03-01 Method for manufacturing semiconductor device Expired - Fee Related JP3595716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328199A JP3595716B2 (en) 1999-03-01 1999-03-01 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328199A JP3595716B2 (en) 1999-03-01 1999-03-01 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000252263A true JP2000252263A (en) 2000-09-14
JP3595716B2 JP3595716B2 (en) 2004-12-02

Family

ID=12938369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328199A Expired - Fee Related JP3595716B2 (en) 1999-03-01 1999-03-01 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3595716B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019139A (en) * 2000-09-05 2002-03-12 황인길 Semiconductor devices and manufacturing method thereof
WO2003094217A1 (en) * 2002-05-02 2003-11-13 Applied Materials, Inc. Method of etching silicon nitride spacers with high selectivity relative to oxide in a high density plasma chamber
JP2006270076A (en) * 2005-02-25 2006-10-05 Semiconductor Energy Lab Co Ltd Semiconductor device, and method of manufacturing semiconductor device
JP2009523326A (en) * 2006-01-11 2009-06-18 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor transistor with expanded gate top
JP2011215371A (en) * 2010-03-31 2011-10-27 Toshiba Corp Method of producing mask
JP2014096494A (en) * 2012-11-09 2014-05-22 Dainippon Printing Co Ltd Pattern formation method
CN106816469A (en) * 2015-11-30 2017-06-09 台湾积体电路制造股份有限公司 Method for manufacturing semiconductor structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019139A (en) * 2000-09-05 2002-03-12 황인길 Semiconductor devices and manufacturing method thereof
WO2003094217A1 (en) * 2002-05-02 2003-11-13 Applied Materials, Inc. Method of etching silicon nitride spacers with high selectivity relative to oxide in a high density plasma chamber
US6756313B2 (en) 2002-05-02 2004-06-29 Jinhan Choi Method of etching silicon nitride spacers with high selectivity relative to oxide in a high density plasma chamber
JP2006270076A (en) * 2005-02-25 2006-10-05 Semiconductor Energy Lab Co Ltd Semiconductor device, and method of manufacturing semiconductor device
JP2009523326A (en) * 2006-01-11 2009-06-18 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor transistor with expanded gate top
JP2011215371A (en) * 2010-03-31 2011-10-27 Toshiba Corp Method of producing mask
JP2014096494A (en) * 2012-11-09 2014-05-22 Dainippon Printing Co Ltd Pattern formation method
CN106816469A (en) * 2015-11-30 2017-06-09 台湾积体电路制造股份有限公司 Method for manufacturing semiconductor structure
KR101879049B1 (en) * 2015-11-30 2018-07-16 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Method of fabricating semiconductor structure
US10811423B2 (en) 2015-11-30 2020-10-20 Taiwan Semiconductor Manufacturing Company Limited Method of fabricating semiconductor structure

Also Published As

Publication number Publication date
JP3595716B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US11043590B2 (en) Semiconductor component and manufacturing method thereof
US7772048B2 (en) Forming semiconductor fins using a sacrificial fin
KR100546378B1 (en) Method of manufacturing transistor having recessed channel
US7808019B2 (en) Gate structure
US7602016B2 (en) Semiconductor apparatus and method of manufacturing the same
US20060065893A1 (en) Method of forming gate by using layer-growing process and gate structure manufactured thereby
US5923986A (en) Method of forming a wide upper top spacer to prevent salicide bridge
JP3595716B2 (en) Method for manufacturing semiconductor device
US6251778B1 (en) Method for using CMP process in a salicide process
US20050121733A1 (en) Method of forming a semiconductor device with a high dielectric constant material and an offset spacer
US6278161B1 (en) Transistor
CN109285889B (en) Semiconductor structure and forming method thereof
JP4409983B2 (en) Semiconductor device and manufacturing method thereof
US6762105B2 (en) Short channel transistor fabrication method for semiconductor device
JP2006278854A (en) Method of manufacturing semiconductor device
JPH1012871A (en) Manufacture of semiconductor device
KR0151047B1 (en) Bit line manufacturing method for semiconductor device
US9166016B1 (en) Semiconductor device and method for fabricating the same
JP3863951B2 (en) Bit line forming method of semiconductor device
KR20050039088A (en) Semiconductor device with dual spacer and method for manufacturing thereof
JP2001250943A (en) Field effect transistor and its manufacturing method
JPH09199714A (en) Forming method for silicide gate electrode
JPH11195705A (en) Formation method for connection hole
JPH05291588A (en) Transistor using two-layer polysilicon gate and manufacture thereof
KR20040043548A (en) Method of forming gate for semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees