JP2000252113A - Platy soft magnetic ferrite particles and powder and soft magnetic ferrite particle composition using the same - Google Patents

Platy soft magnetic ferrite particles and powder and soft magnetic ferrite particle composition using the same

Info

Publication number
JP2000252113A
JP2000252113A JP5657799A JP5657799A JP2000252113A JP 2000252113 A JP2000252113 A JP 2000252113A JP 5657799 A JP5657799 A JP 5657799A JP 5657799 A JP5657799 A JP 5657799A JP 2000252113 A JP2000252113 A JP 2000252113A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic ferrite
composite
ferrite particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5657799A
Other languages
Japanese (ja)
Other versions
JP4279393B2 (en
Inventor
Yoji Okano
洋司 岡野
Tatsuya Nakamura
龍哉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP05657799A priority Critical patent/JP4279393B2/en
Publication of JP2000252113A publication Critical patent/JP2000252113A/en
Application granted granted Critical
Publication of JP4279393B2 publication Critical patent/JP4279393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a soft magnetic ferrite particle composite which has a high real part in permeability in low frequency band and can absorb electromagnetic waves over a wide band in high frequency band, by forming the soft magnetic ferrite particles and powder used for forming the composite in platy shapes and specifying the composition of the particles and powder. SOLUTION: The composition of soft magnetic ferrite particles and powder satisfies a formula, MgaCubZncFedO4 (where, 0.3<=a<=0.5, 0<=b<=0.2, 0.4<=c<=0.6, 1.8<=d<=2.2). The mean surface diameter and aspect ratio of the platy soft magnetic ferrite particles are respectively adjusted to about 0.5-50 μm and about 1.2-50, respectively. The content of the platy soft magnetic ferrite particles and powder in a soft magnetic ferrite particle composite is adjusted to about 75-92 wt.%. In the soft magnetic ferrite particle composite, in addition, an additive, such as carbon particles and power, SiC particles and powder, etc., are mixed and scattered. Therefore, the composite has a high rear part in permeability in the low frequency band and can absorb electromagnetic waves over a wide band in the high frequency band.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、板状の軟磁性フェ
ライト粒子粉末及びこれを用いた軟磁性フェライト粒子
複合体に関し、更に詳しくは、低周波帯において比透磁
率の実数部が高いとともに、高周波帯において広い帯域
にわたって電磁波を吸収することができる軟磁性フェラ
イト粒子複合体を提供し得る板状の軟磁性フェライト粒
子粉末、及び該粒子粉末を用いた軟磁性フェライト粒子
複合体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate-like soft magnetic ferrite particle powder and a soft magnetic ferrite particle composite using the same, and more particularly, to a high relative magnetic permeability real part in a low frequency band. The present invention relates to a plate-like soft magnetic ferrite particle powder capable of providing a soft magnetic ferrite particle composite capable of absorbing electromagnetic waves over a wide band in a high frequency band, and a soft magnetic ferrite particle composite using the particle powder.

【0002】[0002]

【従来の技術】従来、粒状の軟磁性フェライト粒子粉末
を樹脂等のマトリックス材料に混合分散させた軟磁性フ
ェライト粒子複合体は、適当な周波数で比透磁率の実数
部が高いと共に磁気的損失を示すことから、コイルの磁
芯、電波吸収材料、ノイズ吸収用材料等の広汎な用途に
使用されてきた。特に樹脂と混合した複合体は、焼結体
に比べて加工性が良く、また柔軟性を有し、適当な組成
では絶縁性が高いことから広く用いられている。最近で
は、シート状の軟磁性フェライト粒子複合体を、電子部
品を収納する筐体の内面に貼ることによって、電子部品
から放射される電磁波を低減する用途にも用いられてい
る。
2. Description of the Related Art Conventionally, a soft magnetic ferrite particle composite in which granular soft magnetic ferrite particle powder is mixed and dispersed in a matrix material such as a resin has a high real part of relative permeability at an appropriate frequency and a magnetic loss. As shown, it has been used in a wide variety of applications such as coil cores, radio wave absorbing materials, and noise absorbing materials. In particular, a composite mixed with a resin is widely used because it has better workability and flexibility than a sintered body, and has a high insulating property with an appropriate composition. Recently, a sheet-like soft magnetic ferrite particle composite has been used for reducing electromagnetic waves radiated from an electronic component by attaching the composite to the inner surface of a housing for housing the electronic component.

【0003】近年、電子機器は小型化、軽量化が進んで
おり、これに使用される材料として、100kHz付近
の低周波帯において比透磁率の実数部が更に高い値を示
す軟磁性フェライト粒子複合体が要求されている。ま
た、パソコンのクロック周波数の上昇、無線LANの普
及等に伴い、1GHz付近の高周波帯で放射される不要
な電磁波による機器の誤作動が問題になっている。これ
を解決するため、1GHz付近で広帯域の電磁波吸収特
性、ノイズ吸収特性を有する軟磁性フェライト粒子複合
体が望まれている。
In recent years, electronic equipment has been reduced in size and weight, and as a material used for the soft magnetic ferrite particle composite, a real part of relative permeability shows a higher value in a low frequency band around 100 kHz. The body is required. In addition, with the rise of the clock frequency of personal computers and the spread of wireless LANs, malfunctions of devices due to unnecessary electromagnetic waves radiated in a high frequency band around 1 GHz have become a problem. In order to solve this, a soft magnetic ferrite particle composite having broadband electromagnetic wave absorption characteristics and noise absorption characteristics near 1 GHz is desired.

【0004】これらの要求に対して、特開昭60−89
902号公報、特開昭60−91699号公報には、板
状フェライトの直径と厚さの比が大きい程実効透磁率が
高くなり、それ従い自然共鳴周波数が低周波数に移行す
ることが記載され、板状の軟磁性フェライト粒子粉末を
配向させて混合分散した軟磁性フェライト粒子複合体は
上記の要求を満たす可能性があることが示されている。
しかし、これらの公報に記載されている軟磁性フェライ
ト粒子複合体の低周波帯における比透磁率の実数部は約
5であり、これは従来の粒状の軟磁性フェライト粒子粉
末を用いた複合体の比透磁率の実数部よりも小さいもの
である。また、1GHz付近において広い帯域にわたっ
て電磁波を吸収するとの記載はない。
In response to these demands, Japanese Patent Application Laid-Open No.
902 and JP-A-60-91699 describe that the larger the ratio of the diameter and the thickness of the plate-like ferrite, the higher the effective magnetic permeability, and accordingly the natural resonance frequency shifts to a lower frequency. It has been shown that a soft magnetic ferrite particle composite in which a plate-like soft magnetic ferrite particle powder is oriented and mixed and dispersed may satisfy the above requirements.
However, the real part of the relative permeability in the low frequency band of the soft magnetic ferrite particle composite described in these publications is about 5, which is the same as that of the composite using the conventional granular soft magnetic ferrite particle powder. It is smaller than the real part of the relative permeability. There is no description that electromagnetic waves are absorbed over a wide band around 1 GHz.

【0005】一方、特開昭49−47899号公報、特
開昭62−3021号公報には、異方性フェライト焼結
体の原料として板状の軟磁性フェライト粒子粉末とその
製造方法が示され、また、特開平5−45527号公報
にはフラックス法による板状の軟磁性フェライト粒子粉
末とその製造方法が示されているが、軟磁性フェライト
粒子複合体とした場合の比透磁率や電波吸収特性に関す
る記載はない。
On the other hand, JP-A-49-47899 and JP-A-62-3021 disclose a plate-like soft magnetic ferrite particle powder as a raw material of an anisotropic ferrite sintered body and a method for producing the same. Japanese Patent Application Laid-Open No. 5-45527 discloses a plate-like soft magnetic ferrite particle powder by a flux method and a method for producing the same. There is no description about the characteristics.

【0006】[0006]

【発明が解決しようとする課題】以上のように、軟磁性
フェライト粒子の形状を板状にすれば、これを用いた軟
磁性フェライト粒子複合体は、比透磁率の実数部が高い
値を示す可能性があることは認識されているものの、実
際には実現されていない。これは、比透磁率の実数部が
高い板状の軟磁性フェライト粒子粉末の組成やその製造
方法が確立されていないことに起因する。そこで本発明
は、低周波帯において比透磁率の実数部が高いととも
に、高周波帯において広い帯域にわたって電磁波を吸収
する軟磁性フェライト粒子複合体を提供し得る板状の軟
磁性フェライト粒子粉末、及びこれを用いた軟磁性フェ
ライト粒子複合体を提供することを目的とする。
As described above, if the shape of the soft magnetic ferrite particles is made into a plate shape, the soft magnetic ferrite particle composite using the same exhibits a high value of the real part of the relative magnetic permeability. The potential is recognized, but not actually realized. This is because the composition of the plate-shaped soft magnetic ferrite particle powder having a high relative magnetic permeability and the production method thereof has not been established. Accordingly, the present invention provides a plate-shaped soft magnetic ferrite particle powder capable of providing a soft magnetic ferrite particle composite that has a high relative real part in a low frequency band and absorbs electromagnetic waves over a wide band in a high frequency band. An object of the present invention is to provide a soft magnetic ferrite particle composite using the same.

【0007】[0007]

【課題を解決するための手段】軟磁性フェライト粒子は
スピネル型の結晶構造を有するため、通常、粒子の形状
はその結晶構造を反映した粒状又は不定形を呈する。従
って、板状の軟磁性フェライト粒子を得るためには、原
料、焼成条件等の選択に検討を要する。例えば、Feの
供給源として板状のα-Fe2O3を用いた場合、焼成温度が
高いと生成した粒子の板状性が崩れ、反対に焼成温度を
低くすると、板状ではあっても軟磁性を有するフェライ
ト粒子は得られない。従って、板状の軟磁性フェライト
粒子粉末を得るためには、焼成温度が低くても軟磁性を
示すように、フェライトを構成する陽イオンの種類やそ
の組成を選択する必要がある。
Since the soft magnetic ferrite particles have a spinel type crystal structure, the particles usually have a granular or irregular shape reflecting the crystal structure. Therefore, in order to obtain plate-like soft magnetic ferrite particles, it is necessary to consider selection of raw materials, firing conditions, and the like. For example, when a plate-like α-Fe 2 O 3 is used as a source of Fe, if the firing temperature is high, the plate-like properties of the generated particles are destroyed. Ferrite particles having soft magnetism cannot be obtained. Therefore, in order to obtain a plate-like soft magnetic ferrite particle powder, it is necessary to select the type of cation constituting the ferrite and its composition so as to exhibit soft magnetism even at a low firing temperature.

【0008】本発明者らは上記知見に基づいて鋭意検討
を行った結果、特定の陽イオンからなり特定の組成から
なる板状の軟磁性フェライト粒子粉末が上記目的を達成
することを見出し、本発明に至った。すなわち、本発明
の請求項1は、形状が板状であり、組成がMga Cub Znc
FedO4(但し、0.3 ≦a ≦0.5 、0 ≦b ≦0.2 、0.4 ≦c
≦0.6 、1.8 ≦d ≦2.2)であることを特徴とする軟磁
性フェライト粒子粉末を内容とするものである。
As a result of intensive studies based on the above findings, the present inventors have found that a plate-like soft magnetic ferrite particle powder composed of a specific cation and having a specific composition achieves the above object. Invented the invention. That is, claim 1 of the present invention has a plate-like shape and a composition of Mg a Cu b Zn c
Fe d O 4 (however, 0.3 ≤ a ≤ 0.5, 0 ≤ b ≤ 0.2, 0.4 ≤ c
.Ltoreq.0.6, 1.8.ltoreq.d.ltoreq.2.2).

【0009】好ましい態様としての請求項2は、平均板
面径が0.5〜50μm、アスペクト比が1.2〜50
である請求項1記載の軟磁性フェライト粒子粉末であ
る。
In a preferred embodiment, the average plate surface diameter is 0.5 to 50 μm and the aspect ratio is 1.2 to 50.
The soft magnetic ferrite particle powder according to claim 1, wherein

【0010】本発明の請求項3は、請求項1又は2記載
の軟磁性フェライト粒子粉末をマトリックス中に75〜
92重量%の割合で混合分散させたことを特徴とする軟
磁性フェライト粒子複合体を内容とするものである。
In a third aspect of the present invention, the soft magnetic ferrite particle powder according to the first or second aspect is contained in a matrix in an amount of 75 to 50%.
A soft magnetic ferrite particle composite characterized by being mixed and dispersed at a ratio of 92% by weight.

【0011】好ましい態様としての請求項4は、周波数
100kHzにおける比透磁率の実数部が18〜30で
ある請求項3記載の軟磁性フェライト粒子複合体であ
る。
According to a fourth aspect of the present invention, there is provided the soft magnetic ferrite particle composite according to the third aspect, wherein the real part of the relative magnetic permeability at a frequency of 100 kHz is 18 to 30.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明では、Fe元素の供給源として板状のα-Fe2O3
用いる。また、Mg、Cu、Zn元素の供給源として
は、これらの元素を含む酸化物、水酸化物、シュウ酸
塩、炭酸塩等を用いることができる。尚、板状のα-Fe2
O3はオートクレーブを用いた水熱反応により得ることが
できる。これらの原料を混合した後、1200℃以下の
温度で焼成する。1200℃を越える温度で焼成すると
粒子の板状性が崩れるので好ましくない。より好ましい
焼成温度は1100℃以下である。焼成温度の下限は十
分な反応性の観点から800℃である。また焼成時間
は、通常、1〜10時間程度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the present invention, a plate-like α-Fe 2 O 3 is used as a supply source of the Fe element. In addition, as a supply source of the Mg, Cu, and Zn elements, oxides, hydroxides, oxalates, carbonates, and the like containing these elements can be used. In addition, a plate-like α-Fe 2
O 3 can be obtained by a hydrothermal reaction using an autoclave. After mixing these raw materials, firing is performed at a temperature of 1200 ° C. or less. Firing at a temperature exceeding 1200 ° C. is not preferable because the plate-like property of the particles is lost. A more preferable firing temperature is 1100 ° C. or lower. The lower limit of the firing temperature is 800 ° C. from the viewpoint of sufficient reactivity. The firing time is usually about 1 to 10 hours.

【0013】本発明に係る板状の軟磁性フェライト粒子
粉末の組成は、Mga Cub Znc Fed O4(但し0.3 ≦a ≦0.5
、0 ≦b ≦0.2 、0.4 ≦c ≦0.6 、1.8 ≦d ≦2.2)で
ある。これらの範囲外では比透磁率の実数部が小さくな
るとともに、広い帯域にわたる電磁波の吸収ができなく
なる。より好ましい組成は、0.35≦a ≦0.45、0 ≦b≦
0.15、0.45≦c ≦0.55、1.9 ≦d ≦2.1 である。
The composition of the plate-like soft magnetic ferrite particles according to the present invention is Mg a Cu b Zn c Fe d O 4 (provided that 0.3 ≦ a ≦ 0.5
, 0 ≦ b ≦ 0.2, 0.4 ≦ c ≦ 0.6, 1.8 ≦ d ≦ 2.2). Outside these ranges, the real part of the relative magnetic permeability becomes small, and it becomes impossible to absorb electromagnetic waves over a wide band. More preferred composition is 0.35 ≦ a ≦ 0.45, 0 ≦ b ≦
0.15, 0.45 ≦ c ≦ 0.55, 1.9 ≦ d ≦ 2.1.

【0014】本発明に係る板状の軟磁性フェライト粒子
の平均板面径は、マトリックスへの練り込み性を考慮す
ると、0.5〜50μmが好ましい。0.5μm未満の
場合は練り込みにくくなり、50μmを越える場合は練
り込み時に粒子が破壊されて比透磁率の実数部が小さく
なるとともに、広い帯域にわたる電磁波の吸収ができな
くなる。より好ましい平均板面径は0.5〜20μmで
ある。
The average plate surface diameter of the plate-shaped soft magnetic ferrite particles according to the present invention is preferably 0.5 to 50 μm in consideration of the kneading property into the matrix. If it is less than 0.5 μm, it will be difficult to knead, and if it exceeds 50 μm, the particles will be broken during kneading, the real part of the relative magnetic permeability will be small, and it will not be possible to absorb electromagnetic waves over a wide band. A more preferred average plate surface diameter is 0.5 to 20 μm.

【0015】本発明に係る板状の軟磁性フェライト粒子
のアスペクト比は、1.2〜50が好ましい。本発明に
おけるアスペクト比は、粒子の平均厚さに対する平均板
面径の比で定義される。アスペクト比が1.2未満の場
合は、形状が実質的に粒状となることにより比透磁率の
実数部が小さくなるとともに広い帯域にわたる電磁波の
吸収ができなくなる傾向がある。一方、アスペクト比が
50を越える場合は、練り込み時に粒子が破壊されて、
比透磁率の実数部が小さくなるとともに広い帯域にわた
る電磁波の吸収ができなくなる傾向がある。より好まし
いアスペクト比は2〜25である。
The aspect ratio of the tabular soft magnetic ferrite particles according to the present invention is preferably from 1.2 to 50. The aspect ratio in the present invention is defined by the ratio of the average plate surface diameter to the average thickness of the particles. When the aspect ratio is less than 1.2, the shape becomes substantially granular, so that the real part of the relative magnetic permeability becomes small and the electromagnetic wave over a wide band tends to be unable to be absorbed. On the other hand, if the aspect ratio exceeds 50, the particles are broken during kneading,
As the real part of the relative magnetic permeability decreases, it tends to be impossible to absorb electromagnetic waves over a wide band. A more preferred aspect ratio is 2 to 25.

【0016】得られた板状の軟磁性フェライト粒子粉末
は、マトリックス中に混合分散され複合体とされる。具
体的には、例えば板状の軟磁性フェライト粒子粉末を樹
脂等のマトリックス中に混合分散させた後、適当な温度
に保った二軸の熱間ロールで押し出すことによってマト
リックス中に板状の軟磁性フェライト粒子が配向した軟
磁性フェライト粒子複合体を得ることができる。但し、
該粒子を配向させる方法はこれに限定されるものではな
く、公知の方法を選択することができる。マトリックス
としては従来の軟磁性フェライト粒子複合体に使用され
ているものであれば特に制限はなく、ゴム、塩化ビニル
樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリアミド
(ナイロン)樹脂等から用途に応じて選択できる。更
に、マトリックスとしてセメント等の建築材を用い、板
状の軟磁性フェライト粒子粉末を含有した壁材等を得る
ことができる。
The obtained plate-like soft magnetic ferrite particles are mixed and dispersed in a matrix to form a composite. Specifically, for example, a plate-shaped soft magnetic ferrite particle powder is mixed and dispersed in a matrix such as a resin, and then extruded with a biaxial hot roll maintained at an appropriate temperature to form a plate-shaped soft magnetic ferrite particle in the matrix. A soft magnetic ferrite particle composite in which magnetic ferrite particles are oriented can be obtained. However,
The method for orienting the particles is not limited to this, and a known method can be selected. The matrix is not particularly limited as long as it is used in the conventional soft magnetic ferrite particle composite, and may be selected from rubber, vinyl chloride resin, ethylene-vinyl acetate copolymer resin, polyamide (nylon) resin, and the like. Can be selected. Further, using a building material such as cement as a matrix, a wall material or the like containing a plate-like soft magnetic ferrite particle powder can be obtained.

【0017】軟磁性フェライト粒子複合体における板状
の軟磁性フェライト粒子粉末の含有量は、75〜92重
量%が好ましい。含有量が75重量%未満の場合は、比
透磁率の実数部が小さくなるとともに広い帯域にわたる
電磁波の吸収ができなくなる。また、92重量%を越え
ると板状の軟磁性フェライト粒子粉末をマトリックス中
に練り込みにくくなる。より好ましくは82〜92重量
%である。
The content of the plate-like soft magnetic ferrite particle powder in the soft magnetic ferrite particle composite is preferably 75 to 92% by weight. If the content is less than 75% by weight, the real part of the relative magnetic permeability becomes small, and it becomes impossible to absorb electromagnetic waves over a wide band. On the other hand, if it exceeds 92% by weight, it becomes difficult to mix the plate-like soft magnetic ferrite particles into the matrix. More preferably, it is 82 to 92% by weight.

【0018】尚、本発明に係る軟磁性フェライト粒子複
合体には、誘電率や導電率を制御したり、樹脂への練り
込み性や複合体の柔軟性を改善する等の目的で、カーボ
ン粒子粉末、SiC 粒子粉末等の公知の添加物を板状の軟
磁性フェライト粒子粉末とともに混合分散することがで
きる。
The soft magnetic ferrite particle composite according to the present invention contains carbon particles for the purpose of controlling the dielectric constant and conductivity, improving the kneading property into resin and the flexibility of the composite. Known additives such as powder and SiC particles can be mixed and dispersed together with the plate-like soft magnetic ferrite particles.

【0019】[0019]

【作用】表2に、本発明による軟磁性フェライト粒子複
合体と、従来のフェライト粒子複合体の周波数と比透磁
率(μ′−jμ″)の関係を比較して示す。実施例1
に、本発明による板状の軟磁性フェライト粒子粉末(1
000℃で焼成)を樹脂に混合分散させた複合体の比透
磁率の実数部(μ′)と虚数部(μ″)を示す。また、
比較例1に、従来の粒状のNi−Zn−Cu系フェライ
ト粒子粉末(1300℃で焼成)を樹脂に混合分散させ
た複合体の比透磁率の実数部(μ′)と虚数部(μ″)
を示す。更に、比較例2に、従来の板状のNi−Zn−
Cu系フェライト粒子粉末(1000℃で焼成)を樹脂
に混合分散させた複合体の比透磁率の実数部(μ′)と
虚数部(μ″)を示す。各複合体におけるフェライト粒
子粉末の含有量は全て84.0重量%である。
Table 2 shows a comparison between the frequency and the relative permeability (μ'-jμ ") of the soft magnetic ferrite particle composite according to the present invention and a conventional ferrite particle composite.
The plate-like soft magnetic ferrite particles according to the present invention (1)
(Combustion at 000 ° C.) is mixed and dispersed in a resin to show the real part (μ ′) and the imaginary part (μ ″) of the relative magnetic permeability.
In Comparative Example 1, the real part (μ ′) and the imaginary part (μ ″) of the relative magnetic permeability of a composite obtained by mixing and dispersing conventional granular Ni—Zn—Cu-based ferrite particle powder (fired at 1300 ° C.) in a resin are described. )
Is shown. Further, in Comparative Example 2, the conventional plate-like Ni-Zn-
The real part (μ ′) and the imaginary part (μ ″) of the relative magnetic permeability of a composite obtained by mixing and dispersing Cu-based ferrite particle powder (fired at 1000 ° C.) in a resin are shown. All amounts are 84.0% by weight.

【0020】表2の実施例1から分かるとおり、本発明
による軟磁性フェライト粒子複合体の比透磁率の実数部
(μ′)は100kHzにおいて20.9を示している
のに対し、比較例1では9.1、比較例2では4.3に
すぎず、このことから、形状を板状とするとともに、特
定の組成からなる本発明の軟磁性フェライト粒子粉末は
比透磁率の実数部が極めて高いことがわかる。
As can be seen from Example 1 in Table 2, the real part (μ ') of the relative magnetic permeability of the soft magnetic ferrite particle composite according to the present invention shows 20.9 at 100 kHz, while Comparative Example 1 shows. Therefore, the soft magnetic ferrite particle powder of the present invention having a specific composition has a real part of a relative magnetic permeability that is extremely large, with the shape being plate-like. It turns out that it is high.

【0021】本発明の如く、形状を板状にするとともに
特定の組成とすることにより、比透磁率の実数部が高く
なる理由は明確ではないが次のように考えられる。ま
ず、形状の違いにより比透磁率の実数部に差が生じる原
因は、板状であることにより共鳴周波数が下がることに
あると考えられる。また、組成の違いにより比透磁率の
実数部に差が生じる原因は、焼成温度の違いによる結晶
性の差にあると考えられる。すなわち、焼成後に生成し
た粒子の板状性を維持するためには1200℃以下の低
温で、より好ましくは1100℃以下の温度で焼成する
必要がある。本発明における組成では1200℃以下の
温度で結晶性の良いフェライト粒子が得られるが、従来
のように本発明の範囲外での組成では、1200℃以下
の低温では結晶性の良いフェライト粒子が得られない
(比較例2)。そこで、結晶性の良いフェライト粒子を
得るために焼成温度1200℃以上にすると、板状性が
崩れるため板状の軟磁性フェライト粒子粉末は得られな
い(比較例1)。以上の理由から、従来の板状のNi−
Zn−Cu系フェライト粒子粉末を樹脂に混合分散させ
た複合体の比透磁率の実数部は低いと考えられる。
Although the reason why the real part of the relative magnetic permeability is increased by making the shape plate-shaped and having a specific composition as in the present invention is not clear, it is considered as follows. First, it is considered that the cause of the difference in the real part of the relative magnetic permeability due to the difference in shape is that the resonance frequency decreases due to the plate shape. It is considered that the difference in the real part of the relative magnetic permeability due to the difference in the composition is due to the difference in crystallinity due to the difference in the firing temperature. That is, it is necessary to fire at a low temperature of 1200 ° C. or less, more preferably at a temperature of 1100 ° C. or less, in order to maintain the tabularity of the particles formed after firing. In the composition of the present invention, ferrite particles having good crystallinity can be obtained at a temperature of 1200 ° C. or less. However, in a composition outside the scope of the present invention, ferrite particles having good crystallinity can be obtained at a low temperature of 1200 ° C. or less. No (Comparative Example 2). Therefore, if the firing temperature is set to 1200 ° C. or higher in order to obtain ferrite particles having good crystallinity, plate-like soft magnetic ferrite particles cannot be obtained because the plate-like property is lost (Comparative Example 1). For the above reasons, the conventional plate-like Ni-
It is considered that the real part of the relative magnetic permeability of the composite obtained by mixing and dispersing the Zn-Cu-based ferrite particle powder in the resin is low.

【0022】表3に、表2に示した各複合体を金属で裏
打ちした場合の電波吸収特性を示す。各複合体の厚さ
は、最大の吸収量が−20dBになるように調節した。
実施例1は、本発明による板状の軟磁性フェライト粒子
粉末を樹脂に混合分散させた複合体の吸収特性であっ
て、複合体の厚さは8.5mmである。比較例1は、従
来の粒状のNi−Zn−Cu系フェライト粒子粉末を樹
脂に混合分散させた複合体の吸収特性であって、複合体
の厚さは10.5mmである。また、比較例2は、従来
の板状のNi−Zn−Cu系フェライト粒子粉末を樹脂
に混合分散させた複合体の吸収特性であって、複合体の
厚さは13.5mmである。−10dB以上の吸収を示
す帯域幅を電波吸収特性の尺度とすると、表3から分か
るとおり、本発明による軟磁性フェライト粒子複合体
は、比較例1、2よりも薄い厚さで広い帯域幅2.50
GHzを示している。その原因は、上記したように、本
発明による軟磁性フェライト粒子複合体の比透磁率が、
実数部、虚数部ともに従来のフェライト複合体と比較し
て大きいことにあると考えられる。
Table 3 shows radio wave absorption characteristics when each of the composites shown in Table 2 is backed with a metal. The thickness of each composite was adjusted so that the maximum absorption was -20 dB.
Example 1 shows the absorption characteristics of a composite in which the plate-like soft magnetic ferrite particles according to the present invention were mixed and dispersed in a resin, and the thickness of the composite was 8.5 mm. Comparative Example 1 shows the absorption characteristics of a composite obtained by mixing and dispersing conventional granular Ni—Zn—Cu-based ferrite particles in a resin, and the thickness of the composite is 10.5 mm. Comparative Example 2 shows the absorption characteristics of a composite obtained by mixing and dispersing conventional plate-like Ni-Zn-Cu-based ferrite particles in a resin, and the thickness of the composite was 13.5 mm. As can be seen from Table 3, the soft magnetic ferrite particle composite according to the present invention has a thinner bandwidth and a wider bandwidth 2 than Comparative Examples 1 and 2, assuming that the bandwidth exhibiting absorption of −10 dB or more is a measure of the radio wave absorption characteristics. .50
GHz is shown. The cause is, as described above, the relative permeability of the soft magnetic ferrite particle composite according to the present invention,
It is considered that both the real part and the imaginary part are larger than the conventional ferrite composite.

【0023】[0023]

【実施例】以下、実施例及び比較例により本発明を更に
詳しく説明するが、これらは本発明の範囲を何ら制限す
るものではない。尚、以下の実施例及び比較例における
粒子形状、平均板面径、アスペクト比は、走査型電子顕
微鏡により観察したものである。生成相の同定には、X
線回折装置RAD−2A(理学電機(株)製)を用い
た。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, which do not limit the scope of the present invention. The particle shape, average plate surface diameter, and aspect ratio in the following Examples and Comparative Examples were observed with a scanning electron microscope. To identify the product phase, X
A line diffractometer RAD-2A (manufactured by Rigaku Corporation) was used.

【0024】1MHz以下における複合体の比透磁率
は、リング状に成型した試料にコイルを巻いた後、イン
ピーダンスアナライザーHP4192A(日本ヒューレ
ット・パッカード株式会社製)によりインピーダンスを
測定し、その値から算出した。1MHz以上における複
合体の比透磁率は、リング状に成型した試料を同軸管に
挿入した後、ネットワークアナライザーHP8753C
(日本ヒューレット・パッカード株式会社製)により反
射係数S11と透過係数S21を測定し、それらの値から算
出した。
The relative magnetic permeability of the composite at 1 MHz or lower was calculated from the value obtained by measuring the impedance with an impedance analyzer HP4192A (manufactured by Hewlett-Packard Japan Co., Ltd.) after winding a coil around a sample molded in a ring shape. . The relative magnetic permeability of the composite at 1 MHz or higher can be determined by inserting a ring-shaped sample into a coaxial tube and then using a network analyzer HP8753C.
(Hewlett-Packard Co., Ltd.) by measuring the reflection coefficient S 11 and the transmission coefficient S 21, was calculated from these values.

【0025】電波吸収特性は、金属板で一端を短絡した
同軸管に、リング状に成型した試料を該金属板に密着す
るように挿入した後、ネットワークアナライザーHP8
753C(日本ヒューレット・パッカード株式会社製)
により測定した反射係数S11を用いて評価した。尚、複
合体の厚さは、最大の吸収量が−20dBになるように
調節し、−10dB以上の吸収を示す帯域幅を電波吸収
特性の尺度とした。
The radio wave absorption characteristic is determined by inserting a ring-shaped sample into a coaxial tube having one end short-circuited with a metal plate so as to be in close contact with the metal plate, and then using a network analyzer HP8.
753C (Nippon Hewlett-Packard Co., Ltd.)
Was evaluated using a reflection coefficient S 11 measured by. The thickness of the composite was adjusted so that the maximum absorption was -20 dB, and the bandwidth showing absorption of -10 dB or more was used as a measure of the radio wave absorption characteristics.

【0026】実施例1 板状のα-Fe2O3、不定形のMg(OH)2 とCuO 並びにZnO を
組成がMg0.41Cu0.10Zn0.51Fe1.98O4となるように秤量し
て、湿式アトライターで1時間混合した後、濾過、乾燥
した。その後、この混合粉末を大気中、1000℃で3
時間焼成した。得られた軟磁性フェライト粒子粉末の形
状は板状であり、平均板面径3.3μm、アスペクト比
5.3であった。また、X線回折によると結晶構造はス
ピネル型であった。
Example 1 Plate-like α-Fe 2 O 3 , amorphous Mg (OH) 2 , CuO and ZnO were weighed so that the composition became Mg 0.41 Cu 0.10 Zn 0.51 Fe 1.98 O 4, and wet After mixing with an attritor for 1 hour, the mixture was filtered and dried. Then, the mixed powder was dried at 1000 ° C. in air for 3 hours.
Fired for hours. The shape of the obtained soft magnetic ferrite particles was plate-like, the average plate surface diameter was 3.3 μm, and the aspect ratio was 5.3. According to X-ray diffraction, the crystal structure was a spinel type.

【0027】得られた板状の軟磁性フェライト粒子粉末
とエチレン−酢酸ビニル共重合体樹脂を板状の軟磁性フ
ェライト粒子粉末が84.0重量%の割合になるように
混合し、プラストミルを用いて80℃の温度で混練し
た。得られた混練物を二軸の熱間ロールを用いて60℃
の温度でシート状に成型した。これを金型を用いて外径
38mm、内径17mmのリング状に打ち抜いて、比透
磁率と電波吸収特性の測定用試料とした。得られたリン
グ状試料の比透磁率の各周波数における比透磁率を表2
に示したが、100kHzにおける実数部は20.9で
あった。また、厚さを8.5mmとした複合体試料の電
波吸収特性は、表3に示すように、中心周波数1.12
GHzで−20dBを示し、その時−10dB以上の吸
収を示す帯域幅は2.50GHzであった。
The obtained plate-like soft magnetic ferrite particles and ethylene-vinyl acetate copolymer resin were mixed so that the ratio of the plate-like soft magnetic ferrite particles was 84.0% by weight, and the mixture was formed using a plast mill. And kneaded at a temperature of 80 ° C. The obtained kneaded material was heated to 60 ° C. using a biaxial hot roll.
At a temperature of. This was punched out into a ring shape having an outer diameter of 38 mm and an inner diameter of 17 mm using a mold to obtain a sample for measuring relative magnetic permeability and radio wave absorption characteristics. Table 2 shows the relative permeability at each frequency of the relative permeability of the obtained ring-shaped sample.
The real part at 100 kHz was 20.9. Further, as shown in Table 3, the radio wave absorption characteristics of the composite sample having a thickness of 8.5 mm were as follows.
It showed -20 dB at GHz, and the bandwidth showing absorption of -10 dB or more was 2.50 GHz.

【0028】実施例2〜5 板状の軟磁性フェライト粒子粉末の組成、焼成温度、焼
成時間、平均板面径、アスペクト比、及び複合体におけ
る板状の軟磁性フェライト粒子粉末の含有量、及び複合
体の厚さを種々変化させた以外は実施例1と同様にし
て、板状の軟磁性フェライト粒子粉末と、それを用いた
軟磁性フェライト粒子複合体を作成した。製造条件を表
1に、諸特性を表2及び表3に示す。
Examples 2 to 5 Composition of plate-shaped soft magnetic ferrite particle powder, firing temperature, firing time, average plate diameter, aspect ratio, content of plate-shaped soft magnetic ferrite particle powder in composite, and A plate-like soft magnetic ferrite particle powder and a soft magnetic ferrite particle composite using the same were prepared in the same manner as in Example 1 except that the thickness of the composite was variously changed. The manufacturing conditions are shown in Table 1, and various characteristics are shown in Tables 2 and 3.

【0029】比較例1 不定形のα-Fe2O3、NiO 、ZnO 、CuO を組成がNi0.28Zn
0.67Cu0.08Fe1.97O4となるように秤量して、湿式アトラ
イターで1時間混合した後、濾過、乾燥した。その後、
この混合粉末を大気中、1300℃で2時間焼成した。
焼成した粒子粉末を湿式ボールミルで粉砕した後、濾
過、乾燥した。得られた軟磁性フェライト粒子粉末の形
状は粒状であり、X線回折によると結晶構造はスピネル
型であった。該粒状の軟磁性フェライト粒子粉末を実施
例1と同様の方法でリング状の複合体試料を作成し、比
透磁率と電波吸収特性を測定した。比透磁率の測定結果
を表2に示したが、100kHzにおける実数部は9.
1と低い値であった。また、厚さを13.5mmとした
複合体試料の電波吸収特性は、表3に示す如く、中心周
波数1.36GHzで−20dBを示し、その時−10
dB以上の吸収を示す帯域幅は1.60GHzと狭い帯
域幅であった。
COMPARATIVE EXAMPLE 1 Amorphous α-Fe 2 O 3 , NiO, ZnO, and CuO were composed of Ni 0.28 Zn
After weighing 0.67 Cu 0.08 Fe 1.97 O 4 and mixing with a wet attritor for 1 hour, the mixture was filtered and dried. afterwards,
This mixed powder was fired in the air at 1300 ° C. for 2 hours.
The fired particle powder was pulverized by a wet ball mill, and then filtered and dried. The shape of the obtained soft magnetic ferrite particle powder was granular, and the crystal structure was a spinel type according to X-ray diffraction. A ring-shaped composite sample was prepared from the granular soft magnetic ferrite particles in the same manner as in Example 1, and the relative magnetic permeability and radio wave absorption characteristics were measured. The measurement results of the relative magnetic permeability are shown in Table 2, and the real part at 100 kHz is 9.
The value was as low as 1. Further, as shown in Table 3, the radio wave absorption characteristics of the composite sample having a thickness of 13.5 mm showed -20 dB at a center frequency of 1.36 GHz, and at that time, -10 dB.
The bandwidth showing the absorption of dB or more was a narrow bandwidth of 1.60 GHz.

【0030】比較例2 板状のα-Fe2O3、不定形のNiO 、ZnO 、CuO を組成がNi
0.20Zn0.62Cu0.22Fe 1.96O4となるように秤量して、湿式
アトライターで1時間混合した後、濾過、乾燥した。そ
の後、この混合粉末を大気中、1000℃で5時間焼成
した。得られた軟磁性フェライト粒子粉末の形状は板状
であり、平均板面径3.5μm、アスペクト比5.8で
あった。また、X線回折によると結晶構造はスピネル型
であった。該板状のフェライト粒子粉末を実施例1と同
様の方法でリング状の複合体試料を作成し、比透磁率と
電波吸収特性を測定した。比透磁率の測定結果を表2に
示したが、100kHzにおける実数部は4.3と低い
値であった。また、厚さを13.5mmとした複合体試
料の電波吸収特性は、表3に示す如く、中心周波数1.
78GHzで−20dBを示し、その時−10dB以上
の吸収を示す帯域幅は1.78GHzと狭い帯域幅であ
った。
Comparative Example 2 Plate-like α-FeTwoOThreeAmorphous NiO, ZnO, CuO
0.20Zn0.62Cu0.22Fe 1.96OFourWeighed so that
After mixing with an attritor for 1 hour, the mixture was filtered and dried. So
Then, the mixed powder is fired in the air at 1000 ° C. for 5 hours.
did. The shape of the obtained soft magnetic ferrite particle powder is plate-like
With an average plate surface diameter of 3.5 μm and an aspect ratio of 5.8.
there were. According to X-ray diffraction, the crystal structure is spinel type.
Met. The plate-like ferrite particles were prepared in the same manner as in Example 1.
A ring-shaped composite sample is prepared by the same method as above, and the relative permeability and
The radio wave absorption characteristics were measured. Table 2 shows the measurement results of the relative magnetic permeability.
As shown, the real part at 100 kHz is as low as 4.3.
Value. In addition, a composite specimen having a thickness of 13.5 mm was used.
As shown in Table 3, the radio wave absorption characteristics of the material have a center frequency of 1.
Shows -20dB at 78GHz, then -10dB or more
Is a narrow bandwidth of 1.78 GHz.
Was.

【0031】比較例3 組成をMg0.28Cu0.04Zn0.70Fe1.98O4として、焼成温度を
950℃とした以外は実施例1と同様にして板状のフェ
ライト粒子粉末を作成した。得られたフェライト粒子粉
末の形状は板状であり、平均板面径9.8、アスペクト
比15.7であった。また、X線回折によると結晶構造
はスピネル型であった。該板状のフェライト粒子粉末を
実施例1と同様の方法でリング状の複合体試料を作成
し、比透磁率と電波吸収特性を測定した。比透磁率の測
定結果を表2に示したが、100kHzにおける実数部
は7.3と低い値であった。また、厚さを12.0mm
とした複合体試料の電波吸収特性は、表3に示す如く、
中心周波数1.48GHzで−20dBを示し、その時
−10dB以上の吸収を示す帯域幅は1.72GHzと
狭い帯域幅であった。
Comparative Example 3 A plate-like ferrite particle powder was prepared in the same manner as in Example 1 except that the composition was Mg 0.28 Cu 0.04 Zn 0.70 Fe 1.98 O 4 and the firing temperature was 950 ° C. The shape of the obtained ferrite particle powder was plate-like, with an average plate surface diameter of 9.8 and an aspect ratio of 15.7. According to X-ray diffraction, the crystal structure was a spinel type. A ring-shaped composite sample was prepared from the plate-like ferrite particle powder in the same manner as in Example 1, and the relative magnetic permeability and the radio wave absorption characteristics were measured. The measurement results of the relative magnetic permeability are shown in Table 2, and the real part at 100 kHz was a low value of 7.3. In addition, the thickness is 12.0 mm
As shown in Table 3, the radio wave absorption characteristics of the composite sample
It showed -20 dB at a center frequency of 1.48 GHz, and the bandwidth showing absorption of -10 dB or more was a narrow bandwidth of 1.72 GHz.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】以上のように、本発明による板状の軟磁
性フェライト粒子粉末をマトリックス中に混合分散させ
た軟磁性フェライト粒子複合体は、低周波帯において比
透磁率の実数部が高く、高周波帯において広い帯域にわ
たる電磁波の吸収が可能であり、また加工性に優れ柔軟
性に富んでいることから、コイルの磁芯、電波吸収材
料、ノイズ吸収用材料等の広汎な用途に使用することが
できる。
As described above, the soft magnetic ferrite particle composite in which the plate-like soft magnetic ferrite particles according to the present invention are mixed and dispersed in a matrix has a high real part of relative permeability in a low frequency band. Because it can absorb electromagnetic waves over a wide band in the high frequency band, and has excellent workability and high flexibility, it should be used for a wide range of applications such as coil cores, radio wave absorbing materials, and noise absorbing materials. Can be.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA06 AD02 AE02 5E041 AB14 AB19 BB04 CA10 HB17 NN02 NN06 NN14 5E321 BB33 BB53 GG05 GG07 GG11 5J020 BD02 EA02 EA08 EA10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G002 AA06 AD02 AE02 5E041 AB14 AB19 BB04 CA10 HB17 NN02 NN06 NN14 5E321 BB33 BB53 GG05 GG07 GG11 5J020 BD02 EA02 EA08 EA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 形状が板状であり、組成がMga Cub Znc
Fed O4(但し、0.3≦a ≦0.5 、0 ≦b ≦0.2 、0.4 ≦c
≦0.6 、1.8 ≦d ≦2.2)であることを特徴とする軟磁
性フェライト粒子粉末。
1. A plate-like shape having a composition of Mg a Cu b Zn c
Fe d O 4 (however, 0.3 ≦ a ≦ 0.5, 0 ≦ b ≦ 0.2, 0.4 ≦ c
≦ 0.6, 1.8 ≦ d ≦ 2.2) soft magnetic ferrite particles.
【請求項2】 平均板面径が0.5〜50μm、アスペ
クト比が1.2〜50である請求項1記載の軟磁性フェ
ライト粒子粉末。
2. The soft magnetic ferrite particle powder according to claim 1, wherein the average plate surface diameter is 0.5 to 50 μm and the aspect ratio is 1.2 to 50.
【請求項3】 請求項1又は2記載の軟磁性フェライト
粒子粉末をマトリックス中に75〜92重量%の割合で
混合分散させたことを特徴とする軟磁性フェライト粒子
複合体。
3. A soft magnetic ferrite particle composite comprising the soft magnetic ferrite particle powder according to claim 1 and 2 mixed and dispersed in a matrix at a ratio of 75 to 92% by weight.
【請求項4】 周波数100kHzにおける比透磁率の
実数部が18〜30である請求項3記載の軟磁性フェラ
イト粒子複合体。
4. The soft magnetic ferrite particle composite according to claim 3, wherein the real part of the relative magnetic permeability at a frequency of 100 kHz is 18 to 30.
JP05657799A 1999-03-04 1999-03-04 Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same Expired - Lifetime JP4279393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05657799A JP4279393B2 (en) 1999-03-04 1999-03-04 Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05657799A JP4279393B2 (en) 1999-03-04 1999-03-04 Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same

Publications (2)

Publication Number Publication Date
JP2000252113A true JP2000252113A (en) 2000-09-14
JP4279393B2 JP4279393B2 (en) 2009-06-17

Family

ID=13031021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05657799A Expired - Lifetime JP4279393B2 (en) 1999-03-04 1999-03-04 Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same

Country Status (1)

Country Link
JP (1) JP4279393B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136613A1 (en) * 2007-04-11 2009-12-23 Toda Kogyo Corporation Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
JP2010114246A (en) * 2008-11-06 2010-05-20 Alps Electric Co Ltd Multilayer magnetic sheet
JP2012502479A (en) * 2008-09-04 2012-01-26 スリーエム イノベイティブ プロパティズ カンパニー Electromagnetic interference suppression hybrid sheet
JP2012134463A (en) * 2010-11-30 2012-07-12 Sumitomo Osaka Cement Co Ltd Composite magnetic body, production method therefor, antenna and communication device
WO2016121619A1 (en) * 2015-01-27 2016-08-04 パウダーテック株式会社 Plate-shaped ferrite particles for pigment which exhibit metallic lustre
KR20180118231A (en) 2016-05-02 2018-10-30 파우더테크 컴퍼니 리미티드 Ferrite powder, a resin composition, an electromagnetic wave shielding material, an electronic circuit board, an electronic circuit component, and an electronic device housing
CN113690007A (en) * 2021-08-10 2021-11-23 浙江安特磁材股份有限公司 Rolled permanent magnetic ferrite magnetic powder and rubber product thereof
CN114192073A (en) * 2021-12-14 2022-03-18 中国人民解放军陆军装甲兵学院 Cobalt ferrite composite wave-absorbing material and preparation device thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136613A1 (en) * 2007-04-11 2009-12-23 Toda Kogyo Corporation Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
EP2136613A4 (en) * 2007-04-11 2011-09-28 Toda Kogyo Corp Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
US8723054B2 (en) 2007-04-11 2014-05-13 Toda Kogyo Corporation Electromagnetic noise suppression sheet, flat cable for high-frequency signals, flexible printed circuit board, and process for producing the electromagnetic noise suppression sheet
JP2012502479A (en) * 2008-09-04 2012-01-26 スリーエム イノベイティブ プロパティズ カンパニー Electromagnetic interference suppression hybrid sheet
JP2010114246A (en) * 2008-11-06 2010-05-20 Alps Electric Co Ltd Multilayer magnetic sheet
JP2012134463A (en) * 2010-11-30 2012-07-12 Sumitomo Osaka Cement Co Ltd Composite magnetic body, production method therefor, antenna and communication device
WO2016121619A1 (en) * 2015-01-27 2016-08-04 パウダーテック株式会社 Plate-shaped ferrite particles for pigment which exhibit metallic lustre
KR20170107986A (en) 2015-01-27 2017-09-26 파우더테크 컴퍼니 리미티드 Plate-shaped ferrite particles for pigment which exhibit metallic lustre
KR20180118231A (en) 2016-05-02 2018-10-30 파우더테크 컴퍼니 리미티드 Ferrite powder, a resin composition, an electromagnetic wave shielding material, an electronic circuit board, an electronic circuit component, and an electronic device housing
US11032955B2 (en) 2016-05-02 2021-06-08 Powdertech Co., Ltd. Ferrite powder, resin composition, electromagnetic shielding material, electronic circuit substrate, electronic circuit component, and electronic device housing
CN113690007A (en) * 2021-08-10 2021-11-23 浙江安特磁材股份有限公司 Rolled permanent magnetic ferrite magnetic powder and rubber product thereof
CN113690007B (en) * 2021-08-10 2022-02-22 浙江安特磁材股份有限公司 Rolled permanent magnetic ferrite magnetic powder and rubber product thereof
CN114192073A (en) * 2021-12-14 2022-03-18 中国人民解放军陆军装甲兵学院 Cobalt ferrite composite wave-absorbing material and preparation device thereof
CN114192073B (en) * 2021-12-14 2024-01-26 中国人民解放军陆军装甲兵学院 Cobalt ferrite composite wave-absorbing material and preparation device thereof

Also Published As

Publication number Publication date
JP4279393B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4674380B2 (en) Magnetic powder for radio wave absorber, manufacturing method, and radio wave absorber
JPH11354972A (en) Radio wave absorber
CN112005324A (en) Structured planar M-type hexagonal ferrite and method of use thereof
CN104078183B (en) Near field electric wave absorbent sheet and manufacture method thereof
Kong et al. Ni-Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design
JP5097971B2 (en) Manufacturing method of magnetic powder for electromagnetic wave absorber
JP5161813B2 (en) Mixed ferrite powder, method for producing the same, and radio wave absorber
JP2000252113A (en) Platy soft magnetic ferrite particles and powder and soft magnetic ferrite particle composition using the same
JP5391414B2 (en) Magnetic powder for electromagnetic wave absorber
JP2003002656A (en) Soft magnetic hexagonal ferrite composite particle powder, green sheet using the same, and soft magnetic hexagonal ferrite sintered body
JP2010260766A (en) Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same
Vinaykumar et al. Characterizations of low-temperature sintered BaCo1. 3Ti1. 3Fe9. 4O19 M-type ferrite for high-frequency antenna application
JP2009073724A (en) Ferrite material and method for producing ferrite material
JP4639384B2 (en) Method for producing magnetic powder for radio wave absorber and radio wave absorber
JP2794293B2 (en) Radio wave absorption material
JP2000021620A (en) Compound magnetic substance and manufacture thereof
JP2006137653A (en) Hexagonal magnetoplumbite-type ferrite and electromagnetic wave absorber using the same
JP5282318B2 (en) Solid solution Y-type hexagonal ferrite material, molded body using the material, electromagnetic wave absorber, and antenna
JP3544633B2 (en) Method for producing oxide magnetic material
JP3449322B2 (en) Composite magnetic material and inductor element
JP2000331816A (en) Hexagonal system z type barium ferrite and its manufacture
JPH0516679B2 (en)
JP2015030630A (en) Z-type hexagonal ferrite
JP2005347485A (en) Ferrite radio wave absorbing material and its manufacturing method
JP6064315B2 (en) Magnetic oxide sintered body, and antenna and wireless communication device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term