JP2005347485A - Ferrite radio wave absorbing material and its manufacturing method - Google Patents

Ferrite radio wave absorbing material and its manufacturing method Download PDF

Info

Publication number
JP2005347485A
JP2005347485A JP2004164796A JP2004164796A JP2005347485A JP 2005347485 A JP2005347485 A JP 2005347485A JP 2004164796 A JP2004164796 A JP 2004164796A JP 2004164796 A JP2004164796 A JP 2004164796A JP 2005347485 A JP2005347485 A JP 2005347485A
Authority
JP
Japan
Prior art keywords
mol
ferrite
less
radio wave
wave absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004164796A
Other languages
Japanese (ja)
Inventor
Tomoki Fukagawa
智機 深川
Shingo Sumikawa
真吾 澄川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2004164796A priority Critical patent/JP2005347485A/en
Publication of JP2005347485A publication Critical patent/JP2005347485A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferrite system radio wave absorbing material and its manufacturing method, wherein in a ferrite system material composed of compositions which are easily available as a material, an upper limit frequency of a radio wave absorbing characteristic is high, and in the case of being monolithically used as a sintered body, as well as a radio wave absorber which is formed as a composite material, it is easy to be made in a wide band and be thinned easily, and when the ferrite system material per se is manufactured also, a process control is easy and a producibility is excellent. <P>SOLUTION: In a c-axis anisotropic W-type hexagonal ferrite material composed of a specific composition, a bivalent composition of ferrite is adjusted, whereby a magnetic resonant frequency caused by a crystalline magnetic anisotropy can be changed by frequencies of a wide range and the radio wave absorbing characteristic also can be obtained in a wide frequency range, and a manufacturing process which is stably established as a ferrite permanent magnet can be utilized. Compounds such as Bi, Cl, B and F are added to accelerate a crystal particles growth, resulting in raising the imaginary part μ" of a complex permeability, and as a result, a matching thickness in the magnetic resonant frequency can be further thinned. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、樹脂粉末等との混合物となして電波吸収体を構成できるフェライト電波吸収材料に関し、GHz帯用で薄型電波吸収体が得られる、c軸異方性を有するW型六方晶フェライト電波吸収材料とその製造方法に関する。   TECHNICAL FIELD The present invention relates to a ferrite radio wave absorbing material that can constitute a radio wave absorber by forming a mixture with a resin powder or the like, and a W type hexagonal ferrite radio wave having a c-axis anisotropy that can obtain a thin radio wave absorber for GHz band. The present invention relates to an absorbent material and a manufacturing method thereof.

電子機器からの電波を吸収する電波吸収材料は、近年の電波利用の多様化により、利用周波数がMHz帯からGHz帯に拡張されるに伴い、ミリ波帯のような高周波においても利用可能であることが求められている。   Radio wave absorbing materials that absorb radio waves from electronic devices can be used at high frequencies such as the millimeter wave band as the frequency of use expands from the MHz band to the GHz band due to recent diversification of radio wave usage. It is demanded.

従来、MHz帯や数GHz程度の電波吸収体として、スピネル型フェライトや軟磁性六方晶フェライトの焼結体をそのまま使用したり、また、フェライト粉体を樹脂等に混練して複合磁性体となし、これを導体板に着設してインピーダンス整合型電波吸収体として利用することが有効である。   Conventionally, spinel type ferrite and soft magnetic hexagonal ferrite sintered bodies are used as they are for the electromagnetic wave absorber in the MHz band and several GHz, and there is no composite magnetic body by kneading ferrite powder into resin etc. It is effective to install this on a conductor plate and use it as an impedance matching type radio wave absorber.

ミリ波帯用の電波吸収体としては、抵抗皮膜を使用したものや、カーボン等の導電性材料を用いた電波吸収体などが使用されている。抵抗皮膜を用いたものは吸収性能は優れるが、ある程度の厚さが必要であり、例えば数百μmの薄型化、塗料化は困難とされている。   As the wave absorber for the millimeter wave band, a wave absorber using a resistance film or a wave absorber using a conductive material such as carbon is used. A film using a resistance film is excellent in absorption performance, but needs a certain thickness. For example, it is difficult to reduce the thickness to several hundred μm and to make a paint.

また、カーボン等の導電性材料を用いたミリ波電波吸収体は、上記薄型化や塗料化は可能であるが、薄型化を図るには、吸収材の誘電率を高める必要があり、それに伴い電波吸収性能を有する帯域が狭くなり、吸収材の厚さについても高い精度が求められ、実用化には多大の問題を有している。   Also, millimeter wave radio wave absorbers using conductive materials such as carbon can be made thinner and more paintable. However, in order to reduce the thickness, it is necessary to increase the dielectric constant of the absorbent material. The band having radio wave absorption performance is narrowed, and high accuracy is required for the thickness of the absorbent material, which has a great problem in practical use.

一方、より高い周波数領域で高透磁率を有する電波吸収材料として、磁性体粒子と樹脂材料、セラミックス材料または低融点金属材料との混合体からなる電波吸収体において、前記磁性体粒子に、面内磁気異方性を有する磁性材料の表面に飽和磁化が1T以上の磁性材料をコーティングした構成が提案(特許文献1)されている。   On the other hand, as an electromagnetic wave absorbing material having a high permeability in a higher frequency region, an electromagnetic wave absorber comprising a mixture of magnetic particles and a resin material, a ceramic material, or a low melting point metal material, A configuration has been proposed in which the surface of a magnetic material having magnetic anisotropy is coated with a magnetic material having a saturation magnetization of 1 T or more (Patent Document 1).

量産性に優れたフェライト材料として、Coの一部から大半をFeで置換した組成(Ba3Co2-xFexFe24O41)で、大気中および酸素分圧を制御した雰囲気において、Z型単相のバリウムフェライトを容易に作成でき、酸素中で作成した材料(Ba3Co2Fe24O41)と、透磁率および電波吸収性能が同等である六方晶フェライト材料が提案(特許文献2)されている。 As a ferrite material with excellent mass productivity, Z is a composition in which a part of Co is mostly substituted with Fe (Ba 3 Co 2-x Fe x Fe 24 O 41 ). Type single-phase barium ferrite can be easily prepared, and a hexagonal ferrite material that has the same permeability and electromagnetic wave absorption performance as a material created in oxygen (Ba 3 Co 2 Fe 24 O 41 ) is proposed (Patent Document 2) )

高周波領域において良好な電波吸収性能を有し、薄型化して鋼板等に取り付けが容易であるマグネトプランバイト型六方晶フェライトとして、Feの一部を特定の金属で置換してGHz帯の周波数帯域の一定の範囲内におけるインピーダンス整合をとり、その電波吸収性能を発揮させた構成が提案(特許文献3)されている。   As a magnetoplumbite type hexagonal ferrite that has good electromagnetic wave absorption performance in the high frequency region, is thin and easy to attach to steel plates, etc., a part of Fe is replaced with a specific metal, and the frequency band of the GHz band A configuration has been proposed (Patent Document 3) in which impedance matching is performed within a certain range and its radio wave absorption performance is exhibited.

異なる組成のフェライト焼結体を重ねて広帯域の電波吸収特性を得ることが想定されるが、一種類の組成でこれを実現するため、特定組成において、BaFe12O19で示されるM型構造の相とBa3Co2Fe24O41で示されるZ型構造の相の比率を3:7〜7:3となした、六方晶フェライト焼結体が提案(特許文献4)されている。
特開2001-60791 特開2000-331816 特開平11-354972 特開平10-335132
It is assumed that a wide range of electromagnetic wave absorption characteristics can be obtained by stacking ferrite sintered bodies of different compositions. To achieve this with a single composition, the M-type structure represented by BaFe 12 O 19 is used in a specific composition. A hexagonal ferrite sintered body has been proposed (Patent Document 4) in which the ratio of the phase of the Z-type structure represented by Ba 3 Co 2 Fe 24 O 41 is 3: 7 to 7: 3.
JP2001-60791 JP2000-331816 JP-A-11-354972 JP 10-335132 A

スピネル型フェライトを用いた電波吸収体は、磁気共鳴周波数が低く、20dB以上の吸収減衰量が得られる吸収特性の上限周波数が数GHzでまでしかない。   An electromagnetic wave absorber using spinel ferrite has a low magnetic resonance frequency, and the upper limit frequency of absorption characteristics that can obtain an absorption attenuation of 20 dB or more is only several GHz.

これに対して、Z型バリウムフェライトなどのフェロックスプレーナ六方晶フェライトを用いた電波吸収体は、吸収特性の上限周波数は20GHzと高いが、ミリ波帯においてはスピネル型フェライトと同様で吸収性能が低下する特性を有し、また、製造コストが高いことや製造時の焼成には雰囲気制御が必要であるなど、製造工程の厳格な管理が必要である。   On the other hand, radio wave absorbers using ferro-planar hexagonal ferrites such as Z-type barium ferrite have a high absorption frequency upper limit of 20 GHz, but in the millimeter wave band, the absorption performance is similar to that of spinel ferrite. Strict management of the manufacturing process is required, such as the property of deteriorating, high manufacturing cost, and control of the atmosphere required for firing during manufacturing.

また、フェライト粉末やカーボニル鉄粉などを樹脂等に混練した複合磁性体の形態を取る電波吸収体の場合、材料が複合化されるために電波吸収特性の設定に際して、周波数特性を任意に決定できないだけでなく、広帯域化と薄型化が困難で、制御可能なパラメータである粉体の粒径と充填率の均一性がその特性に大きく影響し、製造工程の厳格な管理が必要である。   In addition, in the case of a radio wave absorber that takes the form of a composite magnetic material in which ferrite powder, carbonyl iron powder, etc. are kneaded in a resin or the like, the frequency characteristics cannot be arbitrarily determined when setting the radio wave absorption characteristics because the materials are combined. In addition, it is difficult to increase the bandwidth and reduce the thickness, and the uniformity of the particle size and filling rate, which are controllable parameters, greatly affect the characteristics, and strict management of the manufacturing process is necessary.

この発明は、原材料に入手が容易な成分からなるフェライト系材料において、電波吸収特性の上限周波数が高く、焼結体単体はもちろん複合材料化した電波吸収体として利用する場合も広帯域化と薄型化が容易であり、フェライト系材料自体の製造も工程管理が容易で製造性に優れるフェライト系電波吸収材料とその製造方法の提供を目的としている。   The present invention has a high upper limit frequency of radio wave absorption characteristics in ferrite-based materials consisting of components that are easily available as raw materials, and has a wider band and thinner thickness when used as a composite radio wave absorber as well as a sintered body alone It is an object of the present invention to provide a ferrite-based radio wave absorbing material and a method for manufacturing the same.

発明者は、磁気共鳴周波数が数十GHzの特性を示すことが可能なフェライト材料を目的に、一軸異方性を有する六方晶フェライトの組成とその結晶構造について鋭意検討した結果、W型六方晶フェライトの結晶構造のc軸異方性化合物を有する材料は、結晶磁気異方性により磁気共鳴現象が起こり、1GHz〜35GHzの範囲にある強磁性共鳴周波数においてその複素透磁率の虚数部μ”が最大値を示す特性を有し、かかる磁気損失効果を利用した電波吸収により広帯域化と薄型化が可能であることを知見した。   The inventor has conducted intensive studies on the composition and crystal structure of hexagonal ferrite having uniaxial anisotropy for the purpose of a ferrite material capable of exhibiting characteristics with a magnetic resonance frequency of several tens of GHz. In a material having a c-axis anisotropic compound with a ferrite crystal structure, a magnetic resonance phenomenon occurs due to magnetocrystalline anisotropy, and an imaginary part μ ”of its complex permeability is present at a ferromagnetic resonance frequency in a range of 1 GHz to 35 GHz. We have found that it has the maximum characteristics, and it is possible to reduce the bandwidth and thickness by absorbing the electromagnetic wave using the magnetic loss effect.

また、発明者は、特定組成からなるc軸異方性W型六方晶フェライト材料において、フェライトの2価の組成を調整することにより、前記磁気共鳴周波数を広い範囲の周波数で変化させることができ、電波吸収特性についても広い周波数範囲で得ることが可能となることを知見した。   In addition, the inventor can change the magnetic resonance frequency in a wide range of frequencies by adjusting the divalent composition of ferrite in the c-axis anisotropic W-type hexagonal ferrite material having a specific composition. It was also found that radio wave absorption characteristics can be obtained in a wide frequency range.

さらに発明者は、知見した特定組成からなり、W型の結晶構造のc軸異方性化合物を80%以上含む一軸異方性W型六方晶フェライト材料は、大気中で焼成でき製造性が優れること、Bi、Cl、B、Fの元素は当該材料において、融液を生じさせて結晶粒成長を促進させるため、該虚数部μ”を上げることができ、その結果磁気共鳴周波数における整合厚みを、より薄くできることを知見し、この発明を完成した。   Furthermore, the inventors have found that the uniaxially anisotropic W-type hexagonal ferrite material having a specific composition and containing 80% or more of the c-axis anisotropic compound having a W-type crystal structure can be fired in the air and has excellent productivity. In addition, the elements Bi, Cl, B, and F generate a melt in the material to promote crystal grain growth, so that the imaginary part μ ″ can be increased, and as a result, the matching thickness at the magnetic resonance frequency can be increased. As a result, the present invention was completed.

すなわち、この発明は、組成式(1)がAMe2Fe16O27で示されるW型六方晶フェライトの結晶構造のc軸異方性化合物を有し、組成式のAはCa,Ba,Sr,Pbの一種又は二種以上であり、総量が2モルのMeは、Coを0.8モル以下、並びにMg,Mn,Fe,Ni,Cu,Znの一種又は二種以上を含む、あるいはさらに、BiをBi2O3として1mol%以下、ClをSrCl2、BaCl2、CaCl2の一種又は二種以上として1mol%以下、FをSrF2、BaF2、CaF2の一種又は二種以上として1mol%以下、BをB2O3として0.5mol%以下のいずれかの添加物を含むことを特徴とするフェライト系電波吸収材料である。 That is, the present invention has a c-axis anisotropic compound having a crystal structure of W-type hexagonal ferrite, whose composition formula (1) is AMe 2 Fe 16 O 27 , and A in the composition formula is Ca, Ba, Sr , One or more of Pb, and Me having a total amount of 2 moles, Co contains 0.8 mole or less, and includes one or more of Mg, Mn, Fe, Ni, Cu, Zn, or Bi 1 mol% or less as Bi 2 O 3 , Cl as 1 mol% or less as one or more of SrCl 2 , BaCl 2 , CaCl 2 , F as 1 mol% as one or more of SrF 2 , BaF 2 , CaF 2 The ferrite-based radio wave absorbing material is characterized in that it contains any additive of 0.5 mol% or less where B is B 2 O 3 .

また、この発明は、組成式(2)がAO:8〜10mol%、MeO:17〜19mol%、Fe2O3:71〜75mol%で示されるW型六方晶フェライトの結晶構造のc軸異方性化合物を有し、前記AはCa,Ba,Sr,Pbの一種又は二種以上であり、MeOは、CoOを7mol%以下並びにMgO,MnO,FeO,NiO,CuO,ZnOの一種又は二種以上を含む、あるいはさらに、BiをBi2O3として1mol%以下、ClをSrCl2、BaCl2、CaCl2の一種又は二種以上として1mol%以下、FをSrF2、BaF2、CaF2の一種又は二種以上として1mol%以下、BをB2O3として0.5mol%以下のいずれかの添加物を含むことを特徴とするフェライト系電波吸収材料である。 Further, the present invention is a composition formula (2) is AO: 8~10mol%, MeO: 17~19mol %, Fe 2 O 3: c of the crystal structure of the W-type hexagonal ferrite represented by 71~75Mol% Jikukoto And A is one or more of Ca, Ba, Sr, and Pb, MeO is 7 mol% or less of CoO, and one or two of MgO, MnO, FeO, NiO, CuO, and ZnO. containing more species, or even, 1 mol% or less of Bi as Bi 2 O 3, Cl and SrCl 2, BaCl 2, 1mol% as CaCl 2 for one or two or more or less, SrF 2 and F, BaF 2, CaF 2 1 or 2 or more, and B or B 2 O 3 and 0.5 mol% or less of any additive is included.

また、この発明は、組成式(1)又は(2)で示される組成に秤量、混合して作製した原料粉末を大気中で仮焼して仮焼粉末を得る工程、BiをBi2O3として1mol%以下、ClをSrCl2、BaCl2、CaCl2の一種又は二種以上として1mol%以下、FをSrF2、BaF2、CaF2の一種又は二種以上として1mol%以下、BをB2O3として0.5mol%以下のいずれかの添加物を含むように前記仮焼粉末に混合して混合粉末を得る工程、前記混合粉末を焼結する工程とを含むことを特徴とするフェライト系電波吸収材料の製造方法である。 The present invention also includes a step of obtaining a calcined powder by calcining a raw material powder prepared by weighing and mixing to a composition represented by the composition formula (1) or (2) in the air, Bi is Bi 2 O 3 1 mol% or less as, Cl and SrCl 2, BaCl 2, 1mol% as CaCl 2 for one or two or more or less, F and SrF 2, BaF 2, 1mol% as CaF 2 of one or two or more or less, the B B A ferrite system comprising a step of mixing with the calcined powder so as to contain any additive of 0.5 mol% or less as 2 O 3 to obtain a mixed powder, and a step of sintering the mixed powder. This is a method of manufacturing a radio wave absorbing material.

また、この発明は、組成式(1)又は(2)並びに添加物を加えた組成に秤量、混合して作製した原料粉末を大気中で仮焼して仮焼粉末を得る工程、仮焼粉末を粉砕し造粒する工程、得られた造粒粉末を用いて他の樹脂材料、セラミックス材料または低融点金属材料との混合物を作製して所要形状の電波吸収材料を得る工程とを含むことを特徴とするフェライト系電波吸収材料の製造方法である。   The present invention also includes a step of obtaining a calcined powder by calcining a raw material powder prepared by weighing and mixing the composition formula (1) or (2) and an additive in the air, and calcining powder. Pulverizing and granulating, and using the obtained granulated powder to produce a mixture with another resin material, ceramic material or low melting point metal material to obtain a radio wave absorbing material of the required shape. This is a method for producing a featured ferrite-based electromagnetic wave absorbing material.

この発明によるc軸異方性W型六方晶フェライト材料は、原材料の入手が容易な成分からなり、焼成、焼結温度も高くなく大気中で焼成できるなど工程管理が容易で製造性に優れ、磁気損失効果を利用した電波吸収が可能な範囲が1GHz〜40GHzと広く、またフェライトの2価の組成を調整することにより、前記磁気共鳴周波数を広い範囲の周波数で変化させることができる。   The c-axis anisotropic W-type hexagonal ferrite material according to the present invention is composed of components whose raw materials are easy to obtain, and can be easily fired and fired in the atmosphere without high sintering temperature and process management is easy and excellent in productivity. The range in which radio wave absorption using the magnetic loss effect can be absorbed is as wide as 1 GHz to 40 GHz, and the magnetic resonance frequency can be changed in a wide range of frequencies by adjusting the divalent composition of ferrite.

この発明によると、磁気共鳴周波数が数十GHzの特性を有する組成を容易に設定でき、電波吸収特性の上限周波数が高く、焼結体単体はもちろん複合材料化した電波吸収体として利用する場合であっても広帯域化が可能であり、同じ共鳴周波数ではより薄型化が容易になるフェライト系電波吸収材料を提供できる。   According to the present invention, a composition having a characteristic with a magnetic resonance frequency of several tens of GHz can be easily set, the upper limit frequency of the radio wave absorption characteristic is high, and when used as a composite radio wave absorber as well as a sintered body alone. Even in such a case, it is possible to provide a ferrite-based radio wave absorbing material that can be widened and can be easily made thinner at the same resonance frequency.

この発明によるc軸異方性W型六方晶フェライト材料は、大気中で焼成でき製造性が優れるが、さらに、Bi、Cl、B、Fの各元素の化合物を添加物として用いることで、焼成時に融液を生じさせて結晶粒成長を促進させるため、該虚数部μ”を上げることができ、その結果磁気共鳴周波数における整合厚みを、より薄くできる効果がある。   The c-axis anisotropic W-type hexagonal ferrite material according to the present invention can be fired in the atmosphere and has excellent manufacturability. In addition, by using a compound of each element of Bi, Cl, B, F as an additive, firing Since the melt is sometimes generated to promote crystal grain growth, the imaginary part μ ″ can be increased, and as a result, the matching thickness at the magnetic resonance frequency can be further reduced.

この発明によるc軸異方性W型六方晶フェライト材料は、前記組成式(1)又は(2)で示される組成を特徴としている。特に、組成式(1)又は(2)で示されるW型六方晶フェライトの結晶構造のc軸異方性化合物を80%以上含む構成が望ましい。すなわち、80%未満では、良好な電波吸収性能を得ることが難しく、種々構成の電波吸収材料における電波吸収性能を有効に発揮させるには80%以上が必要となる。   The c-axis anisotropic W-type hexagonal ferrite material according to the present invention is characterized by the composition represented by the composition formula (1) or (2). In particular, a configuration containing 80% or more of the c-axis anisotropic compound having the crystal structure of the W-type hexagonal ferrite represented by the composition formula (1) or (2) is desirable. That is, if it is less than 80%, it is difficult to obtain good radio wave absorption performance, and 80% or more is required to effectively exhibit radio wave absorption performance in various configurations of radio wave absorption materials.

組成式におけるAは、酸化鉄と反応して、この発明の六方晶フェライトを形成するために必要な元素であり、Ca,Ba,Sr,Pbの少なくとも1種以上が必要であり、好ましくはBaまたはSrである。Aは、c軸異方性W型六方晶フェライト材料が生成する組成式(1)でAMe2Fe16O27で表される範囲の量が必要で、組成式(2)で示す酸化物の場合は、8〜10mol%の範囲である。 A in the composition formula is an element necessary for reacting with iron oxide to form the hexagonal ferrite of the present invention, and at least one of Ca, Ba, Sr, and Pb is required, preferably Ba. Or Sr. A is the composition formula (1) generated by the c-axis anisotropic W-type hexagonal ferrite material, and requires an amount in the range represented by AMe 2 Fe 16 O 27. The oxide represented by the composition formula (2) In the case of 8 to 10 mol%.

Meとしては、結晶磁気異方性定数Ku>0、すなわち一軸異方性となる条件である必要があり、組成式(1)で総量2モルのうち、Kuをマイナスシフトさせる元素であるCoを0.8モル以下含有し、残りの1.2モルは、Mg,Mn,Fe,Ni,Cu,Znのうち少なくとも1種以上が必要である。   As Me, the magnetocrystalline anisotropy constant Ku> 0, that is, the condition of uniaxial anisotropy is required, and in the composition formula (1), out of the total amount of 2 mol, Co which is an element that negatively shifts Ku is added. 0.8 mol or less is contained, and the remaining 1.2 mol requires at least one of Mg, Mn, Fe, Ni, Cu, and Zn.

組成式(2)で示す酸化物の場合は、Meが17〜19mol%必要であり、KuをマイナスシフトさせるCoOは7mol%以下の含有であり、残りの10〜12mol%は、MgO,MnO,FeO,NiO,CuO,ZnOのうち少なくとも1種以上を選択し、これらはMeOが単一の場合、Kuがプラスとなる元素である。   In the case of the oxide represented by the composition formula (2), Me is required to be 17 to 19 mol%, CoO that negatively shifts Ku contains 7 mol% or less, and the remaining 10 to 12 mol% includes MgO, MnO, At least one selected from FeO, NiO, CuO, and ZnO is selected, and these elements are elements in which Ku is positive when MeO is single.

この発明によるc軸異方性W型六方晶フェライト材料は、上述のA及びMeの残余を鉄が占めるもので、組成式(2)で示す酸化物の場合は、Fe2O3が71〜75mol%の範囲である。 The c-axis anisotropic W-type hexagonal ferrite material according to the present invention occupies the remainder of A and Me, and in the case of the oxide represented by the composition formula (2), Fe 2 O 3 is 71 to It is in the range of 75 mol%.

この発明によるc軸異方性W型六方晶フェライト材料において、その結晶粒成長を促進する役割を担う元素Meとしては、Cuがあるが、他にBiをBi2O3として、ClをSrCl2、BaCl2、CaCl2の一種又は二種以上として、FをSrF2、BaF2、CaF2の一種又は二種以上として、BをB2O3として添加することで、焼成時に融液を生じさせて結晶粒成長を促進させ、虚数部μ”を上げることができる。添加量は、Bは0.5mol%以下であり、Bi、Cl、Fはそれぞれ1mol%以下である。 In the c-axis anisotropic W-type hexagonal ferrite material according to the present invention, there is Cu as an element Me that plays a role in promoting the crystal grain growth, but Bi is also Bi 2 O 3 and Cl is SrCl 2 , BaCl 2 , CaCl 2 as one or more types, F as SrF 2 , BaF 2 , CaF 2 as one or more types, and B as B 2 O 3 , resulting in a melt during firing Thus, the growth of crystal grains can be promoted and the imaginary part μ ″ can be increased. B is 0.5 mol% or less, and Bi, Cl, and F are each 1 mol% or less.

この発明によるc軸異方性W型六方晶フェライト材料の製造方法は、公知のフェライト磁石材料の製造方法が採用でき、例えば、秤量した原料に水、分散剤を加えてボールミルにて混合し、ろ過して原料粉末を得て、この原料粉末を850℃〜1350℃で仮焼を行い、ボールミルにて粉砕して仮焼粉末を得る、さらにスプレードライヤなどにて造粒した造粒粉末となし、これらの粉末を所要形状に成形し、1000℃〜1350℃の大気中で焼結する等の工程を適宜採用できる。   As a method for producing a c-axis anisotropic W-type hexagonal ferrite material according to the present invention, a known method for producing a ferrite magnet material can be adopted.For example, water and a dispersant are added to a weighed raw material and mixed in a ball mill, The raw material powder is obtained by filtration, this raw material powder is calcined at 850 ° C to 1350 ° C, pulverized with a ball mill to obtain a calcined powder, and granulated powder granulated with a spray dryer or the like These powders can be formed into a required shape, and a process such as sintering in the air at 1000 ° C. to 1350 ° C. can be appropriately employed.

この発明による電波吸収材料は、所要形状の焼結体の状態で使用したり、所要形状の焼結体を導電板に着設して使用する他、焼結体を粉砕した粉末や仮焼粉末、仮焼粉を粉砕した粉末をバインダー等を用いて所要形状に成形して利用したり、前記粉末に公知の樹脂材料、セラミックス材料または低融点金属材料とを混合した混合物となして、バインダー等を用いて所要形状に成形、あるいは焼結して各種の電波吸収体を構成することができる。   The radio wave absorbing material according to the present invention can be used in the state of a sintered body of a required shape, or can be used by attaching a sintered body of a required shape to a conductive plate. The powder obtained by pulverizing the calcined powder is used by forming it into a required shape using a binder or the like, or a mixture obtained by mixing a known resin material, ceramic material or low-melting-point metal material with the powder to form a binder, etc. Various wave absorbers can be formed by molding or sintering to a required shape using

この発明による電波吸収材料は、結晶粒成長を促進させるため、Bi、Cl、B、Fの各元素の化合物を添加物として用いるが、原料粉末の作製時に前記化合物を混合しておきこれより仮焼粉末を得ることができ、また、仮焼粉末を焼結する工程を採用する場合は、前記化合物を仮焼粉末に混合してから焼結することで、結晶粒成長を促進させることができる。   In the radio wave absorbing material according to the present invention, compounds of each element of Bi, Cl, B, and F are used as additives in order to promote the growth of crystal grains. When the step of sintering the calcined powder can be obtained, the grain growth can be promoted by mixing the compound with the calcined powder and then sintering. .

実施例1
出発原料として、BaO、SrO、PbO、Fe2O3、CoO、ZnO、CuO、NiO、MgO、MnO、TiO2を用い、表1の組成となるよう秤量し、鉄製ボールミルを用いて、数時間純水中で混合を行った。仮焼成は、大気中で1300℃×3時間で行い、その後、平均粒径1μmまで粉砕し、スプレードライヤー装置によって造粒を行い焼結用粉末を得た。
Example 1
As starting materials, BaO, SrO, PbO, Fe 2 O 3 , CoO, ZnO, CuO, NiO, MgO, MnO, TiO 2 were weighed to have the composition shown in Table 1, and several hours using an iron ball mill Mixing was performed in pure water. Pre-baking was performed in air at 1300 ° C. for 3 hours, and then pulverized to an average particle size of 1 μm and granulated with a spray dryer to obtain a powder for sintering.

表1の種々組成の焼結用粉末を用いてこれをリング状に成形し、大気中で1300℃×3時間の焼結を実施して、外径7mm、内径3mm、厚さ2mmのリング試料焼結体を得た。得られた試料に対して、周波数1GHz〜40GHzまでの吸収特性を調査した。組成と共鳴周波数、整合厚との関係を表1に示す。   This was molded into a ring shape using powders for sintering of various compositions shown in Table 1, and sintered at 1300 ° C for 3 hours in the atmosphere. A ring sample with an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 2 mm A sintered body was obtained. The obtained sample was investigated for absorption characteristics at frequencies from 1 GHz to 40 GHz. Table 1 shows the relationship between composition, resonance frequency, and matching thickness.

表1の組成No.1とNo.4に関して、周波数1GHz〜20GHzまでの電波吸収の周波数特性を図1A、図1Bに示す。いずれのリング焼結体も20dB以上の減衰が得られていることが分かる。   For compositions No. 1 and No. 4 in Table 1, the frequency characteristics of radio wave absorption from 1 GHz to 20 GHz are shown in FIGS. 1A and 1B. It can be seen that each ring sintered body has an attenuation of 20 dB or more.

また、表1の組成No.13とNo.14の比較例は、M型六方晶フェライト材料であり、同様の製造工程で作製した。表1の共鳴周波数、整合厚との関係から明らかなように、電波吸収性能を示す整合厚は、ほぼ同じ周波数での整合周波数を比較すると本発明の実施例の整合厚の方が薄いことがわかる。   Further, the comparative examples of compositions No. 13 and No. 14 in Table 1 are M-type hexagonal ferrite materials, which were produced in the same manufacturing process. As is clear from the relationship between the resonance frequency and the matching thickness in Table 1, the matching thickness indicating the radio wave absorption performance is smaller in the matching thickness of the embodiment of the present invention when comparing the matching frequencies at substantially the same frequency. Understand.

実施例2
表1の組成No.3の粉末をベースにして、Bi2O3、BaF2、BaCl2、B2O3の各添加物を表2に示す組成となるように秤量し、実施例1と同様工程でリング試料焼結体を得た。
Example 2
Based on the powder of composition No. 3 in Table 1, each additive of Bi 2 O 3 , BaF 2 , BaCl 2 , B 2 O 3 was weighed so as to have the composition shown in Table 2, and Example 1 A ring sample sintered body was obtained in the same process.

得られた試料に対して、周波数1GHz〜10GHzまでの吸収特性を調査した。組成と共鳴周波数、整合厚との関係を表2に示す。添加物により、整合厚が薄くなっていることがわかる。   The obtained sample was investigated for absorption characteristics at frequencies from 1 GHz to 10 GHz. Table 2 shows the relationship between composition, resonance frequency, and matching thickness. It can be seen that the matching thickness is reduced by the additive.

実施例3
表1の組成No.3、組成No.4の焼結用粉末を用い、これとポリカーボネート樹脂とを重量比75:25として複合電波吸収材を作製し、金属板で裏打ちし、電波吸収体を作製した。この電波吸収体の吸収特性を、自由空間法にて5GHz〜20GHzの範囲で測定した。その測定結果を図2に示す。
Example 3
Using a sintering powder of composition No. 3 and composition No. 4 in Table 1, this and polycarbonate resin were made into a weight ratio of 75:25 to produce a composite wave absorber, lined with a metal plate, Produced. The absorption characteristics of this radio wave absorber were measured in the range of 5 GHz to 20 GHz by the free space method. The measurement results are shown in FIG.

図2に明らかなように、8GHz〜18GHzの帯域で20dB以上の吸収特性が得られ、比周波数帯域幅が70%以上という吸収特性が得られたことが分かる。
As can be seen from FIG. 2, an absorption characteristic of 20 dB or more was obtained in the band of 8 GHz to 18 GHz, and an absorption characteristic having a specific frequency bandwidth of 70% or more was obtained.

Figure 2005347485
Figure 2005347485

Figure 2005347485
Figure 2005347485

この発明によると、従来のフェライト材を用いた電波吸収体に比べて、材料コストが安く、例えばフェライト永久磁石として確立した安定した製造工程が利用でき、薄型で広帯域の電波吸収特性が得られ、ミリ波帯でも優れた電波吸収特性を有する。また、組成を選定した場合、得られたフェライト電波吸収材料は、それ自体を着磁することにより、磁性金属壁に接着材等を使用することなく、極めて容易に貼り付け可能な電波吸収体を構成することができる。   According to the present invention, compared to a conventional wave absorber using a ferrite material, the material cost is low, for example, a stable manufacturing process established as a ferrite permanent magnet can be used, and a thin and broadband wave absorption characteristic can be obtained. Excellent electromagnetic absorption characteristics even in the millimeter wave band. In addition, when the composition is selected, the obtained ferrite radio wave absorber material is a magnetic wave absorber that can be attached very easily without using an adhesive or the like on the magnetic metal wall by magnetizing itself. Can be configured.

電波吸収性能を示す周波数と反射係数との関係を示すグラフであり、Aは表1の組成No.1の場合、Bは表1の組成No.4の場合である。4 is a graph showing the relationship between a frequency indicating radio wave absorption performance and a reflection coefficient, where A is the composition No. 1 in Table 1 and B is the composition No. 4 in Table 1. 実施例3による複合電波吸収体の電波吸収性能を示す周波数と反射係数との関係を示すグラフである。6 is a graph showing the relationship between the frequency and the reflection coefficient indicating the radio wave absorption performance of the composite radio wave absorber according to Example 3.

Claims (6)

組成式がAMe2Fe16O27で示されるW型六方晶フェライトの結晶構造のc軸異方性化合物を有し、組成式のAはCa,Ba,Sr,Pbの一種又は二種以上であり、総量が2モルのMeは、Coを0.8モル以下、並びにMg,Mn,Fe,Ni,Cu,Znの一種又は二種以上を含むフェライト電波吸収材料。 It has a c-axis anisotropic compound with a crystal structure of W-type hexagonal ferrite represented by the composition formula AMe 2 Fe 16 O 27 , and A in the composition formula is one or more of Ca, Ba, Sr, and Pb. A total of 2 mol of Me is a ferrite radio wave absorbing material containing Co of 0.8 mol or less and Mg, Mn, Fe, Ni, Cu, Zn, or one or more of them. AO:8〜10mol%、MeO:17〜19mol%、Fe2O3:71〜75mol%で示されるW型六方晶フェライトの結晶構造のc軸異方性化合物を有し、前記AはCa,Ba,Sr,Pbの一種又は二種以上であり、MeOは、CoOを7mol%以下並びにMgO,MnO,FeO,NiO,CuO,ZnOの一種又は二種以上を含むフェライト電波吸収材料。 AO: 8~10mol%, MeO: 17~19mol %, Fe 2 O 3: has a c-axis anisotropy compound of the crystal structure of the W-type hexagonal ferrite represented by 71~75mol%, wherein A is Ca, Ferrite electromagnetic wave absorbing material that is one or more of Ba, Sr, and Pb, MeO contains CoO at 7 mol% or less, and MgO, MnO, FeO, NiO, CuO, or ZnO. さらに、BiをBi2O3として1mol%以下、ClをSrCl2、BaCl2、CaCl2の一種又は二種以上として1mol%以下、FをSrF2、BaF2、CaF2の一種又は二種以上として1mol%以下、BをB2O3として0.5mol%以下のいずれか添加物を含む請求項1又は請求項2に記載のフェライト電波吸収材料。 Furthermore, Bi is 1 mol% or less as Bi 2 O 3 , Cl is 1 mol% or less as one or more of SrCl 2 , BaCl 2 , CaCl 2 , F is one or more of SrF 2 , BaF 2 , CaF 2 3. The ferrite radio wave absorbing material according to claim 1 or 2, which contains any additive of 1 mol% or less as B and 0.5 mol% or less as B as B 2 O 3 . c軸異方性化合物を80%以上含む請求項1又は請求項2に記載のフェライト電波吸収材料。 3. The ferrite radio wave absorbing material according to claim 1, comprising 80% or more of a c-axis anisotropic compound. 組成式がAO:8〜10mol%、MeO:17〜19mol%、Fe2O3:71〜75mol%で示されるW型六方晶フェライトの結晶構造のc軸異方性化合物を有し、前記AはCa,Ba,Sr,Pbの一種又は二種以上であり、MeOは、CoOを7mol%以下並びにMgO,MnO,FeO,NiO,CuO,ZnOの一種又は二種以上を含むフェライト材料を大気中で仮焼して仮焼粉末を得る工程、BiをBi2O3として1mol%以下、ClをSrCl2、BaCl2、CaCl2の一種又は二種以上として1mol%以下、FをSrF2、BaF2、CaF2の一種又は二種以上として1mol%以下、BをB2O3として0.5mol%以下のいずれかを含むように前記仮焼粉末に混合して混合粉末を得る工程、前記混合粉末を焼結する工程とを含むフェライト系電波吸収材料の製造方法。
Composition formula AO: 8~10mol%, MeO: 17~19mol %, Fe 2 O 3: has a c-axis anisotropy compound of the crystal structure of the W-type hexagonal ferrite represented by 71~75mol%, the A Is one or more of Ca, Ba, Sr, and Pb, MeO is a ferrite material containing 7 mol% or less of CoO and one or more of MgO, MnO, FeO, NiO, CuO, ZnO in the atmosphere. The process of obtaining calcined powder by calcination with Bi, Bi 2 O 3 as 1 mol% or less, Cl as SrCl 2 , BaCl 2 , CaCl 2 as one or two or less, 1 mol% or less, F as SrF 2 , BaF 2 , a step of obtaining a mixed powder by mixing with the calcined powder so as to contain one or two or more of CaF 2 and 1 mol% or less, and B as B 2 O 3 and 0.5 mol% or less, the mixed powder And a method for producing a ferrite-based electromagnetic wave absorbing material.
組成式がAO:8〜10mol%、MeO:17〜19mol%、Fe2O3:71〜75mol%で示されるW型六方晶フェライトの結晶構造のc軸異方性化合物を有し、前記AはCa,Ba,Sr,Pbの一種又は二種以上であり、MeOは、CoOを7mol%以下並びにMgO,MnO,FeO,NiO,CuO,ZnOの一種又は二種以上を含み、BiをBi2O3として1mol%以下、ClをSrCl2、BaCl2、CaCl2の一種又は二種以上として1mol%以下、FをSrF2、BaF2、CaF2の一種又は二種以上として1mol%以下、BをB2O3として0.5mol%以下のいずれか添加物を含むフェライト材料を大気中で仮焼して仮焼粉末を得る工程、仮焼粉末を粉砕し造粒する工程、得られた造粒粉末を用いて他の樹脂材料、セラミックス材料または低融点金属材料との混合物を作製して所要形状の電波吸収材料を得る工程とを含むフェライト系電波吸収材料の製造方法。 Composition formula AO: 8~10mol%, MeO: 17~19mol %, Fe 2 O 3: has a c-axis anisotropy compound of the crystal structure of the W-type hexagonal ferrite represented by 71~75mol%, the A Is one or more of Ca, Ba, Sr, and Pb, MeO contains 7 mol% or less of CoO and one or more of MgO, MnO, FeO, NiO, CuO, ZnO, Bi is Bi 2 1 mol% or less as O 3 , Cl as 1 mol% or less as one or more of SrCl 2 , BaCl 2 , CaCl 2 , F as 1 mol% or less as one or more of SrF 2 , BaF 2 , CaF 2 , B step a to obtain a calcined powder of ferrite material and calcined in air containing B 2 O 3 as 0.5 mol% or less of any additives, the step of calcining the powder was ground granulated, obtained granulated A method for producing a ferrite-based radio wave absorption material, comprising: using a powder to produce a mixture of another resin material, a ceramic material, or a low melting point metal material to obtain a radio wave absorption material of a required shape.
JP2004164796A 2004-06-02 2004-06-02 Ferrite radio wave absorbing material and its manufacturing method Pending JP2005347485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164796A JP2005347485A (en) 2004-06-02 2004-06-02 Ferrite radio wave absorbing material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164796A JP2005347485A (en) 2004-06-02 2004-06-02 Ferrite radio wave absorbing material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005347485A true JP2005347485A (en) 2005-12-15

Family

ID=35499583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164796A Pending JP2005347485A (en) 2004-06-02 2004-06-02 Ferrite radio wave absorbing material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005347485A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066364A (en) * 2006-09-05 2008-03-21 Dowa Holdings Co Ltd Magnetic powder for radio wave absorber and its manufacturing method, and radio wave absorber
CN106535598A (en) * 2016-11-10 2017-03-22 无锡市明盛强力风机有限公司 Wave-absorbing material for improving base
WO2020162297A1 (en) * 2019-02-08 2020-08-13 株式会社村田製作所 Soft magnetic composition, sintered body, complex, paste, coil component, and radio wave absorber
JPWO2020162295A1 (en) * 2019-02-08 2021-11-04 株式会社村田製作所 Soft magnetic compositions, sintered bodies, composites, pastes, coil components, and antennas
WO2024001623A1 (en) * 2022-06-29 2024-01-04 横店集团东磁股份有限公司 Preparation method for low-line-width w-type hexagonal crystal system microwave ferrite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066364A (en) * 2006-09-05 2008-03-21 Dowa Holdings Co Ltd Magnetic powder for radio wave absorber and its manufacturing method, and radio wave absorber
CN106535598A (en) * 2016-11-10 2017-03-22 无锡市明盛强力风机有限公司 Wave-absorbing material for improving base
WO2020162297A1 (en) * 2019-02-08 2020-08-13 株式会社村田製作所 Soft magnetic composition, sintered body, complex, paste, coil component, and radio wave absorber
JPWO2020162295A1 (en) * 2019-02-08 2021-11-04 株式会社村田製作所 Soft magnetic compositions, sintered bodies, composites, pastes, coil components, and antennas
WO2024001623A1 (en) * 2022-06-29 2024-01-04 横店集团东磁股份有限公司 Preparation method for low-line-width w-type hexagonal crystal system microwave ferrite material

Similar Documents

Publication Publication Date Title
US9338932B2 (en) Magnetoplumbite-type hexagonal ferrite
US9123460B2 (en) Ferrite composition for high frequency bead and chip bead comprising the same
CN112005324A (en) Structured planar M-type hexagonal ferrite and method of use thereof
KR20160033037A (en) Ferrite composition for radio wave absorber and radio wave absorber
JP2004247603A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP4158081B2 (en) Soft magnetic hexagonal ferrite composite particle powder, green sheet using the soft magnetic hexagonal ferrite composite particle powder, and soft magnetic hexagonal ferrite sintered body
US6669861B2 (en) Y-type hexagonal oxide magnetic material and inductor element
JP2005347485A (en) Ferrite radio wave absorbing material and its manufacturing method
KR101714895B1 (en) Ferrite composition for radio wave absorber and radio wave absorber
US6623879B2 (en) Soft-magnetic hexagonal ferrite composite particles, and green sheet using the same and soft-magnetic hexagonal ferrite sintered ceramics
Vinaykumar et al. Characterizations of low-temperature sintered BaCo1. 3Ti1. 3Fe9. 4O19 M-type ferrite for high-frequency antenna application
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP4599575B2 (en) Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same
JP2004153197A (en) Magnetic material and its producing process
JP2006016280A (en) Ni-Cu-Zn FERRITE AND ITS MANUFACTURING METHOD
JP4045410B2 (en) Soft magnetic hexagonal ferrite composite particle powder, green sheet using the soft magnetic hexagonal ferrite composite particle powder, and soft magnetic hexagonal ferrite sintered body
JP2015030630A (en) Z-type hexagonal ferrite
JP2000260615A (en) Ceramic system compound material and manufacture thereof
CN102050620B (en) VHF (very high frequency) soft magnetic barium ferrite material and preparation method thereof
JP6064315B2 (en) Magnetic oxide sintered body, and antenna and wireless communication device using the same
JP2004153196A (en) Magnetic material and its producing process
KR102329662B1 (en) Multi-types hexaferrites and method for preparing the same
JP2002179460A (en) Ferrite material and ferrite core by using the same
JPH09205031A (en) Production of multilayered inductance element
TWI440615B (en) Microwave dielectric material system and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091030