JP2010260766A - Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same - Google Patents

Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same Download PDF

Info

Publication number
JP2010260766A
JP2010260766A JP2009112859A JP2009112859A JP2010260766A JP 2010260766 A JP2010260766 A JP 2010260766A JP 2009112859 A JP2009112859 A JP 2009112859A JP 2009112859 A JP2009112859 A JP 2009112859A JP 2010260766 A JP2010260766 A JP 2010260766A
Authority
JP
Japan
Prior art keywords
hexagonal ferrite
type hexagonal
magnetoplumbite
radio wave
magnetoplumbite type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009112859A
Other languages
Japanese (ja)
Inventor
Shinichi Suenaga
真一 末永
Hiroo Hitomi
宏夫 人見
Zen Tsuboi
禅 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2009112859A priority Critical patent/JP2010260766A/en
Publication of JP2010260766A publication Critical patent/JP2010260766A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To develop and provide a magnetoplumbite-type hexagonal ferrite which exhibits a property in which, when it is used in a radiowave absorber, the matching frequency is substantially insensitive to the variation of the thickness of the radiowave absorber. <P>SOLUTION: The hexagonal magnetoplumbite-type ferrite is represented by the compositional formula: AFe<SB>(12-x)</SB>(B1<SB>0.5</SB>B2<SB>0.5</SB>)<SB>x</SB>O<SB>19</SB>, wherein A is Ba and/or Sr; B1 is Ti and/or Zr; and B2 is a divalent metallic element, provided that B2 includes two or more selected from among Co, Mn, Cu, Mg, Zn, and Ni. One at least containing Zn, particularly Co and Zn or Mn and Zn as the B2, is preferably used. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、GHz帯域用の電波吸収体に適したマグネトプランバイト型六方晶フェライト、およびそれを用いた電波吸収体に関する。 The present invention relates to a magnetoplumbite type hexagonal ferrite suitable for a radio wave absorber for the GHz band, and a radio wave absorber using the same.

近年、情報通信技術の高度化に伴い、GHz帯域の電波が種々の用途で使用されるようになってきた。例えば、携帯電話、無線LAN、衛生放送、高度道路交通システム、ノンストップ自動料金徴収システム(ETC)、自動車走行支援システム(AHS)などが挙げられる。このように高周波域での電波利用形態が多様化すると、電子部品同士の干渉による故障、誤動作、機能不全などが懸念され、その対策が重要となってくる。その1つとして、電波吸収体を用いて不要な電波を吸収し、電波の反射および侵入を防ぐ方法が有効である。昨今、GHz帯域用の電波吸収体は需要が増大しつつある。  In recent years, with the advancement of information communication technology, radio waves in the GHz band have been used for various purposes. For example, a mobile phone, wireless LAN, sanitary broadcasting, intelligent road traffic system, non-stop automatic toll collection system (ETC), automobile driving support system (AHS), and the like can be mentioned. Thus, when radio wave usage forms in a high frequency range are diversified, there is a concern about failure, malfunction, malfunction or the like due to interference between electronic components, and countermeasures are important. As one of them, a method of absorbing unnecessary radio waves using a radio wave absorber and preventing reflection and intrusion of radio waves is effective. Recently, the demand for radio wave absorbers for the GHz band is increasing.

従来、高周波帯域用の電波吸収体には、主としてフェライト等の酸化物系磁性材料が多く用いられている。フェライトの中でも、MHz帯域では主としてスピネル系のものが使用されるが、GHz以上の高周波帯域において優れた特性を発揮するものとしてマグネトプランバイト型六方晶フェライトが有望視されており、例えばFe3+の一部を4価の陽イオンと2価の陽イオンで置換したマグネトプランバイト型六方晶フェライトが知られている(特許文献1、非特許文献1)。 Conventionally, oxide-based magnetic materials such as ferrite are often used for radio wave absorbers for high frequency bands. Among ferrites, spinel type is mainly used in the MHz band, but magnetoplumbite type hexagonal ferrite is promising as a material that exhibits excellent characteristics in a high frequency band of GHz or higher. For example, Fe 3+ A magnetoplumbite-type hexagonal ferrite, in which a part thereof is substituted with a tetravalent cation and a divalent cation, is known (Patent Document 1, Non-Patent Document 1).

特開平11−354972号公報JP 11-354972 A 日本応用磁気学会誌、22、297−300(1998)Journal of Japan Society of Applied Magnetics, 22, 297-300 (1998)

フェライトを用いた電波吸収体は「インピーダンス整合型」であり、材料定数が定まると整合周波数と整合厚さが決定される。発明者らは、Fe3+の一部を置換したタイプのマグネトプランバイト型六方晶フェライトを用いた電波吸収体について、電波吸収特性を種々調査してきた。その結果、この種の電波吸収体の場合、厚さによる整合周波数の変化が大きいことが明らかになった。すなわち、シート厚さが変動すると整合周波数が大きく変化してしまうため、厚さの微妙な違いによって目的周波数領域の電波が的確に吸収できないといった問題が生じやすい。つまり、工業生産において安定した品質を得るためには、厚さについて高い寸法精度が要求され、これは生産コストを増大させる一因となる。 A radio wave absorber using ferrite is an “impedance matching type”, and when a material constant is determined, a matching frequency and a matching thickness are determined. The inventors have investigated various radio wave absorption characteristics of a radio wave absorber using a magnetoplumbite type hexagonal ferrite in which a part of Fe 3+ is substituted. As a result, in the case of this type of wave absorber, it became clear that the change of the matching frequency with the thickness is large. That is, when the sheet thickness varies, the matching frequency changes greatly, and a problem that radio waves in the target frequency region cannot be accurately absorbed due to a subtle difference in thickness tends to occur. That is, in order to obtain stable quality in industrial production, high dimensional accuracy is required for the thickness, which contributes to an increase in production cost.

本発明はこのような問題に鑑み、電波吸収体に使用したとき、その厚さが変動しても整合周波数が変化しにくい性質を発揮する、マグネトプランバイト型六方晶フェライトを開発し提供しようというものである。 In view of such problems, the present invention intends to develop and provide a magnetoplumbite type hexagonal ferrite that exhibits the property that the matching frequency hardly changes even when the thickness of the absorber is changed. Is.

上記目的は、組成式AFe(12−X)(B10.5B20.5)19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種、B2は2価金属元素であり、Co、Mn、Cu、Mg、Zn、Niのうち2種以上を含有するマグネトプランバイト型六方晶フェライトによって達成される。上記B2として少なくともZnを含有し、特にCoとZn、あるいはMnとZnを含有するものが好適な対象となる。 The object is represented by the composition formula AFe (12-X) (B1 0.5 B2 0.5 ) X O 19 , wherein A is one or two of Ba and Sr, and B1 is one of Ti and Zr. Two types, B2, are divalent metal elements, and are achieved by a magnetoplumbite type hexagonal ferrite containing two or more of Co, Mn, Cu, Mg, Zn and Ni. B2 contains at least Zn, and particularly those containing Co and Zn or Mn and Zn are suitable targets.

具体的には、例えば以下の組成式に示すものが挙げられる。
組成式 AFe(12−X)(B10.5(Co(1−y)Zn)0.5)19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは0.1〜2.0、yは0.2〜0.8であるマグネトプランバイト型六方晶フェライト。また、組成式 AFe(12−X)(B10.5(Mn(1−y)Zn)0.5)19で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは0.2〜4.0、yは0.5±0.1であるマグネトプランバイト型六方晶フェライトである。
Specifically, what is shown to the following compositional formulas is mentioned, for example.
It is represented by a composition formula AFe (12-X) (B1 0.5 (Co (1-y) Zn y ) 0.5 ) X O 19 , wherein A is one or two of Ba and Sr, B1 is Ti, A magnetoplumbite type hexagonal ferrite, which is one or two of Zr, x is 0.1 to 2.0, and y is 0.2 to 0.8. Moreover, it is represented by a composition formula AFe (12-X) (B1 0.5 (Mn (1-y) Zn y ) 0.5 ) X O 19 , A is one or two of Ba and Sr, and B1 is It is a magnetoplumbite type hexagonal ferrite, which is one or two of Ti and Zr, x is 0.2 to 4.0, and y is 0.5 ± 0.1.

また本発明では、上記のマグネトプランバイト型六方晶フェライトの粉末を用いた電波吸収体が提供される。 The present invention also provides a radio wave absorber using the above-described magnetoplumbite type hexagonal ferrite powder.

本発明によれば、マグネトプランバイト型六方晶フェライトにおいて、電波吸収体の厚さ変動による整合周波数の変化を小さく抑えるものが提供可能になった。この改良されたマグネトプランバイト型六方晶フェライトを用いると、電波吸収体の製造において、従来ほど厳格な厚さの寸法精度を要求しなくても、所定周波数領域に対する優れた電波吸収性能を安定して得ることができる。また、厚さが変動しやすい塗料や射出成形品においても、整合周波数を所望の周波数領域に合致させることが容易になる。したがって本発明は、マグネトプランバイト型六方晶フェライトを用いた電波吸収体の工業生産コスト低減により、その普及に寄与し、ひいてはGHz帯域の電波障害防止に貢献するものである。 According to the present invention, it is possible to provide a magnetoplumbite type hexagonal ferrite that suppresses a change in matching frequency due to a variation in the thickness of a radio wave absorber. Using this improved magnetoplumbite-type hexagonal ferrite, stable radio wave absorption performance in a specified frequency range can be stabilized without requiring strict dimensional accuracy as in the conventional manufacturing of radio wave absorbers. Can be obtained. In addition, it becomes easy to match the matching frequency to a desired frequency region even in a paint or injection molded product whose thickness is likely to fluctuate. Therefore, the present invention contributes to the spread of radio wave absorbers using magnetoplumbite type hexagonal ferrite by reducing the industrial production cost, and thus contributes to prevention of radio wave interference in the GHz band.

本発明では、Fe3+の一部を他の元素で置換したマグネトプランバイト型六方晶フェライトのうち、以下の組成式で表されるものを対象とする。
AFe(12−X)(B10.5B20.5)19
ここで、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種、B2は2価金属元素である。
ただし本発明では、上記組成式のB2元素として、Co、Mn、Cu、Mg、Zn、Niのうち2種以上を含有させる。このとき、電波吸収体の厚さ変動による整合周波数の変化を顕著に減少させることができるのである。その理由は現時点で不明な点も多いが、多種元素を複合添加することで結晶歪が小さくなり、結晶構造上安定してくることによって、その歪に起因する周波数変動がより小さく抑えられることが考えられる。
In the present invention, among the magnetoplumbite-type hexagonal ferrites in which a part of Fe 3+ is substituted with other elements, those represented by the following composition formula are targeted.
AFe (12-X) (B1 0.5 B2 0.5 ) X O 19
Here, A is one or two of Ba and Sr, B1 is one or two of Ti and Zr, and B2 is a divalent metal element.
However, in the present invention, two or more of Co, Mn, Cu, Mg, Zn, and Ni are contained as the B2 element in the composition formula. At this time, the change of the matching frequency due to the thickness variation of the radio wave absorber can be remarkably reduced. The reason for this is not clear at this point, but by adding multiple elements in combination, the crystal strain is reduced and the crystal structure is stabilized, so that frequency fluctuations caused by the strain can be suppressed to a smaller level. Conceivable.

その実用的な組成を例示すると、例えばB2元素としてCoとZnを複合添加した組成式BaFe(12−X)(Ti0.5(Co(1−y)Zn)0.5)19で表されるものが挙げられる。検討の結果、CoとZnのモル比については少なくとも上式中のyが0.2〜0.8の範囲において厚さによる整合周波数の変化が顕著に減少する効果が得られる。yは0.3〜0.8の範囲とすることが好ましく、0.4〜0.8の範囲で特に大きな効果が得られる。置換量xにより吸収周波数領域をコントロールすることができ、例えばxは0.1〜2.0の範囲とすることができる。 As an example of its practical composition, for example, a composition formula BaFe (12-X) (Ti 0.5 (Co (1-y) Zn y ) 0.5 ) X O 19 in which Co and Zn are added together as B2 element. The thing represented by is mentioned. As a result of the examination, as for the molar ratio of Co and Zn, an effect that the change in the matching frequency due to the thickness is remarkably reduced is obtained at least in the range where y in the above formula is 0.2 to 0.8. y is preferably in the range of 0.3 to 0.8, and a particularly large effect is obtained in the range of 0.4 to 0.8. The absorption frequency region can be controlled by the substitution amount x. For example, x can be in the range of 0.1 to 2.0.

別の実用的な組成を例示すると、例えばB2元素としてMnとZnを複合添加した組成式BaFe(12−X)(Ti0.5(Mn(1−y)Zn0.519で表されるものが挙げられる。検討の結果、少なくともMnとZnのモル比が1:1付近(上式中のyが0.5±0.1)において、厚さによる整合周波数の変化が顕著に減少する効果が得られる。この場合、xは例えば0.2〜4.0の範囲とすることができる。 To illustrate another practical composition, for example, a composition formula BaFe (12-X) (Ti 0.5 (Mn (1-y) Zn y ) 0.5 ) X O in which Mn and Zn are added in combination as B2 elements. What is represented by 19 is mentioned. As a result of the study, at least when the molar ratio of Mn to Zn is around 1: 1 (y in the above formula is 0.5 ± 0.1), the effect of significantly reducing the change in the matching frequency due to the thickness is obtained. In this case, x can be in the range of 0.2 to 4.0, for example.

本発明のマグネトプランバイト型六方晶フェライトは、一般的なソフトフェライトの製造方法に準じて製造することができる。例えば、原料として酸化物や炭酸塩の粉体を用いて、これらを所定のフェライト組成となるように秤量し、混合、造粒したのち、焼成することにより所定組成のマグネトプランバイト型六方晶フェライトが得られる。これを粉砕して粉末とすればよい。 The magnetoplumbite type hexagonal ferrite of the present invention can be manufactured according to a general soft ferrite manufacturing method. For example, oxide and carbonate powders are used as raw materials, and these are weighed so as to have a predetermined ferrite composition, mixed, granulated, and then fired to produce a magnetoplumbite type hexagonal ferrite of a predetermined composition. Is obtained. This may be pulverized into powder.

得られたマグネトプランバイト型六方晶フェライトの粉末は、高分子基材とともに混練することにより電波吸収体素材(混練物)が得られる。混練物中におけるマグネトプランバイト型六方晶フェライト粉末の配合量は60質量%以上とすることが好ましい。ただし95質量%を超えると高分子基材との混練が難しくなる。マグネトプランバイト型六方晶フェライト粉末の混合割合は80〜95質量%とすることがより好ましく、85〜95質量%が一層好ましい。 The obtained magnetoplumbite type hexagonal ferrite powder is kneaded with a polymer base material to obtain a radio wave absorber material (kneaded product). The blending amount of magnetoplumbite type hexagonal ferrite powder in the kneaded product is preferably 60% by mass or more. However, if it exceeds 95% by mass, kneading with the polymer substrate becomes difficult. The mixing ratio of the magnetoplumbite type hexagonal ferrite powder is more preferably 80 to 95% by mass, and still more preferably 85 to 95% by mass.

高分子基材としては、使用環境に応じて、耐熱性、難燃性、耐久性、機械的強度、電気的特性を満足する各種のものが使用できる。例えば、樹脂(ナイロン等)、ゲル(シリコーンゲル等)、熱可塑性エラストマー、ゴムなどから適切なものを選択すれば良い。また2種以上の高分子化合物をブレンドして基材としてもよい。 As the polymer substrate, various materials satisfying heat resistance, flame retardancy, durability, mechanical strength, and electrical characteristics can be used depending on the use environment. For example, an appropriate material may be selected from resin (nylon or the like), gel (silicone gel or the like), thermoplastic elastomer, rubber or the like. Two or more kinds of polymer compounds may be blended to form a substrate.

高分子基材との相溶性や分散性を改善するために、マグネトプランバイト型六方晶フェライト粉末には予めシランカップリング剤、チタネートカップリング剤等による表面処理を施すことができる。また、マグネトプランバイト型六方晶フェライト粉末と高分子化合物との混合に際し、可塑剤、補強剤、耐熱向上剤、熱伝導性充填剤、粘着剤などの各種添加剤を添加することができる。 In order to improve the compatibility and dispersibility with the polymer substrate, the magnetoplumbite type hexagonal ferrite powder can be subjected to surface treatment with a silane coupling agent, a titanate coupling agent or the like in advance. In addition, various additives such as a plasticizer, a reinforcing agent, a heat resistance improver, a heat conductive filler, and an adhesive can be added when mixing the magnetoplumbite type hexagonal ferrite powder and the polymer compound.

上記電波吸収体素材(混練物)を圧延により所定のシート厚に成形することで電波吸収体が得られる。また、本発明のマグネトプランバイト型六方晶フェライトを用いると電波吸収体の厚さ寸法精度の許容量が緩和されるので、圧延の代わりに射出成形を施すこともできる。マグネトプランバイト型六方晶フェライト粉末を直接塗料中に分散させて、基体表面に塗布することにより、塗膜としての電波吸収体を形成することもできる。 A radio wave absorber can be obtained by forming the above radio wave absorber material (kneaded material) into a predetermined sheet thickness by rolling. Further, when the magnetoplumbite type hexagonal ferrite of the present invention is used, the allowable amount of thickness dimensional accuracy of the radio wave absorber is relaxed, and therefore, injection molding can be performed instead of rolling. The electromagnetic wave absorber as a coating film can also be formed by dispersing the magnetoplumbite type hexagonal ferrite powder directly in the paint and applying it to the surface of the substrate.

以下、本発明を具体的に説明する。
まず、実施例において用いた、試料の諸物性の測定方法・装置について説明する。
The present invention will be specifically described below.
First, a method and apparatus for measuring physical properties of a sample used in the examples will be described.

<比表面積>
フェライト粉の比表面積(SSA)は、BET法に基づいて、ユアサ アイオニクス株式会社製のモノソーブ(Model Number:MS−17)を用いて測定を行った。
<Specific surface area>
The specific surface area (SSA) of the ferrite powder was measured using a monosorb (Model Number: MS-17) manufactured by Yuasa Ionics Co., Ltd. based on the BET method.

<圧縮密度>
フェライト粉の圧縮密度は、内径2.54cmφの円筒形金型にフェライト粉10gを充填した後、1ton/cmの圧力で圧縮した。このときのフェライト粉の密度を圧縮密度として測定した。
<Compression density>
The ferrite powder was compressed at a pressure of 1 ton / cm 3 after filling 10 g of ferrite powder into a cylindrical mold having an inner diameter of 2.54 cmφ. The density of the ferrite powder at this time was measured as a compression density.

<粒度分布>
フェライト粉の粒度分布は、レーザー回折式粒度分布測定装置(株式会社日本レーザー製、HELOS&RODOS)を用いて、focal length=20mm、分散圧 5.0bar、吸引圧 130mbarの条件にて粒度分布・ピーク粒径を測定した。
尚、当該粒度分布において、D16、D50、D84とは、それぞれ、体積16%、50%、84%における累積粒度分布のことであり、−0.3μ、−0.52μ、−1μ、+5μ、+8.6μとは、それぞれ、粒径0.3μmアンダー、粒径0.52μmアンダー、粒径1μmアンダー、粒径5μmアッパー、粒径8μmアッパーの粒子の存在割合である。
<Particle size distribution>
The particle size distribution of the ferrite powder is determined by using a laser diffraction particle size distribution measuring device (HELOS & RODOS, manufactured by Nippon Laser Co., Ltd.) under the conditions of focal length = 20 mm, dispersion pressure 5.0 bar, suction pressure 130 mbar. The diameter was measured.
In the particle size distribution, D16, D50, and D84 are cumulative particle size distributions at a volume of 16%, 50%, and 84%, respectively, -0.3μ, −0.52μ, −1μ, + 5μ, + 8.6μ is the ratio of particles having a particle size of 0.3 μm under, particle size of 0.52 μm under, particle size of 1 μm under, particle size of 5 μm upper and particle size of 8 μm upper, respectively.

<磁気特性>
フェライト粉の磁気特性は、VSM(東英工業株式会社製、VSM−P7)を用いてσs(emu/g)、σr(emu/g)、Hc(Oe)、SQの測定を行った。
<Magnetic properties>
The magnetic properties of the ferrite powder were measured for σs (emu / g), σr (emu / g), Hc (Oe), and SQ using VSM (manufactured by Toei Industry Co., Ltd., VSM-P7).

<X線測定>
フェライト粉のX線回折の測定条件は、管球:コバルト管球、Goniometer:Ultima+水平ゴニオメーターI型、Attachment:ASC−43(縦型)、Monochrometer:全自動モノクロメータ、ScannigMode:2θ/θ、ScaninigType:CONTINUOUS、X−Ray:40kV/30mA、発散スリット:1/2deg.、散乱スリット:1/2deg.、受光スリット:0.15mm、測定範囲:30°〜70°である。
<X-ray measurement>
The measurement conditions of the X-ray diffraction of the ferrite powder are as follows: tube: cobalt tube, Goniometer: Ultimate + horizontal goniometer type I, Attachment: ASC-43 (vertical type), Monochromator: fully automatic monochromator, Scanning Mode: 2θ / θ, ScanningType: CONTINUOUS, X-Ray: 40 kV / 30 mA, diverging slit: 1/2 deg. , Scattering slit: 1/2 deg. , Receiving slit: 0.15 mm, measurement range: 30 ° to 70 °.

〔実施例1〕
原料粉として、α−Fe、BaCO、TiO、CoおよびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12−X)(Ti0.5(Co0.5Zn0.50.5)19、x=0.4
秤量後の原料粉をハイスピードミキサーで混合し、更に振動ミルにより乾式法で混合強化した。得られた混合粉をペレット状に造粒成形し、この成形体をローラーハース型電気炉に装入し、大気中1250℃で2時間保持することにより焼成した。得られた焼成品をハンマーミルで分散し,更に解粒の為、アトライター(AT)で5min湿式分散した後、脱水・乾燥した。当該脱水・乾燥した乾燥品をハンマーミルで解砕して、マグネトプランバイト型六方晶フェライト粉を得た。
[Example 1]
Α-Fe 2 O 3 , BaCO 3 , TiO 2 , Co 3 O 4 and ZnO were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-X) (Ti 0.5 (Co 0.5 Zn 0.5 ) 0.5 ) X O 19 , x = 0.4
The raw material powder after weighing was mixed with a high speed mixer, and further mixed and strengthened by a dry method using a vibration mill. The obtained mixed powder was granulated and formed into pellets, and the formed body was placed in a roller hearth type electric furnace and fired by holding at 1250 ° C. in the atmosphere for 2 hours. The obtained fired product was dispersed with a hammer mill, and further subjected to wet dispersion with an attritor (AT) for 5 minutes for degreasing, followed by dehydration and drying. The dehydrated and dried dried product was crushed with a hammer mill to obtain a magnetoplumbite type hexagonal ferrite powder.

得られたマグネトプランバイト型六方晶フェライト粉の配合、比表面積(SSA)、圧縮密度(CD)、粒度分布、ピーク粒径の測定結果と磁気特性の測定結果を表1に示した。   Table 1 shows the measurement results of the composition, specific surface area (SSA), compression density (CD), particle size distribution, peak particle size, and magnetic properties of the obtained magnetoplumbite type hexagonal ferrite powder.

次に、上記粉砕後の磁性粉体(マグネトプランバイト型六方晶フェライトの粉体)の含有量が表2に示す割合となるように、当該粉体と高分子基材を混練して電波吸収体素材(混練物)を作製した。高分子基材としては合成ゴム(JSR(日本合成ゴム)製、N215SL)を使用した。この電波吸収体素材を圧延ロールにより所定の厚さに圧延し、電波吸収体シートを得た。   Next, the powder and the polymer substrate are kneaded so that the content of the pulverized magnetic powder (magnet plumbite-type hexagonal ferrite powder) becomes the ratio shown in Table 2 to absorb radio waves. A body material (kneaded material) was prepared. Synthetic rubber (JSR (Nippon Synthetic Rubber), N215SL) was used as the polymer substrate. The radio wave absorber material was rolled to a predetermined thickness by a rolling roll to obtain a radio wave absorber sheet.

各電波吸収体シートについて、自由空間法により電波吸収特性を調べた。HVSテクノロジーズ社(HVS Technologies,Inc.)製のフリー・スペース・マイクロ波測定システム(HVS FreeSpaceMicrowave Measurement System)を利用してKバンド(18.0〜26.5GHz)およびKaバンド(26.5〜40.0GHz)の電波を試料に入射させ、その反射減衰量を測定した。 The radio wave absorption characteristics of each radio wave absorber sheet were examined by the free space method. Using a free space microwave measurement system (HVS FreeSpace Microwave Measurement System) manufactured by HVS Technologies, Inc. (HVS Technologies, Inc.), K band (18.0 to 26.5 GHz) and Ka band (26.5 to 40) .0 GHz) radio wave was incident on the sample, and the return loss was measured.

〔実施例2〕
原料粉として、α−Fe、SrCO、TiO、CoおよびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:SrFe(12−X)(Ti0.5(Co0.5Zn0.50.5)19、x=0.5
その後、実施例1と同様のプロセスを経てフェライト粉を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。このマグネトプランバイト型六方晶フェライト粉を用いて実施例1と同様の方法で所定の厚さのシートとし、後述の電波吸収特性の測定に供した。
[Example 2]
Α-Fe 2 O 3 , SrCO 3 , TiO 2 , Co 3 O 4 and ZnO were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: SrFe (12-X) (Ti 0.5 (Co 0.5 Zn 0.5 ) 0.5 ) X O 19 , x = 0.5
Thereafter, a ferrite powder was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this magnetoplumbite type hexagonal ferrite powder, a sheet having a predetermined thickness was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔実施例3〕
実施例1と同じ原料粉を用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12−X)(Ti0.5(Co0.5Zn0.50.5)19、x=1.8
その後、実施例1と同様のプロセスを経てフェライト粉を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。このマグネトプランバイト型六方晶フェライト粉を用いて実施例1と同様の方法で所定の厚さのシートとし、後述の電波吸収特性の測定に供した。
Example 3
The same raw material powder as in Example 1 was used and weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-X) (Ti 0.5 (Co 0.5 Zn 0.5 ) 0.5 ) X O 19 , x = 1.8
Thereafter, a ferrite powder was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this magnetoplumbite type hexagonal ferrite powder, a sheet having a predetermined thickness was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔実施例4〕
原料粉として、α−Fe、BaCO、TiO、MnOおよびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12−X)(Ti0.5(Mn0.5Zn0.50.5)19、x=0.4
その後、実施例1と同様のプロセスを経てフェライト粉を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。このマグネトプランバイト型六方晶フェライト粉を用いて実施例1と同様の方法で所定の厚さのシートとし、後述の電波吸収特性の測定に供した。
Example 4
Α-Fe 2 O 3 , BaCO 3 , TiO 2 , MnO 2 and ZnO were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-X) (Ti 0.5 (Mn 0.5 Zn 0.5 ) 0.5 ) X O 19 , x = 0.4
Thereafter, a ferrite powder was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this magnetoplumbite type hexagonal ferrite powder, a sheet having a predetermined thickness was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔比較例1〕
原料粉として、α−Fe、BaCO、TiOおよびCoを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12−X)(Ti0.5Co0.519、x=0.4
その後、実施例1と同様のプロセスを経てフェライト粉を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。このマグネトプランバイト型六方晶フェライト粉を用いて実施例1と同様の方法で所定の厚さのシートとし、後述の電波吸収特性の測定に供した。
[Comparative Example 1]
Α-Fe 2 O 3 , BaCO 3 , TiO 2 and Co 3 O 4 were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-X) (Ti 0.5 Co 0.5 ) X O 19 , x = 0.4
Thereafter, a ferrite powder was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this magnetoplumbite type hexagonal ferrite powder, a sheet having a predetermined thickness was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔比較例2〕
原料粉として、α−Fe、SrCO、TiOおよびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:SrFe(12−X)(Ti0.5Zn0.519、x=0.5
その後、実施例1と同様のプロセスを経てフェライト粉を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。このマグネトプランバイト型六方晶フェライト粉を用いて実施例1と同様の方法で所定の厚さのシートとし、後述の電波吸収特性の測定に供した。
[Comparative Example 2]
Α-Fe 2 O 3 , SrCO 3 , TiO 2 and ZnO were used as raw material powders, and these were weighed in a quantitative ratio corresponding to the following composition.
Composition: SrFe (12-X) (Ti 0.5 Zn 0.5 ) X O 19 , x = 0.5
Thereafter, a ferrite powder was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this magnetoplumbite type hexagonal ferrite powder, a sheet having a predetermined thickness was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔比較例3〕
原料粉として、α−Fe、BaCO、TiOおよびCoを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12−X)(Ti0.5Co0.5)19、x=1.8
その後、実施例1と同様のプロセスを経てフェライト粉を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。このマグネトプランバイト型六方晶フェライト粉を用いて実施例1と同様の方法で所定の厚さのシートとし、後述の電波吸収特性の測定に供した。
[Comparative Example 3]
Α-Fe 2 O 3 , BaCO 3 , TiO 2 and Co 3 O 4 were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-X) (Ti 0.5 Co 0.5 ) X O 19 , x = 1.8
Thereafter, a ferrite powder was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this magnetoplumbite type hexagonal ferrite powder, a sheet having a predetermined thickness was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

〔比較例4〕
原料粉として、α−Fe、BaCO、TiO、MnOおよびZnOを用い、これらを下記組成に対応する量比で秤量した。
組成:BaFe(12−X)(Ti0.5Mn0.5)19、x=0.4
その後、実施例1と同様のプロセスを経てフェライト粉を得た。X線回折の結果、この微粉砕品はマグネトプランバイト型六方晶フェライトであることが確認された。このマグネトプランバイト型六方晶フェライト粉を用いて実施例1と同様の方法で所定の厚さのシートとし、後述の電波吸収特性の測定に供した。
[Comparative Example 4]
Α-Fe 2 O 3 , BaCO 3 , TiO 2 , MnO 2 and ZnO were used as raw material powders, and these were weighed at a quantitative ratio corresponding to the following composition.
Composition: BaFe (12-X) (Ti 0.5 Mn 0.5 ) X O 19 , x = 0.4
Thereafter, a ferrite powder was obtained through the same process as in Example 1. As a result of X-ray diffraction, it was confirmed that the finely pulverized product was a magnetoplumbite type hexagonal ferrite. Using this magnetoplumbite type hexagonal ferrite powder, a sheet having a predetermined thickness was prepared in the same manner as in Example 1 and subjected to measurement of radio wave absorption characteristics described later.

表2に、実施例1のシート厚さと周波数の関係(測定結果)を例示する。厚さの異なる各シートの測定結果から、縦軸にシート厚さを、横軸に約−20dB以下の吸収量が得られる周波数(以下、整合周波数と示す)のうち、そのピーク値を読み取りプロットする。その結果、整合周波数とシート厚さの関係は概ね直線状の関係になる。そこで最小二乗法により各プロットの並びを直線で近似する。この近似直線の傾きの絶対値が大きいほど、電波吸収体厚さの変動に対する整合周波数の変化量が小さくなり、所定の周波数領域に適用可能な厚さの許容範囲が拡大することになる。 Table 2 illustrates the relationship (measurement result) between the sheet thickness and the frequency in Example 1. From the measurement results of each sheet with different thickness, the vertical axis indicates the sheet thickness, and the horizontal axis indicates the peak value of the frequency (hereinafter referred to as the matching frequency) at which an absorption amount of about −20 dB or less is obtained. To do. As a result, the relationship between the matching frequency and the sheet thickness is a substantially linear relationship. Therefore, the arrangement of each plot is approximated by a straight line by the method of least squares. As the absolute value of the slope of the approximate line increases, the amount of change in the matching frequency with respect to fluctuations in the thickness of the radio wave absorber is reduced, and the allowable range of thickness applicable to a predetermined frequency region is expanded.

他の実施例、比較例についても上記と同様の手法により、電波吸収体の厚さ変動による整合周波数の変化の程度を評価した。各実施例、比較例についての目標とする周波数と、傾きの絶対値の計算結果を表2に示した。 For other examples and comparative examples, the degree of change in the matching frequency due to the thickness variation of the radio wave absorber was evaluated by the same method as described above. Table 2 shows the target frequency and the calculation result of the absolute value of the slope for each example and comparative example.

実施例1、実施例2、比較例1、比較例2から判るように、比較例1および比較例2の傾きの絶対値はそれぞれ0.102および0.137であるのに対し、実施例1および実施例2の傾きの絶対値はそれぞれ0.319および0.315と大きかった。すなわち、2価の金属元素としてCoとZnを複合添加した実施例1、2のマグネトプランバイト型六方晶フェライト粉は、Co単独添加の比較例1もしくはZn単独添加の比較例2のものと比べ、電波吸収体の厚さ変動による整合周波数の変化の程度が顕著に小さくなっていることがわかる。 As can be seen from Example 1, Example 2, Comparative Example 1, and Comparative Example 2, the absolute values of the slopes of Comparative Example 1 and Comparative Example 2 are 0.102 and 0.137, respectively. The absolute values of the slopes of Example 2 and Example 2 were as large as 0.319 and 0.315, respectively. That is, the magnetoplumbite type hexagonal ferrite powders of Examples 1 and 2 in which Co and Zn are added together as a divalent metal element are compared with those in Comparative Example 1 in which Co is added alone or Comparative Example 2 in which Zn is added alone. It can be seen that the degree of change in the matching frequency due to the thickness variation of the radio wave absorber is significantly reduced.

実施例3、比較例3から判るように、比較例3の傾きの絶対値は0.249であるのに対し、実施例3の傾きの絶対値は0.536と大きかった。すなわち、2価の金属元素としてCoとZnを複合添加した実施例1のマグネトプランバイト型六方晶フェライトは、Co単独添加の比較例1のものと比べ、電波吸収体の厚さ変動による整合周波数の変化の程度が顕著に小さくなっていることがわかる。 As can be seen from Example 3 and Comparative Example 3, the absolute value of the slope of Comparative Example 3 was 0.249, whereas the absolute value of the slope of Example 3 was as large as 0.536. That is, the magnetoplumbite type hexagonal ferrite of Example 1 in which Co and Zn are added together as a divalent metal element has a matching frequency due to the thickness variation of the radio wave absorber compared to that of Comparative Example 1 in which only Co is added. It can be seen that the degree of change is significantly reduced.

実施例4、比較例4から判るように、比較例4の傾きの絶対値は0.173であるのに対し、実施例3の傾きの絶対値は0.429と大きかった。すなわち、2価の金属元素としてMnとZnを複合添加した実施例4のマグネトプランバイト型六方晶フェライトは、Mn単独添加の比較例4のものと比べ、電波吸収体の厚さ変動による整合周波数の変化の程度が顕著に小さくなっていることがわかる。 As can be seen from Example 4 and Comparative Example 4, the absolute value of the slope of Comparative Example 4 was 0.173, whereas the absolute value of the slope of Example 3 was as large as 0.429. That is, the magnetoplumbite type hexagonal ferrite of Example 4 in which Mn and Zn are added together as a divalent metal element has a matching frequency due to the thickness variation of the radio wave absorber compared to that of Comparative Example 4 in which Mn alone is added. It can be seen that the degree of change is significantly reduced.

Claims (3)

AFe(12−X)(B10.5(Co(1−y)Zn)0.5)19の組成式で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは0.1〜2.0、yは0.2〜0.8であるマグネトプランバイト型六方晶フェライト。 AFe (12-X) (B1 0.5 (Co (1-y) Zn y ) 0.5 ) X O 19 is represented by a composition formula, A is one or two of Ba and Sr, and B1 is Ti , Zr, magnetoplumbite type hexagonal ferrite, wherein x is 0.1 to 2.0, and y is 0.2 to 0.8. AFe(12−X)(B10.5(Mn(1−y)Zn)0.5)19の組成式で表され、AはBa、Srの1種または2種、B1はTi、Zrの1種または2種であり、xは0.2〜4.0、yは0.5±0.1であるマグネトプランバイト型六方晶フェライト。 AFe (12-X) (B1 0.5 (Mn (1-y) Zn y ) 0.5 ) X O 19 is represented by the composition formula, A is one or two of Ba and Sr, and B1 is Ti. Magnetoplumbite type hexagonal ferrite, which is one or two of Zr, x is 0.2 to 4.0, and y is 0.5 ± 0.1. 請求項1〜2のいずれかに記載のマグネトプランバイト型六方晶フェライトの粉末を用いた電波吸収体。

A radio wave absorber using the magnetoplumbite-type hexagonal ferrite powder according to claim 1.

JP2009112859A 2009-05-07 2009-05-07 Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same Pending JP2010260766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112859A JP2010260766A (en) 2009-05-07 2009-05-07 Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112859A JP2010260766A (en) 2009-05-07 2009-05-07 Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same

Publications (1)

Publication Number Publication Date
JP2010260766A true JP2010260766A (en) 2010-11-18

Family

ID=43359179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112859A Pending JP2010260766A (en) 2009-05-07 2009-05-07 Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same

Country Status (1)

Country Link
JP (1) JP2010260766A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779028A (en) * 2013-11-05 2014-05-07 南京梅山冶金发展有限公司 Permanent magnetic ferrite magnetic powder for large-axis-diameter-ratio magnet ring and manufacturing method
CN104072117A (en) * 2013-03-29 2014-10-01 株式会社理研 Magnetoplumbite-type hexagonal ferrite
WO2020230680A1 (en) * 2019-05-14 2020-11-19 富士フイルム株式会社 Radio wave absorber
KR20220034174A (en) 2019-08-09 2022-03-17 후지필름 가부시키가이샤 Radio wave absorbing composition and radio wave absorber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072117A (en) * 2013-03-29 2014-10-01 株式会社理研 Magnetoplumbite-type hexagonal ferrite
EP2784044A1 (en) * 2013-03-29 2014-10-01 Kabushiki Kaisha Riken Magnetoplumbite-type hexagonal ferrite
US9338932B2 (en) 2013-03-29 2016-05-10 Kabushiki Kaisha Riken Magnetoplumbite-type hexagonal ferrite
CN103779028A (en) * 2013-11-05 2014-05-07 南京梅山冶金发展有限公司 Permanent magnetic ferrite magnetic powder for large-axis-diameter-ratio magnet ring and manufacturing method
WO2020230680A1 (en) * 2019-05-14 2020-11-19 富士フイルム株式会社 Radio wave absorber
KR20210150454A (en) * 2019-05-14 2021-12-10 후지필름 가부시키가이샤 radio wave absorber
CN113812221A (en) * 2019-05-14 2021-12-17 富士胶片株式会社 Radio wave absorber
KR102542810B1 (en) * 2019-05-14 2023-06-14 후지필름 가부시키가이샤 radio wave absorber
KR20220034174A (en) 2019-08-09 2022-03-17 후지필름 가부시키가이샤 Radio wave absorbing composition and radio wave absorber

Similar Documents

Publication Publication Date Title
JP4674380B2 (en) Magnetic powder for radio wave absorber, manufacturing method, and radio wave absorber
US9338932B2 (en) Magnetoplumbite-type hexagonal ferrite
Meena et al. Complex permittivity, permeability and microwave absorbing studies of (Co2− xMnx) U-type hexaferrite for X-band (8.2–12.4 GHz) frequencies
Meena et al. Complex permittivity, permeability and microwave absorbing properties of (Mn2− xZnx) U-type hexaferrite
EP2058824B1 (en) Magnetic crystal for radio wave absorbing material and radio wave absorbent
JP4919636B2 (en) Oxide magnetic material and sintered magnet
JP5097971B2 (en) Manufacturing method of magnetic powder for electromagnetic wave absorber
JP5161813B2 (en) Mixed ferrite powder, method for producing the same, and radio wave absorber
KR20170106315A (en) Hexagonal plate-shaped ferrite powder, method for producing same, and resin composition and molded article using said ferrite powder
JP2010260766A (en) Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same
JP2004247603A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP4599575B2 (en) Magnetoplumbite type hexagonal ferrite and electromagnetic wave absorber using the same
JP7292795B2 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same
JP2005268736A (en) Electromagnetic wave absorbing material for high frequency band using iron oxide content waste
JP5391414B2 (en) Magnetic powder for electromagnetic wave absorber
JP7196345B2 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder, method for producing the same, radio wave absorber, and method for producing the same
JP4279393B2 (en) Plate-like soft magnetic ferrite particle powder and soft magnetic ferrite particle composite using the same
JP5282318B2 (en) Solid solution Y-type hexagonal ferrite material, molded body using the material, electromagnetic wave absorber, and antenna
JP4639384B2 (en) Method for producing magnetic powder for radio wave absorber and radio wave absorber
Janu et al. Tuning of electromagnetic properties in Ba (MnZn) xCo2 (1-x) Fe16O27/NBR flexible composites for wide band microwave absorption in 6–18 GHz
JP2006206420A (en) Ferritic sintered compact, its production method and coil component
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP2012216865A (en) Magnetic powder for radio wave absorber and radio wave absorber
JP2020123701A (en) Magnetoplumbite type hexagonal ferrite magnetic powder and manufacturing method thereof
JP2005347485A (en) Ferrite radio wave absorbing material and its manufacturing method