JP2000252100A - Deflecting electromagnet and its manufacture - Google Patents

Deflecting electromagnet and its manufacture

Info

Publication number
JP2000252100A
JP2000252100A JP4648399A JP4648399A JP2000252100A JP 2000252100 A JP2000252100 A JP 2000252100A JP 4648399 A JP4648399 A JP 4648399A JP 4648399 A JP4648399 A JP 4648399A JP 2000252100 A JP2000252100 A JP 2000252100A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
electromagnet
magnetic
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4648399A
Other languages
Japanese (ja)
Inventor
Shoichi Nakanishi
正一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4648399A priority Critical patent/JP2000252100A/en
Publication of JP2000252100A publication Critical patent/JP2000252100A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form an efficient effective magnetic field region corresponding to charged particle beam width and to accurately set an edge angle as occasion demands by changing stacking structure of electromagnetic steel plates. SOLUTION: This deflecting electromagnet sets an edge angle α by inclining electromagnetic steel plates 2a, 2b in charged particle beam outlet and inlet 6A, 6B of an electromagnet main body 1 by a specified angle to the perpendicularly crossing surface with the beam axis of a charged particle beam 7, other electromagnetic steel plates are stacked so as to match with a designed orbit 8 through which the charged particle beam is passed by shifting one by one in parallel to the electromagnetic steel plates 2A, 2B in the charged particle beam outlet and inlet 6A, 6B, and thereby, magnetic pole width H is made wider in the central part of the designed orbit 8 than the charged particle beam outlet and inlet 6A, 6B sides.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、荷電粒子ビーム
を偏向させる偏向電磁石に関し、特に電磁石本体を構成
する電磁鋼板の積み方によって荷電粒子ビームの形状お
よび幅について効率的に有効磁場領域を確保する偏向電
磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bending electromagnet for deflecting a charged particle beam, and more particularly to an effective magnetic field region for the shape and width of the charged particle beam by the way of stacking electromagnetic steel sheets constituting an electromagnet body. It relates to a bending electromagnet.

【0002】[0002]

【従来の技術】図5は例えば特開平01-194300号公報に
示された従来の偏向電磁石を示す図である。この偏向電
磁石は、所定のギャップ105を介して互いに対向する
一対の磁極104及び該一対の磁極104を連結するヨ
ーク106とを有するとともに多数枚の電磁鋼板102
で構成された電磁石本体101と、ギャップ105に一
様の磁場を発生させてギャップ105内を通る荷電粒子
ビームBの軌道を曲率中心を持つ円弧状に曲げるコイル
103とを備えている。
2. Description of the Related Art FIG. 5 is a view showing a conventional bending electromagnet disclosed in, for example, JP-A-01-194300. The bending electromagnet includes a pair of magnetic poles 104 facing each other via a predetermined gap 105 and a yoke 106 connecting the pair of magnetic poles 104.
And a coil 103 for generating a uniform magnetic field in the gap 105 and bending the trajectory of the charged particle beam B passing through the gap 105 into an arc having a center of curvature.

【0003】この偏向電磁石の磁極104の断面形状は
偏向角によらず同一形状となっており、発生する磁場有
効領域は一定の幅を持つ円弧状である。そして、偏向電
磁石により曲げられる荷電粒子ビームBの幅は電磁石本
体101内で一定の場合、または荷電粒子ビームの幅が
変化するが電磁石本体101内の最大荷電粒子ビーム幅
が有効磁場領域の幅より小さい場合に適用できる。
The cross-sectional shape of the magnetic pole 104 of the bending electromagnet is the same regardless of the deflection angle, and the effective magnetic field area is an arc having a constant width. When the width of the charged particle beam B bent by the bending electromagnet is constant in the electromagnet main body 101 or the width of the charged particle beam changes, the maximum charged particle beam width in the electromagnet main body 101 is larger than the width of the effective magnetic field region. Applicable for small cases.

【0004】[0004]

【発明が解決しようとする課題】従来の偏向電磁石で
は、荷電粒子ビーム幅が変化する場合には、最大荷電粒
子ビーム幅に合わせて磁極幅を設計した場合には、電磁
石本体101の全体が大きくなり、偏向電磁石の設置場
所を広くする必要があるばかりか、電磁鋼板102の材
料コスト及びコイル103の材料コストが高くなり、コ
イル103に必要な電力量も高くなるという問題点があ
った。
In the conventional bending electromagnet, when the charged particle beam width changes, when the magnetic pole width is designed in accordance with the maximum charged particle beam width, the entire electromagnet body 101 becomes large. Therefore, not only is it necessary to increase the installation location of the bending electromagnet, but also the material cost of the electromagnetic steel sheet 102 and the material cost of the coil 103 increase, and the amount of power required for the coil 103 also increases.

【0005】このように、最大荷電粒子ビーム幅により
定められた一定の磁極幅を持つ従来の偏向電磁石では、
荷電粒子ビームBの軌道全域にわたって広い有効磁場領
域を与えることになるので、荷電粒子ビーム幅が電磁石
本体101内で顕著に変化する場合には、荷電粒子ビー
ム幅の小さいところでは無駄な磁場領域を与える結果と
なり、電磁石本体101が大きくなるという問題点があ
った。
As described above, in a conventional bending electromagnet having a constant magnetic pole width determined by the maximum charged particle beam width,
Since a wide effective magnetic field region is given over the entire trajectory of the charged particle beam B, when the charged particle beam width changes remarkably in the electromagnet main body 101, a useless magnetic field region is generated at a small charged particle beam width. As a result, there is a problem that the electromagnet main body 101 becomes large.

【0006】また、荷電粒子ビームBを収束させるため
にエッジ角が必要とされる場合、電磁石本体101の荷
電粒子ビーム出入口でエッジ角に相当する角度をつける
ためには、電磁鋼板102を積層した電磁石本体1の荷
電粒子ビームの出入口を切断する必要性が生じる。ここ
で、エッジ角とは、荷電粒子ビームのビーム軸の直交面
と電磁石本体1の荷電粒子ビーム出入口側の端面との交
差角度である。しかし、荷電粒子ビーム出入口では必ず
磁場強度の変化量が高くなるので、僅かな誤差でも荷電
粒子ビームBに対するエッジ効果に大きく影響すること
になり、荷電粒子ビームの出入口を切断した従来の偏向
電磁石では、エッジ角の精度が十分に得られないという
問題点があった。
When an edge angle is required to converge the charged particle beam B, an electromagnetic steel plate 102 is laminated in order to form an angle corresponding to the edge angle at the entrance / exit of the charged particle beam of the electromagnet body 101. It becomes necessary to cut off the entrance and exit of the charged particle beam of the electromagnet body 1. Here, the edge angle is an intersection angle between a plane orthogonal to the beam axis of the charged particle beam and an end surface of the electromagnet main body 1 on the entrance / exit side of the charged particle beam. However, since the amount of change in the magnetic field intensity always increases at the entrance and exit of the charged particle beam, even a small error greatly affects the edge effect on the charged particle beam B, and in the conventional bending electromagnet in which the entrance and exit of the charged particle beam are cut off. However, there is a problem that the accuracy of the edge angle cannot be sufficiently obtained.

【0007】また、この偏向電磁石では、設計軌道を境
界として偏向中心側と外側とで等幅の有効磁場領域であ
ったが、必要とする有効磁場領域が、偏向させる荷電粒
子ビームBの偏向中心側と外側とで異なる場合、有効磁
場領域を適合させるために必要以上に電磁石本体101
を大きくしなければならないという問題点もあった。
Further, in this bending electromagnet, the effective magnetic field region has the same width on the deflection center side and on the outside with the design trajectory as a boundary, but the required effective magnetic field region is the deflection center of the charged particle beam B to be deflected. If the side and the outside are different, the electromagnet body 101 is more than necessary to match the effective magnetic field area.
There was also a problem that had to be enlarged.

【0008】この発明は、上記のような問題点を解決す
ることを課題とするものであって、荷電粒子ビームの幅
が偏向電磁石の出入口と中央部とで大きく異なる場合
等、荷電粒子ビーム幅に応じた効率的な有効磁場領域が
形成することが可能で、しかもエッジ角形成についても
切断加工によるものではなく、また電磁鋼板の積層構造
を変えることでエッジ角を必要に応じて高精度に設定可
能な偏向電磁石を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems. The charged particle beam width is different when the width of the charged particle beam is greatly different between the entrance and exit of the bending electromagnet and the central portion. It is possible to form an effective effective magnetic field region according to the conditions, and the edge angle is not formed by cutting, and the edge angle can be adjusted with high precision as necessary by changing the laminated structure of the electromagnetic steel sheet It is an object to provide a deflectable electromagnet.

【0009】[0009]

【課題を解決するための手段】この発明の請求項1に係
る偏向電磁石は、ギャップを介して互いに対向する一対
の磁極及び該一対の磁極を連結するヨークを有するとと
もに多数枚の電磁鋼板を積層して構成された電磁石本体
と、この電磁石本体に設けられ前記ギャップに磁場を発
生させてギャップ内を通る荷電粒子ビームの軌道を曲率
中心を持つ円弧状に曲げるコイルとを備え、前記電磁石
本体は、荷電粒子ビーム出入口での電磁鋼板を荷電粒子
ビームのビーム軸との直交面に対して所定角度傾けるこ
とにより荷電粒子ビームを収束させるエッジ角を形成す
るとともに荷電粒子ビーム出入口での電磁鋼板に対して
平行に他の電磁鋼板を前記荷電粒子ビームが通るべき円
弧状の軌道に合わせて一枚ずつずらして積層して構成
し、前記軌道の前記曲率中心を通る偏向半径方向の磁極
幅を荷電粒子ビーム出入口側よりも前記軌道の中央部側
が大きくなっているものである。
According to a first aspect of the present invention, there is provided a bending electromagnet having a pair of magnetic poles facing each other via a gap, a yoke connecting the pair of magnetic poles, and laminating a large number of magnetic steel sheets. An electromagnet main body configured as described above, and a coil provided in the electromagnet main body to generate a magnetic field in the gap to bend a trajectory of a charged particle beam passing through the gap into an arc shape having a center of curvature, and the electromagnet main body is By tilting the magnetic steel sheet at the entrance and exit of the charged particle beam at a predetermined angle with respect to the plane orthogonal to the beam axis of the charged particle beam, an edge angle for converging the charged particle beam is formed, and the electromagnetic steel sheet at the entrance and exit of the charged particle beam is formed. The other magnetic steel sheets are arranged in parallel and stacked one by one in accordance with the arc-shaped trajectory through which the charged particle beam should pass, and the In which the central side of the track is greater than the deflection radial pole width through the rate center charged particle beam entrance side.

【0010】また、請求項2に係る偏向電磁石は、ギャ
ップを介して互いに対向する一対の磁極及び該一対の磁
極を連結するヨークを有するとともに多数枚の電磁鋼板
を積層して構成された電磁石本体と、この電磁石本体に
設けられ前記ギャップに磁場を発生させてギャップ内を
通る荷電粒子ビームの軌道を曲率中心を持つ円弧状に曲
げるコイルとを備え、前記電磁石本体は、荷電粒子ビー
ム出入口の電磁鋼板を荷電粒子ビームのビーム軸との直
交面と平行に配置しているとともに前記荷電粒子ビーム
出入口の電磁鋼板に対して平行に他の電磁鋼板を前記荷
電粒子ビームが通るべき円弧状の軌道に合わせて一枚ず
つずらして積層して構成し、前記軌道の前記曲率中心を
通る偏向半径方向の磁極幅を荷電粒子ビームの軌道の中
央部側よりも荷電粒子ビーム出入口側が大きくなってい
るものである。
A bending electromagnet according to a second aspect of the present invention has a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles, and is formed by laminating a large number of electromagnetic steel plates. And a coil provided on the electromagnet main body to generate a magnetic field in the gap to bend a trajectory of a charged particle beam passing through the gap into an arc shape having a center of curvature. The steel sheet is arranged in parallel with the plane orthogonal to the beam axis of the charged particle beam, and the other magnetic steel sheets are arranged in parallel with the electromagnetic steel sheet at the entrance and exit of the charged particle beam in an arc-shaped trajectory through which the charged particle beam should pass. The magnetic pole width in the deflection radial direction passing through the center of curvature of the orbit is charged more than the central part of the orbit of the charged particle beam. In which the child beam entrance side is larger.

【0011】また、請求項3に係る偏向電磁石では、電
磁石本体は、偏向角が1/2であるとともに互いに荷電
粒子ビームのビーム軸に対して垂直な面で接合された第
1の積層ブロック及び第2の積層ブロックで構成されて
いる。
Further, in the bending electromagnet according to claim 3, the electromagnet main body has a deflection angle of 2 and is joined to each other on a plane perpendicular to the beam axis of the charged particle beam. It is composed of a second laminated block.

【0012】また、請求項4に係る偏向電磁石は、ギャ
ップを介して互いに対向する一対の磁極及び該一対の磁
極を連結するヨークを有するとともに多数枚の電磁鋼板
を積層して構成された電磁石本体と、この電磁石本体に
設けられ前記ギャップに磁場を発生させてギャップ内を
通る荷電粒子ビームの軌道を曲率中心を持つ円弧状に曲
げるコイルとを備え、前記電磁石本体は、前記荷電粒子
ビームが通るべき円弧状の前記軌道に合わせて一枚ずつ
ずらして積層することで前記軌道の前記曲率中心を通る
偏向半径方向の磁極幅を荷電粒子ビームの軌道の中央部
側を荷電粒子ビームの出入口側より大きくすると共に、
各電磁鋼板の電極の中心線を荷電粒子ビームの軌道に対
して軌道の曲率中心を通る偏向半径方向に一定寸法ずら
すことで電磁石本体の有効磁場領域を荷電粒子ビームの
軌道に対してずらすようになっているものである。
According to a fourth aspect of the present invention, there is provided a bending electromagnet having a pair of magnetic poles facing each other via a gap, a yoke connecting the pair of magnetic poles, and a multi-layered electromagnetic steel plate. And a coil provided in the electromagnet main body to generate a magnetic field in the gap to bend the trajectory of the charged particle beam passing through the gap into an arc shape having a center of curvature, and the electromagnet main body allows the charged particle beam to pass therethrough. The magnetic pole width in the deflection radial direction passing through the center of curvature of the orbit is shifted from the entrance / exit side of the charged particle beam to the center of the orbit of the charged particle beam by laminating one by one according to the orbit of the arc to be stacked. As well as
The effective magnetic field area of the electromagnet body is shifted with respect to the trajectory of the charged particle beam by shifting the center line of the electrode of each magnetic steel sheet with respect to the trajectory of the charged particle beam with respect to the trajectory of the charged particle beam. Is what it is.

【0013】また、請求項5に係る偏向電磁石では、軌
道の曲率中心を通る偏向半径方向の磁極の両端部に両端
部の磁束密度を高めるシムを設けたものである。
In the bending electromagnet according to the fifth aspect, shims for increasing the magnetic flux density at both ends are provided at both ends of the magnetic poles in the deflection radial direction passing through the center of curvature of the orbit.

【0014】また、請求項6に係る偏向電磁石の製造方
法は、電磁鋼板を積層してブロックを形成する工程と、
荷電粒子ビームのビーム軸に対して垂直な切断面を有す
るように前記ブロックを切断して、第1の積層ブロック
及び第2の積層ブロックを形成する工程と、前記第1の
積層ブロックの切断面と第2の積層ブロックの切断面と
を接合する工程とを含むものである。
[0014] Further, a method of manufacturing a bending electromagnet according to claim 6 includes a step of forming blocks by laminating electromagnetic steel sheets;
Cutting the block so as to have a cutting plane perpendicular to the beam axis of the charged particle beam to form a first laminated block and a second laminated block; and a cut plane of the first laminated block. And joining the cut surface of the second laminated block to the cut surface of the second laminated block.

【0015】[0015]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の形態1に係る偏向電磁石を示している。この実
施の形態1は、偏向電磁石が荷電粒子ビーム7の出入口
においてエッジフォーカスの効果を有する場合に適用す
るものである。即ち、この偏向電磁石は、所定のギャッ
プ6を介して互いに対向する一対の磁極5,5及びこの
一対の磁極5,5を連結するヨーク21を有するととも
に、多数枚の電磁鋼板2が積層されて構成された電磁石
本体1と、この電磁石本体1に設けられ磁極5,5間の
ギャップ6に一様の磁場を発生させてギャップ6内を通
る荷電粒子ビーム7の軌道を曲率中心4を持つ円弧状に
曲げるコイル3とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 shows a bending electromagnet according to Embodiment 1 of the present invention. The first embodiment is applied to a case where the bending electromagnet has an edge focusing effect at the entrance and exit of the charged particle beam 7. That is, this bending electromagnet has a pair of magnetic poles 5 and 5 facing each other via a predetermined gap 6 and a yoke 21 connecting the pair of magnetic poles 5 and 5, and a large number of electromagnetic steel sheets 2 are laminated. The trajectory of the charged particle beam 7 passing through the gap 6 by generating a uniform magnetic field in the formed electromagnet main body 1 and the gap 6 between the magnetic poles 5 provided in the electromagnet main body 5 is a circle having the center of curvature 4. And a coil 3 bent in an arc shape.

【0016】この電磁石本体1は、荷電粒子ビーム出入
口6A,6Bでの電磁鋼板2A,2Bを荷電粒子ビーム
7のビーム軸との直交面に対して所定角度傾けて荷電粒
子ビーム7を収束させるためのエッジ角αを形成し、こ
の荷電粒子ビーム出入口6A,6Bでの電磁鋼板2A,
2Bに対して平行に他の同一形状の電磁鋼板2を荷電粒
子ビーム7が通るべき円弧状の設計軌道8に合わせて一
枚ずつずらして積層して構成されている。この積層方法
を採用することで、荷電粒子ビーム7の設計軌道8の曲
率中心4を通る偏向半径方向の磁極幅H(電磁鋼板2に
対して垂直方向から見たときの磁極幅WとしたときにH
=Wcos(θ−(β/2−α))で示される。但し、
θは合わせ面11と曲率中心4を通る偏向半径方向との
間の角度である。)は荷電粒子ビーム出入口6A,6B
側よりも荷電粒子ビーム7の設計軌道8の中央部側が大
きくなっている。
The electromagnet main body 1 converges the charged particle beam 7 by tilting the magnetic steel plates 2A and 2B at the charged particle beam entrances 6A and 6B with respect to a plane orthogonal to the beam axis of the charged particle beam 7. Are formed at the entrance and exit of the charged particle beam 6A, 6B.
It is configured by stacking another electromagnetic steel plate 2 of the same shape in parallel with 2B so as to be shifted one by one in accordance with an arc-shaped design trajectory 8 through which the charged particle beam 7 passes. By employing this laminating method, the magnetic pole width H in the deflection radial direction passing through the center of curvature 4 of the design trajectory 8 of the charged particle beam 7 (when the magnetic pole width W when viewed from the direction perpendicular to the electromagnetic steel plate 2) To H
= Wcos (θ− (β / 2−α)). However,
θ is the angle between the mating surface 11 and the radial direction of the deflection passing through the center of curvature 4. ) Are charged particle beam entrances 6A and 6B
The central portion of the design trajectory 8 of the charged particle beam 7 is larger than the side.

【0017】上記電磁石本体1は、基準となる荷電粒子
ビーム入口6A側及び出口6B側のそれぞれの電磁鋼板
2A,2Bに対して偏向角βの1/2に相当するまで電
磁鋼板2を積層した2つの第1の積層体ブロック1A及
び第2の積層体ブロック1Bによって構成されている。
これらの第1の積層体ブロック1A及び第2の積層体ブ
ロック1A,1Bは設計軌道8全体の中央点で設計軌道
8に対して垂直な面で切断した合わせ面11で接合され
ている。
In the electromagnet main body 1, the electromagnetic steel sheets 2 are laminated to the reference electromagnetic steel sheets 2A and 2B on the inlet 6A side and the outlet 6B side of the charged particle beam until they correspond to 1/2 of the deflection angle β. It is composed of two first laminate blocks 1A and second laminate blocks 1B.
The first laminated block 1A and the second laminated blocks 1A and 1B are joined at a center point of the entire design trajectory 8 at a mating surface 11 cut at a plane perpendicular to the design trajectory 8.

【0018】磁極5,5は、偏向半径方向両端部に円弧
部が形成されている。この円弧部の内側の中央領域がギ
ャップ6間に生じる磁場の誤差が加速器設計値の範囲内
である有効磁場領域9である。電磁鋼板2は、図1
(b)に示すように中央にH形状の穴が形成された薄板
で、図1(a)では点線よってその間隔が粗く示されて
いる。すなわち、電磁鋼板2は、ヨーク21が四角形の
枠を構成し、その対向辺間に磁極5,5が互いに対向す
るように突出して構成されている。各電磁鋼板2の中心
には、磁極5の中心位置を設計軌道8に合わせる位置を
表わす磁極基準線10が形成されている。
The magnetic poles 5, 5 have arc portions formed at both ends in the deflection radial direction. The central region inside the arc portion is the effective magnetic field region 9 in which the error of the magnetic field generated between the gaps 6 is within the range of the accelerator design value. The electromagnetic steel sheet 2 is shown in FIG.
As shown in FIG. 1B, the sheet is a thin plate having an H-shaped hole formed in the center. In FIG. 1A, the intervals are roughly indicated by dotted lines. That is, the electromagnetic steel sheet 2 is configured such that the yoke 21 forms a rectangular frame, and the magnetic poles 5, 5 project between the opposing sides thereof. At the center of each electromagnetic steel plate 2, a magnetic pole reference line 10 representing a position where the center position of the magnetic pole 5 is aligned with the design trajectory 8 is formed.

【0019】次に、本実施の形態1の偏向電磁石の電磁
石本体1の組立手順について説明する。まず、荷電粒子
ビーム出入口6A,6Bの電磁鋼板2A,2Bを設計軌
道8に対して所定のエッジ角αを持つように傾斜させ、
磁極基準線10を設計軌道8上に合わせて配置させる。
次に、基準とする電磁鋼板2A,2Bと同形のその他の
電磁鋼板2を、荷電粒子ビーム出入口6A,6Bの電磁
鋼板2A,2Bに対して平行に接着ないし溶接して積層
する。そのときには、磁極基準線10が設計軌道8上に
合うように積層される。この電磁鋼板2の積層は偏向電
磁石の偏向角βの1/2に相当するまで行なう。この電
磁鋼板のブロックを二組形成した後、各ブロックの荷電
粒子ビーム出入口6A、6Bの電磁鋼板2A、2Bと反
対側の部分を切断して、設計軌道8の全領域の中央点に
おいて設計軌道8の垂直な面となる合わせ面11を有す
る第1の積層ブロック1A及び第2の積層ブロック1B
を形成する。その後、第1の積層ブロック1A及び第2
の積層ブロック1Bは合わせ面11で接着ないし溶接し
て電磁石本体1を製作する。こうして製作された電磁石
本体1では、偏向半径方向の磁極幅Hは荷電粒子ビーム
7の設計軌道8の中央部で最大となり、出入口6A,6
B方向に向かうにつれ狭くなる。
Next, a procedure for assembling the electromagnet body 1 of the bending electromagnet according to the first embodiment will be described. First, the magnetic steel sheets 2A, 2B at the charged particle beam entrances 6A, 6B are inclined with respect to the design trajectory 8 so as to have a predetermined edge angle α,
The magnetic pole reference line 10 is arranged on the design trajectory 8.
Next, other magnetic steel sheets 2 having the same shape as the reference magnetic steel sheets 2A, 2B are laminated by bonding or welding in parallel to the magnetic steel sheets 2A, 2B of the charged particle beam entrances 6A, 6B. At that time, the magnetic pole reference lines 10 are stacked so as to match the design trajectory 8. The lamination of the magnetic steel sheets 2 is performed until the magnetic steel sheets 2 correspond to 1/2 of the deflection angle β of the bending electromagnet. After forming two sets of blocks of this electromagnetic steel sheet, the portions of the charged particle beam entrances 6A and 6B of each block on the opposite side to the electromagnetic steel sheets 2A and 2B are cut, and the design trajectory 8 is designed at the center point of the entire area of the design trajectory 8. 8 and a first laminated block 1A and a second laminated block 1B having a mating surface 11 which is
To form Then, the first laminated block 1A and the second
The laminated block 1B is bonded or welded on the mating surface 11 to manufacture the electromagnet body 1. In the electromagnet body 1 thus manufactured, the magnetic pole width H in the deflection radial direction becomes maximum at the center of the design trajectory 8 of the charged particle beam 7, and the entrances 6A, 6
It becomes narrower in the direction B.

【0020】偏向電磁石を制作する場合には、電磁鋼板
2が上記したように中央にH形状の穴が形成される薄板
によって構成されているために、上記制作された電磁石
本体1のままではコイル3を組み込むことが困難であ
る。そこで、一対の電極5,5を連結する左右のヨーク
21を上下に切断し、第1及び第2の積層ブロック1
A,1Bについても上下にさらに分割した4つの積層ブ
ロックを形成し、コイル3を電磁石本体1に組み込むよ
うにしている。
When a bending electromagnet is manufactured, since the electromagnetic steel plate 2 is formed by a thin plate having an H-shaped hole formed in the center as described above, the coil is not used in the electromagnet body 1 manufactured as described above. 3 is difficult to incorporate. Then, the left and right yokes 21 connecting the pair of electrodes 5 and 5 are cut up and down, and the first and second stacked blocks 1 are cut.
Also for A and 1B, four laminated blocks which are further divided up and down are formed, and the coil 3 is incorporated in the electromagnet main body 1.

【0021】なお、本実施の形態では、電磁鋼板2をH
形状としているが、従来技術と同様に一対の電極を連結
するヨークが電極の左右片側だけ位置するようなC形の
電磁鋼板を用いてもよい。この場合には積層ブロック1
A,1Bを上下に分割する必要はない。
In the present embodiment, the magnetic steel sheet 2 is
Although it has a shape, a C-shaped electromagnetic steel sheet may be used in which the yoke connecting the pair of electrodes is located only on one side of the left and right sides of the electrode, as in the related art. In this case, the laminated block 1
It is not necessary to divide A and 1B up and down.

【0022】次に、上記構成の偏向電磁石の動作につい
て説明する。コイル3に電流を流すとヨーク1に磁場が
発生しギャップ6に一様な磁場が発生する。荷電粒子ビ
ーム7はギャップ6に発生した一様磁場を受けて曲率中
心4を持つ円弧状の設計軌道8を通る。つまり、荷電粒
子ビーム7はギャップ内6の有効磁場領域9内を進行す
る。この偏向電磁石の有効磁場領域9の偏向半径方向の
幅は電磁石中央で最大で電磁石出入口6A、6Bで最小
となるので、荷電粒子ビーム幅が電磁石中央で最大で電
磁石出入口6A、6Bで最小となる場合には、有効磁場
領域9は効率良く利用されることになる。また、このも
のでは、エッジ角を形成するために切断加工が不要であ
り、高精度のエッジフォーカス効果を得ることができ
る。
Next, the operation of the bending electromagnet having the above configuration will be described. When a current is applied to the coil 3, a magnetic field is generated in the yoke 1 and a uniform magnetic field is generated in the gap 6. The charged particle beam 7 receives a uniform magnetic field generated in the gap 6 and passes through an arc-shaped design trajectory 8 having a center of curvature 4. That is, the charged particle beam 7 travels in the effective magnetic field region 9 in the gap 6. Since the width of the effective magnetic field region 9 of the deflection electromagnet in the deflection radial direction is maximum at the center of the electromagnet and minimum at the electromagnet entrances and exits 6A and 6B, the charged particle beam width is maximum at the center of the electromagnet and minimum at the electromagnet entrances and exits 6A and 6B. In this case, the effective magnetic field region 9 is used efficiently. Further, in this case, cutting processing is not required to form an edge angle, and a highly accurate edge focusing effect can be obtained.

【0023】次に、本発明の他の実施の形態について説
明する。以下の実施の形態2乃至4では上記実施の形態
1と異なる点のみについて説明するものとし、同一の構
成部分について同一の符号を付し、その説明を省略する
ものとする。
Next, another embodiment of the present invention will be described. In the following Embodiments 2 to 4, only different points from Embodiment 1 will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0024】実施の形態2.図2は本発明の実施の形態
2に係る偏向電磁石を示している。この実施の形態では
上記実施の形態1と異なりエッジ角を持たない形態を示
している。即ち、電磁石本体1の荷電粒子ビーム出入口
6A,6Bにおける電磁鋼板2A,2Bを荷電粒子ビー
ム7のビーム軸との直交面と平行に配置し、荷電粒子ビ
ーム出入口6A,6Bにおける電磁鋼板2A,2Bに対
して平行に他の電磁鋼板2を前記荷電粒子ビームが通る
べき設計軌道8に合わせて一枚ずつずらして積層するこ
とで、荷電粒子ビームの設計軌道8の曲率中心4を通る
偏向半径方向の磁極幅Hを荷電粒子ビーム7の設計軌道
8の中央部側よりも荷電粒子ビーム出入口側を大きくし
たものである。
Embodiment 2 FIG. FIG. 2 shows a bending electromagnet according to Embodiment 2 of the present invention. This embodiment shows an embodiment having no edge angle unlike the first embodiment. That is, the electromagnetic steel plates 2A, 2B at the charged particle beam entrances 6A, 6B of the electromagnet main body 1 are arranged in parallel with a plane orthogonal to the beam axis of the charged particle beam 7, and the electromagnetic steel plates 2A, 2B at the charged particle beam entrances 6A, 6B. The other electromagnetic steel sheets 2 are stacked one by one in parallel with each other in accordance with the design trajectory 8 through which the charged particle beam should pass, so that the deflection radial direction passing through the center of curvature 4 of the design trajectory 8 of the charged particle beam Is larger on the charged particle beam entrance / exit side than on the central part side of the design trajectory 8 of the charged particle beam 7.

【0025】上記実施の形態1では、電磁石出入口6
A,6Bの電磁鋼板2A,2Bを基準としてこれに平行
に積層することによりエッジ角αを形成する場合につい
て述べたが、この実施の形態2では、荷電粒子ビーム出
入口6A,6Bにおいて荷電粒子ビーム軸に垂直な面内
に基準となる電磁鋼板2A,2Bを設置して実施の形態
1と同様に積層したものである。このようにすると、荷
電粒子ビーム出入口6A,6Bで幅が大きく電磁石中央
部で小さくなる荷電粒子ビーム7で、さらにエッジ角を
必要としない場合に適した偏向電磁石とすることができ
る。
In the first embodiment, the electromagnet doorway 6
Although the case where the edge angle α is formed by laminating the magnetic steel sheets 2A and 2B of A and 6B in parallel with each other as a reference has been described, in the second embodiment, the charged particle beams are charged at the charged particle beam entrances 6A and 6B. Electromagnetic steel plates 2A and 2B serving as references are provided in a plane perpendicular to the axis, and are laminated in the same manner as in the first embodiment. In this way, the charged particle beam 7 having a large width at the charged particle beam entrances 6A and 6B and having a small width at the center of the electromagnet can be used as a bending electromagnet suitable for a case where an edge angle is not required.

【0026】また、偏向電磁石の電磁石本体1の組立手
順についても、実施の形態1と同様である。即ち、偏向
電磁石の偏向角βの1/2に相当するまで電磁鋼板2を
積層した電磁鋼板のブロックを二組形成した後、各ブロ
ックの荷電粒子ビーム出入口6A、6Bの電磁鋼板2
A、2Bと反対側の部分を切断して、設計軌道8の全領
域の中央点において設計軌道8の垂直な面となる合わせ
面11を有する第1の積層ブロック1A及び第2の積層
ブロック1Bを形成する。その後、第1の積層ブロック
1A及び第2の積層ブロック1Bは合わせ面11で接着
ないし溶接して電磁石本体1を製作する。
The procedure for assembling the electromagnet body 1 of the bending electromagnet is the same as in the first embodiment. That is, after forming two sets of electromagnetic steel sheets in which the electromagnetic steel sheets 2 are stacked to correspond to 1/2 of the deflection angle β of the bending electromagnet, the magnetic steel sheets 2 of the charged particle beam entrances 6A and 6B of each block are formed.
A first laminated block 1A and a second laminated block 1B each having a mating surface 11 which is cut at a portion opposite to A and 2B and which is a vertical surface of the design trajectory 8 at a central point of the entire area of the design trajectory 8. To form Thereafter, the first laminated block 1A and the second laminated block 1B are bonded or welded on the mating surface 11 to manufacture the electromagnet body 1.

【0027】実施の形態3.図3は、本発明の実施の形
態3に係る偏向電磁石を示している。この実施の形態3
では、電磁石本体1中央の電磁鋼板2Cを設計軌道8に
垂直な面内に設置し、この電磁鋼板2Cに対して他の電
磁鋼板2(電磁鋼板2Cと同形である。)を平行に積層
したものである。即ち、電磁鋼板2を荷電粒子ビーム7
が通るべき円弧状の設計軌道8に合わせて一枚ずつずら
して積層することで、荷電粒子ビーム7の設計軌道8の
曲率中心4を通る偏向半径方向の磁極幅Hにおいて荷電
粒子ビーム7の設計軌道8の中央部側を荷電粒子ビーム
出入口6A,6B側よりも大きくしている。また、設計
軌道8の中心線である電磁鋼板2の中心基準線10は曲
率中心4を通る偏向半径方向に磁極5の中心線から一定
幅δだけ外側方向にずらしている。つまり、有効磁場領
域9を荷電粒子ビームの設計軌道8に対してずらしてい
る。
Embodiment 3 FIG. 3 shows a bending electromagnet according to Embodiment 3 of the present invention. Embodiment 3
In this example, the electromagnetic steel plate 2C at the center of the electromagnet main body 1 was installed in a plane perpendicular to the design track 8, and another electromagnetic steel plate 2 (having the same shape as the electromagnetic steel plate 2C) was laminated in parallel with the electromagnetic steel plate 2C. Things. That is, the electromagnetic steel sheet 2 is moved to the charged particle beam 7.
The charged particle beam 7 is designed so as to be shifted one by one in accordance with the arcuate design trajectory 8 through which the charged particle beam 7 passes at the magnetic pole width H in the deflection radial direction passing through the center of curvature 4 of the designed trajectory 8 of the charged particle beam 7. The center of the orbit 8 is larger than the charged particle beam entrances 6A and 6B. The center reference line 10 of the magnetic steel sheet 2 which is the center line of the design trajectory 8 is shifted outward from the center line of the magnetic pole 5 by a constant width δ in the direction of the deflection radius passing through the center of curvature 4. That is, the effective magnetic field region 9 is shifted with respect to the design trajectory 8 of the charged particle beam.

【0028】この場合にも、荷電粒子ビーム出入口6
A,6Bとで中央部で有効磁場領域9の幅が違う効果は
実施の形態1と同等の効果が得られる。また、荷電粒子
ビームの設計軌道8を境に曲率中心4側と外側とで要求
する有効磁場領域9の幅が違う場合には好適である。な
お、エッジフォーカス効果が必要な場合は荷電粒子ビー
ム出入口6A,6Bにおいて任意の角度で切断すればよ
い。
Also in this case, the charged particle beam entrance 6
The effect that the width of the effective magnetic field region 9 is different at the center between A and 6B is the same as that of the first embodiment. Further, it is preferable that the required effective magnetic field region 9 has a different width on the side of the center of curvature 4 and on the outside with respect to the design trajectory 8 of the charged particle beam. When the edge focus effect is required, the charged particle beam may be cut at an arbitrary angle at the entrance / exit 6A, 6B.

【0029】実施の形態4.図4は本発明の実施の形態
4に係る偏向電磁石を示している。この実施の形態4
は、電磁鋼板2を荷電粒子ビーム7の設計軌道8に合わ
せて一枚ずつずらして積層することで、荷電粒子ビーム
7の設計軌道8の曲率中心4を通る偏向半径方向の磁極
幅Hを荷電粒子ビームの設計軌道8の中央部側を荷電粒
子ビーム出入口6A,6B側より大きくしてある。ま
た、磁極5の設計軌道8の曲率中心4を通る偏向半径方
向の両端部に両端部の磁束密度を高めるシム12が付さ
れている。このシム12は電磁鋼板2を打ち抜く段階で
予め成形されている。
Embodiment 4 FIG. 4 shows a bending electromagnet according to Embodiment 4 of the present invention. Embodiment 4
Charges the magnetic steel sheet 2 in a deflection radial direction passing through the center of curvature 4 of the design trajectory 8 of the charged particle beam 7 by stacking the sheets one by one in accordance with the design trajectory 8 of the charged particle beam 7. The central portion of the design trajectory 8 of the particle beam is larger than the charged particle beam entrances 6A and 6B. Shims 12 for increasing the magnetic flux density at both ends are provided at both ends of the magnetic pole 5 in the deflection radial direction passing through the center of curvature 4 of the design orbit 8. The shim 12 is formed in advance at the stage of punching out the electromagnetic steel plate 2.

【0030】上記実施の形態1ないし3では、磁極の端
部形状を円弧型としてギャップ6に発生する磁場分布に
影響を与えないようにしているが、逆に円弧形状の部分
だけ磁極幅を有する結果となる。本実施の形態では、従
来技術で記載した磁場高次成分の影響があるものの、磁
極5の偏向半径方向の両端にシム12を設けることによ
り、上記実施の形態1ないし3と同様に広い有効磁場領
域が確保できるようにしたものである。シム12を設け
たことによる磁場高次成分の影響については、誤差が小
さくなるように修正される。
In the first to third embodiments, the end shape of the magnetic pole is formed in an arc shape so as not to affect the magnetic field distribution generated in the gap 6, but conversely, only the arc-shaped portion has the magnetic pole width. Results. In the present embodiment, although the effect of the higher-order magnetic field components described in the related art is affected, by providing the shims 12 at both ends of the magnetic pole 5 in the deflection radial direction, a wide effective magnetic field can be obtained as in the first to third embodiments. An area can be secured. The influence of the magnetic field higher-order component due to the provision of the shim 12 is corrected so as to reduce the error.

【0031】なお、上記各実施の形態ではコイル3の形
状としてトラック型としているが、鞍型等の任意の形状
でもよいことは勿論である。
In each of the above embodiments, the track 3 is used as the shape of the coil 3. However, it is needless to say that the coil 3 may have an arbitrary shape such as a saddle.

【0032】[0032]

【発明の効果】以上説明したように、請求項1に係る発
明では、ギャップを介して互いに対向する一対の磁極及
び該一対の磁極を連結するヨークを有するとともに多数
枚の電磁鋼板を積層して構成された電磁石本体と、この
電磁石本体に設けられ前記ギャップに磁場を発生させて
ギャップ内を通る荷電粒子ビームの軌道を曲率中心を持
つ円弧状に曲げるコイルとを備え、前記電磁石本体は、
荷電粒子ビーム出入口での電磁鋼板を荷電粒子ビームの
ビーム軸との直交面に対して所定角度傾けることにより
荷電粒子ビームを収束させるエッジ角を形成するととも
に荷電粒子ビーム出入口での電磁鋼板に対して平行に他
の電磁鋼板を前記荷電粒子ビームが通るべき円弧状の軌
道に合わせて一枚ずつずらして積層して構成し、前記軌
道の前記曲率中心を通る偏向半径方向の磁極幅を荷電粒
子ビーム出入口側よりも前記軌道の中央部側が大きくな
っているので、荷電粒子ビームのビーム幅が電磁石本体
中央で最大で電磁石本体の出入口で最小となる場合に効
率のよい有効磁場領域を与えることができる。従って、
荷電粒子ビーム幅が偏向角により変化する場合に適した
偏向電磁石が軽量化できる。また、エッジ角を荷電粒子
ビームの出入口側の電磁鋼板の傾きによって定めるの
で、エッジ角を形成するために切断加工が不要となり、
高精度のエッジフォーカス効果を与えることができ
る。。
As described above, according to the first aspect of the present invention, a plurality of magnetic steel sheets are laminated with a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles. The configured electromagnet body, comprising a coil provided in the electromagnet body to generate a magnetic field in the gap to bend a trajectory of a charged particle beam passing through the gap into an arc having a center of curvature, the electromagnet body comprising:
By tilting the magnetic steel sheet at the entrance and exit of the charged particle beam at a predetermined angle with respect to the plane perpendicular to the beam axis of the charged particle beam, an edge angle for converging the charged particle beam is formed and the electromagnetic steel sheet at the entrance and exit of the charged particle beam is formed. In parallel, another magnetic steel sheet is laminated and shifted one by one in accordance with the arc-shaped orbit through which the charged particle beam passes, and the magnetic pole width in the deflection radial direction passing through the center of curvature of the orbit is set to the charged particle beam. Since the central portion of the orbit is larger than the entrance / exit side, an effective effective magnetic field region can be provided when the beam width of the charged particle beam is maximum at the center of the electromagnet main body and minimum at the entrance / exit of the electromagnet main body. . Therefore,
A deflection electromagnet suitable for the case where the charged particle beam width changes depending on the deflection angle can be reduced in weight. In addition, since the edge angle is determined by the inclination of the magnetic steel sheet on the entrance and exit side of the charged particle beam, cutting processing is not required to form the edge angle,
A highly accurate edge focus effect can be provided. .

【0033】また、請求項2に係る発明の偏向電磁石
は、ギャップを介して互いに対向する一対の磁極及び該
一対の磁極を連結するヨークを有するとともに多数枚の
電磁鋼板を積層して構成された電磁石本体と、この電磁
石本体に設けられ前記ギャップに磁場を発生させてギャ
ップ内を通る荷電粒子ビームの軌道を曲率中心を持つ円
弧状に曲げるコイルとを備え、前記電磁石本体は、荷電
粒子ビーム出入口の電磁鋼板を荷電粒子ビームのビーム
軸との直交面と平行に配置しているとともに前記荷電粒
子ビーム出入口の電磁鋼板に対して平行に他の電磁鋼板
を前記荷電粒子ビームが通るべき円弧状の軌道に合わせ
て一枚ずつずらして積層して構成し、前記軌道の前記曲
率中心を通る偏向半径方向の磁極幅を荷電粒子ビームの
軌道の中央部側よりも荷電粒子ビーム出入口側が大きく
なっているので、荷電粒子ビームのビーム幅が電磁石本
体の出入口で最大で電磁石本体の中央部で小さく、かつ
エッジ角を必要としない場合に適した偏向電磁石に好適
である。
The bending electromagnet according to the second aspect of the present invention includes a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles, and is formed by laminating a large number of electromagnetic steel plates. An electromagnet main body, and a coil provided in the electromagnet main body for generating a magnetic field in the gap to bend a trajectory of a charged particle beam passing through the gap into an arc shape having a center of curvature. The magnetic steel sheet is arranged in parallel with a plane orthogonal to the beam axis of the charged particle beam, and the other magnetic steel sheet is parallel to the magnetic steel sheet at the entrance and exit of the charged particle beam. The magnetic pole width in the deflection radial direction passing through the center of curvature of the orbit is configured to be shifted from the center of the orbit of the charged particle beam. Since the charged particle beam entrance / exit side is large, the beam width of the charged particle beam is maximum at the entrance / exit of the electromagnet main body, is small at the center of the electromagnet main body, and is suitable for a bending electromagnet suitable when an edge angle is not required. .

【0034】また、請求項3に係る発明の偏向電磁石で
は、電磁石本体は、偏向角が1/2であるとともに互い
に荷電粒子ビームのビーム軸に対して垂直な面で接合さ
れた第1の積層ブロック及び第2の積層ブロックで構成
されているので、簡単に偏向電磁石を作製することがで
きる。
In the bending electromagnet according to the third aspect of the present invention, the electromagnet main body has a deflection angle of と と も に and is joined to each other on a plane perpendicular to the beam axis of the charged particle beam. Since it is composed of the block and the second laminated block, a bending electromagnet can be easily manufactured.

【0035】また、請求項4に係る発明の偏向電磁石で
は、ギャップを介して互いに対向する一対の磁極及び該
一対の磁極を連結するヨークを有するとともに多数枚の
電磁鋼板を積層して構成された電磁石本体と、この電磁
石本体に設けられ前記ギャップに磁場を発生させてギャ
ップ内を通る荷電粒子ビームの軌道を曲率中心を持つ円
弧状に曲げるコイルとを備え、前記電磁石本体は、前記
荷電粒子ビームが通るべき円弧状の前記軌道に合わせて
一枚ずつずらして積層することで前記軌道の前記曲率中
心を通る偏向半径方向の磁極幅を荷電粒子ビームの軌道
の中央部側を荷電粒子ビームの出入口側より大きくする
と共に、各電磁鋼板の電極の中心線を荷電粒子ビームの
軌道に対して軌道の曲率中心を通る偏向半径方向に一定
寸法ずらすことで電磁石本体の有効磁場領域を荷電粒子
ビームの軌道に対してずらすようになっているので、荷
電粒子ビームが設計軌道を境に曲率中心側と外側で要求
する有効磁場領域の幅が違う場合に好適である。。
Further, the bending electromagnet according to the fourth aspect of the invention has a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles, and is formed by laminating a large number of electromagnetic steel plates. An electromagnet main body, and a coil provided in the electromagnet main body to generate a magnetic field in the gap to bend a trajectory of a charged particle beam passing through the gap into an arc shape having a center of curvature, wherein the electromagnet main body includes the charged particle beam. The magnetic pole width in the deflection radial direction passing through the center of curvature of the orbit is changed by laminating one by one in accordance with the arc-shaped orbit through which the arc is to pass. Side and the center line of the electrode of each magnetic steel sheet is shifted by a certain dimension in the direction of the deflection radius passing through the center of curvature of the orbit with respect to the orbit of the charged particle beam. Since the effective magnetic field area of the magnet body is shifted with respect to the trajectory of the charged particle beam, it is suitable when the width of the effective magnetic field area required at the center of curvature and outside the charged particle beam at the design trajectory is different. It is. .

【0036】また、請求項5に係る発明の偏向電磁石で
は、軌道の曲率中心を通る偏向半径方向の磁極の両端部
に両端部の磁束密度を高めるシムを設けたので、磁極幅
を狭くしても広い有効磁場領域を形成することができ
る。
Further, in the bending electromagnet according to the fifth aspect of the present invention, since shims for increasing the magnetic flux density at both ends are provided at both ends of the magnetic pole in the deflection radial direction passing through the center of curvature of the orbit, the width of the magnetic pole can be reduced. A wide effective magnetic field region can be formed.

【0037】また、請求項6に係る発明の偏向電磁石の
製造方法は、電磁鋼板を積層してブロックを形成する工
程と、荷電粒子ビームのビーム軸に対して垂直な切断面
を有するように前記ブロックを切断して、第1の積層ブ
ロック及び第2の積層ブロックを形成する工程と、前記
第1の積層ブロックの切断面と第2の積層ブロックの切
断面とを接合する工程とを含むので、複雑な工程を採る
ことなく簡単に偏向電磁石を製作することができる。
According to a sixth aspect of the present invention, there is provided a method for manufacturing a bending electromagnet, comprising: forming a block by laminating electromagnetic steel sheets; and forming a block perpendicular to the beam axis of the charged particle beam. The method includes a step of cutting the block to form a first laminated block and a second laminated block, and a step of joining the cut surface of the first laminated block and the cut surface of the second laminated block. The bending electromagnet can be easily manufactured without taking complicated steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1(a)はこの発明の実施の形態1に係る
偏向電磁石の平面図、同図(b)は同図(a)の荷電粒
子ビームの出口側を示す図である。
FIG. 1 (a) is a plan view of a bending electromagnet according to Embodiment 1 of the present invention, and FIG. 1 (b) is a diagram showing an exit side of a charged particle beam of FIG. 1 (a).

【図2】 図2(a)はこの発明の実施の形態2に係る
偏向電磁石の平面図、同図(b)は同図(a)の荷電粒
子ビームの出口側を示す図である。
FIG. 2 (a) is a plan view of a bending electromagnet according to Embodiment 2 of the present invention, and FIG. 2 (b) is a diagram showing an exit side of the charged particle beam of FIG. 2 (a).

【図3】 図3(a)はこの発明の実施の形態3に係る
偏向電磁石の平面図、同図(b)は同図(a)の偏向電
磁石の中央切断端面を示す図である。
FIG. 3 (a) is a plan view of a bending electromagnet according to Embodiment 3 of the present invention, and FIG. 3 (b) is a diagram showing a center cut end face of the bending electromagnet of FIG. 3 (a).

【図4】 図4(a)はこの発明の実施の形態4に係る
偏向電磁石の平面図、同図(b)は同図(a)の偏向電
磁石の中央切断端面を示す図である。
FIG. 4 (a) is a plan view of a bending electromagnet according to Embodiment 4 of the present invention, and FIG. 4 (b) is a diagram showing a center cut end face of the bending electromagnet of FIG. 4 (a).

【図5】 図5(a)は従来の偏向電磁石を示す平面
図、同図(b)は同図(a)の装置の斜視図である。
5 (a) is a plan view showing a conventional bending electromagnet, and FIG. 5 (b) is a perspective view of the device shown in FIG. 5 (a).

【符号の説明】[Explanation of symbols]

1 電磁石本体、1A,1B 積層ブロック、2 電磁
鋼板、2A 荷電粒子ビーム入口の電磁鋼板、2B 荷
電粒子ビーム出口の電磁鋼板、3 コイル、4曲率中
心、5 磁極、6 ギャップ、6A 荷電粒子ビーム入
口、6B 荷電粒子ビーム出口、7 荷電粒子ビーム、
8 設計軌道、9 有効磁場領域、10磁極基準線、1
1 合わせ面、12 シム、α エッジ角、H 磁極
幅、β偏向角。
1 Electromagnetic body, 1A, 1B laminated block, 2 electromagnetic steel sheet, 2A electromagnetic steel sheet at charged particle beam entrance, 2B electromagnetic steel sheet at charged particle beam exit, 3 coil, 4 center of curvature, 5 magnetic poles, 6 gap, 6A charged particle beam entrance , 6B charged particle beam outlet, 7 charged particle beam,
8 Design trajectory, 9 Effective magnetic field area, 10 magnetic pole reference line, 1
1 mating surface, 12 shims, α edge angle, H magnetic pole width, β deflection angle.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ギャップを介して互いに対向する一対の
磁極及び該一対の磁極を連結するヨークを有するととも
に多数枚の電磁鋼板を積層して構成された電磁石本体
と、 この電磁石本体に設けられ前記ギャップに磁場を発生さ
せてギャップ内を通る荷電粒子ビームの軌道を曲率中心
を持つ円弧状に曲げるコイルとを備え、 前記電磁石本体は、荷電粒子ビーム出入口での電磁鋼板
を荷電粒子ビームのビーム軸との直交面に対して所定角
度傾けることにより荷電粒子ビームを収束させるエッジ
角を形成するとともに荷電粒子ビーム出入口での電磁鋼
板に対して平行に他の電磁鋼板を前記荷電粒子ビームが
通るべき円弧状の軌道に合わせて一枚ずつずらして積層
して構成し、前記軌道の前記曲率中心を通る偏向半径方
向の磁極幅を荷電粒子ビーム出入口側よりも前記軌道の
中央部側が大きくなっている偏向電磁石。
1. An electromagnet main body comprising a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles, and configured by laminating a large number of electromagnetic steel plates, and an electromagnet main body provided on the electromagnet main body. A coil that generates a magnetic field in the gap and bends the trajectory of the charged particle beam passing through the gap into an arc shape having a center of curvature, wherein the electromagnet main body moves the magnetic steel sheet at the entrance and exit of the charged particle beam through the beam axis of the charged particle beam. A circle at which the charged particle beam should pass through another electromagnetic steel sheet in parallel with the electromagnetic steel sheet at the entrance and exit of the charged particle beam while forming an edge angle for converging the charged particle beam by inclining the charged particle beam by a predetermined angle with respect to a plane orthogonal to The stack is formed by shifting one by one in accordance with the arc-shaped orbit, and the magnetic pole width in the deflection radial direction passing through the center of curvature of the orbit is determined by the output of the charged particle beam. Bending magnet central portion of the track is larger than the port side.
【請求項2】 ギャップを介して互いに対向する一対の
磁極及び該一対の磁極を連結するヨークを有するととも
に多数枚の電磁鋼板を積層して構成された電磁石本体
と、 この電磁石本体に設けられ前記ギャップに磁場を発生さ
せてギャップ内を通る荷電粒子ビームの軌道を曲率中心
を持つ円弧状に曲げるコイルとを備え、 前記電磁石本体は、荷電粒子ビーム出入口の電磁鋼板を
荷電粒子ビームのビーム軸との直交面と平行に配置して
いるとともに前記荷電粒子ビーム出入口の電磁鋼板に対
して平行に他の電磁鋼板を前記荷電粒子ビームが通るべ
き円弧状の軌道に合わせて一枚ずつずらして積層して構
成し、前記軌道の前記曲率中心を通る偏向半径方向の磁
極幅を荷電粒子ビームの軌道の中央部側よりも荷電粒子
ビーム出入口側が大きくなっている偏向電磁石。
2. An electromagnet main body comprising a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles, and formed by laminating a large number of electromagnetic steel plates, and an electromagnet main body provided on the electromagnet main body. A coil that generates a magnetic field in the gap and bends the trajectory of the charged particle beam passing through the gap into an arc shape having a center of curvature, wherein the electromagnet main body is configured such that the magnetic steel sheet at the entrance and exit of the charged particle beam is moved along with the beam axis of the charged particle beam. The other magnetic steel sheets are arranged in parallel with the orthogonal plane of the charged particle beam entrance and exit parallel to the magnetic steel sheet at the entrance and exit of the charged particle beam, and are stacked one by one in accordance with an arc-shaped orbit through which the charged particle beam should pass. The magnetic particle width in the deflection radial direction passing through the center of curvature of the orbit is larger on the charged particle beam entrance / exit side than on the central side of the charged particle beam orbit. Deflection electromagnet that.
【請求項3】 電磁石本体は、偏向角が1/2であると
ともに互いに荷電粒子ビームのビーム軸に対して垂直な
面で接合された第1の積層ブロック及び第2の積層ブロ
ックで構成された請求項1または2に記載の偏向電磁
石。
3. The electromagnet body includes a first laminated block and a second laminated block having a deflection angle of 1 / and joined to each other on a plane perpendicular to the beam axis of the charged particle beam. The bending electromagnet according to claim 1.
【請求項4】 ギャップを介して互いに対向する一対の
磁極及び該一対の磁極を連結するヨークを有するととも
に多数枚の電磁鋼板を積層して構成された電磁石本体
と、 この電磁石本体に設けられ前記ギャップに磁場を発生さ
せてギャップ内を通る荷電粒子ビームの軌道を曲率中心
を持つ円弧状に曲げるコイルとを備え、 前記電磁石本体は、前記荷電粒子ビームが通るべき円弧
状の前記軌道に合わせて一枚ずつずらして積層すること
で前記軌道の前記曲率中心を通る偏向半径方向の磁極幅
を荷電粒子ビームの軌道の中央部側を荷電粒子ビームの
出入口側より大きくすると共に、各電磁鋼板の電極の中
心線を荷電粒子ビームの軌道に対して軌道の曲率中心を
通る偏向半径方向に一定寸法ずらすことで電磁石本体の
有効磁場領域を荷電粒子ビームの軌道に対してずらすよ
うになっている偏向電磁石。
4. An electromagnet body having a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles, and configured by laminating a large number of electromagnetic steel sheets; A coil that generates a magnetic field in the gap and bends the trajectory of the charged particle beam passing through the gap into an arc having a center of curvature, wherein the electromagnet body is aligned with the arc-shaped trajectory through which the charged particle beam passes. The magnetic pole width in the deflection radial direction passing through the center of curvature of the track is shifted by one sheet at a time so that the central part of the track of the charged particle beam is larger than the entrance / exit side of the charged particle beam, and the electrode of each magnetic steel sheet. The effective magnetic field area of the electromagnet body is shifted by a certain dimension in the direction of the deflection radius passing through the center of curvature of the orbit with respect to the orbit of the charged particle beam. Deflection electromagnet adapted to shift to the orbit.
【請求項5】 軌道の曲率中心を通る偏向半径方向の磁
極の両端部に両端部の磁束密度を高めるシムを設けた請
求項1ないし4の何れかに記載の偏向電磁石。
5. The bending electromagnet according to claim 1, wherein shims for increasing the magnetic flux density at both ends are provided at both ends of the magnetic poles in the deflection radial direction passing through the center of curvature of the orbit.
【請求項6】 ギャップを介して互いに対向する一対の
磁極及び該一対の磁極を連結するヨークを有するととも
に多数枚の電磁鋼板を積層して構成された電磁石本体
と、この電磁石本体に設けられ前記ギャップに一様の磁
場を発生させてギャップ内を通る荷電粒子ビームの軌道
を曲率中心を持つ円弧状に曲げるコイルとを備えた偏向
電磁石の製造方法であって、 前記電磁鋼板を積層してブロックを形成する工程と、 前記荷電粒子ビームのビーム軸に対して垂直な切断面を
有するように前記ブロックを切断して、第1の積層ブロ
ック及び第2の積層ブロックを形成する工程と、 前記第1の積層ブロックの切断面と第2の積層ブロック
の切断面とを接合する工程とを含む偏向電磁石の製造方
法。
6. An electromagnet main body comprising a pair of magnetic poles facing each other via a gap and a yoke connecting the pair of magnetic poles, and formed by laminating a large number of electromagnetic steel plates, and provided on the electromagnet main body. A coil for bending a trajectory of a charged particle beam passing through the gap into an arc having a center of curvature by generating a uniform magnetic field in the gap, comprising: Forming a first stacked block and a second stacked block by cutting the block so as to have a cut surface perpendicular to a beam axis of the charged particle beam; and Joining the cut surface of the first laminated block and the cut surface of the second laminated block.
JP4648399A 1999-02-24 1999-02-24 Deflecting electromagnet and its manufacture Pending JP2000252100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4648399A JP2000252100A (en) 1999-02-24 1999-02-24 Deflecting electromagnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4648399A JP2000252100A (en) 1999-02-24 1999-02-24 Deflecting electromagnet and its manufacture

Publications (1)

Publication Number Publication Date
JP2000252100A true JP2000252100A (en) 2000-09-14

Family

ID=12748464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4648399A Pending JP2000252100A (en) 1999-02-24 1999-02-24 Deflecting electromagnet and its manufacture

Country Status (1)

Country Link
JP (1) JP2000252100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192562A (en) * 2007-02-07 2008-08-21 Ihi Corp Mass separation electromagnet
JP2015144846A (en) * 2008-05-22 2015-08-13 エゴロヴィチ バラキン、ウラジミール Charged particle beam acceleration method and device as part of charged particle cancer treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192562A (en) * 2007-02-07 2008-08-21 Ihi Corp Mass separation electromagnet
JP2015144846A (en) * 2008-05-22 2015-08-13 エゴロヴィチ バラキン、ウラジミール Charged particle beam acceleration method and device as part of charged particle cancer treatment system

Similar Documents

Publication Publication Date Title
US5483129A (en) Synchrotron radiation light-source apparatus and method of manufacturing same
US7112789B2 (en) High aspect ratio, high mass resolution analyzer magnet and system for ribbon ion beams
JP4305489B2 (en) Ion implanter
EP0347238A2 (en) Minutely patterned structure, and method of producing the same
JP2008047491A (en) Bending magnet, and ion implantation device equipped therewith
JP2000252100A (en) Deflecting electromagnet and its manufacture
US6802986B2 (en) Low-aberration deflectors for use in charged-particle-beam optical systems, and methods for fabricating such deflectors
US20080067398A1 (en) Analyzing electromagnet
JP3397347B2 (en) Omega filter
JP4422057B2 (en) Electromagnet and accelerator system
JP2001023798A (en) Deflecting magnet and device using the same
JPH11289728A (en) Stator for reluctance motor
JP2846606B2 (en) Laminated structure of electrical steel sheets
JPH10125267A (en) Energy filter
JPH1083900A (en) Bending magnet and particle accelerator
JP2568018B2 (en) Laminated bending magnet and method for manufacturing the same
JP3945310B2 (en) H-type deflection electromagnet and charged particle accelerator
JP2813386B2 (en) Electromagnet of charged particle device
JP3324748B2 (en) Magnetic field variable magnet
JP2017084595A (en) Deflection electromagnet device
JPH09102449A (en) Charged particle beam exposure method and device and molding diaphragm and its manufacture
CN115175428A (en) Proton beam transmission and homogenization device based on guide magnet and implementation method thereof
JPH01194300A (en) Laminate electromagnet
JP2002043120A (en) Laminated electromagnet and its manufacturing method
JPH01296603A (en) Iron core for electromagnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20031209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040209

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A02 Decision of refusal

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A02