JP2568018B2 - Laminated bending magnet and method for manufacturing the same - Google Patents

Laminated bending magnet and method for manufacturing the same

Info

Publication number
JP2568018B2
JP2568018B2 JP4058403A JP5840392A JP2568018B2 JP 2568018 B2 JP2568018 B2 JP 2568018B2 JP 4058403 A JP4058403 A JP 4058403A JP 5840392 A JP5840392 A JP 5840392A JP 2568018 B2 JP2568018 B2 JP 2568018B2
Authority
JP
Japan
Prior art keywords
laminated
laminated steel
iron core
electromagnet
arc surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4058403A
Other languages
Japanese (ja)
Other versions
JPH05258950A (en
Inventor
行也 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4058403A priority Critical patent/JP2568018B2/en
Publication of JPH05258950A publication Critical patent/JPH05258950A/en
Application granted granted Critical
Publication of JP2568018B2 publication Critical patent/JP2568018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加速された荷電粒子を
偏向制御する積層偏向電磁石に係り、特にシンクロトン
に利用するのに好適なセクタ型の積層偏向電磁石及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated deflecting electromagnet for controlling deflection of accelerated charged particles, and more particularly to a sector type laminated deflecting electromagnet suitable for use in a synchroton and a method for manufacturing the same. .

【0002】[0002]

【従来の技術】一般に、加速器、特にシンクロトロンに
おいては、荷電粒子(ビーム)を加速するリングを備え
ており、このリングにはビームを偏向させるために偏向
電磁石を有している。このようなビーム偏向用の電磁石
は薄い鋼板を複数枚積層してなる電磁石鉄心とコイルと
から構成されている。なお、偏向磁石以外にもパターン
運転を行うための積層電磁石を行えるよう、バンプ電磁
石,セプタム電磁石等があるが、これらは偏向電磁石と
同一構成である。そして、偏向電磁石は、積層するため
の薄い鋼板を予め所定の形状に打ち抜き、或いは機械加
工して磁極間ギャップをを形成し、この状態で所定の精
度を得た後、積層用の装置等を用いて鋼板を積層し、必
要な加圧加工等の変形処理を行い、その際、積層長の補
正等を行い、その後積層した鋼板を溶接,接着等して全
体を一体化することにより、偏向電磁石の鉄心を製作し
ていた。セクタ型の偏向電磁石の鉄心の従来技術として
は、特願昭61−156064号公報に示される技術の
ものがある。その従来技術を図7及び図8により具体的
に述べる。即ち、同図に示す偏向電磁石鉄心6は、薄い
鋼板1が打ち抜き加工によって断面C型に形成されて磁
極間ギャップ5を有し、その鋼板1をビーム偏向角方向
(θ)に所定枚数積層し、これに端板2及び側板3を溶
接ビード4により一体的に固定して形成され、図8に示
す如く断面形状が水平軸O−O′に対し上下に対称の形
状をなしている。この場合、セクタ型電磁石鉄心におい
ては、その内側と外側の周長の相違から、薄い鋼板1を
偏向角方向θに積層すると、夫々の鋼板1の両端の厚み
が同一であるから、鉄心内に空気層7としての隙間が生
じ、そのため、空気層7が生じると、その分鉄心6の占
積率が低くなる結果、多極成分磁場、電磁石毎の偏向角
のばらつきの原因となることから、これを防止せんがた
め、前記空気層7に鉄板スペーサ8a,8bを挿入して
いる。さらに、磁極間ギャップ5の幅広な空間には図8
に示すように、コイル9が配置されると共に、幅狭の部
分にビームを通すビームダクト10が設置される。
2. Description of the Related Art Generally, an accelerator, especially a synchrotron, is provided with a ring for accelerating charged particles (beams), and this ring has a deflection electromagnet for deflecting the beam. Such a beam deflecting electromagnet is composed of an electromagnet core formed by laminating a plurality of thin steel plates and a coil. In addition to the deflecting magnet, there are bump electromagnets, septum electromagnets, and the like so that stacked electromagnets for performing pattern operation can be used, but these have the same configuration as the deflecting electromagnet. Then, the bending electromagnet is formed by punching thin steel sheets for lamination in advance into a predetermined shape or machining it to form a gap between magnetic poles, and after obtaining a predetermined accuracy in this state, a lamination apparatus or the like is formed. The steel plates are laminated using these, and necessary deformation processing such as pressure processing is performed, at that time, the lamination length is corrected, and then the laminated steel plates are welded, bonded, etc. I was making an iron core for an electromagnet. As a conventional technique of the iron core of a sector type bending electromagnet, there is a technique disclosed in Japanese Patent Application No. 61-156064. The conventional technique will be specifically described with reference to FIGS. 7 and 8. That is, in the deflection electromagnet core 6 shown in the same figure, a thin steel plate 1 is punched to have a C-shaped cross section and has a gap 5 between magnetic poles, and a predetermined number of the steel plates 1 are laminated in the beam deflection angle direction (θ). The end plate 2 and the side plate 3 are integrally fixed thereto by a weld bead 4, and the cross-sectional shape is vertically symmetrical with respect to the horizontal axis O-O 'as shown in FIG. In this case, in the sector type electromagnet core, when the thin steel plates 1 are stacked in the deflection angle direction θ due to the difference in the inner circumference and the outer circumference, the thicknesses of both ends of the respective steel plates 1 are the same. A gap is formed as the air layer 7, and therefore, when the air layer 7 is generated, the space factor of the iron core 6 is reduced by that amount, which causes variations in the multipole component magnetic field and the deflection angle for each electromagnet. In order to prevent this, iron plate spacers 8a and 8b are inserted in the air layer 7. Further, in the wide space of the gap 5 between the magnetic poles, as shown in FIG.
As shown in (1), the coil 9 is arranged and the beam duct 10 for passing the beam through the narrow portion is installed.

【0003】[0003]

【発明が解決しようとする課題】ところで、これまでの
シンクロトロンでは、多極成分磁場、電磁石毎の偏向角
のばらつき等は、従来技術で十分対応できる範囲にあっ
たが、治療用シンクロトロンにあっては、占積率のより
向上が要請されている。しかしながら、鉄心6の長手方
向に薄い鋼板1をセクタ型に積層することによって形成
するセクタ型偏向電磁石の鉄心にあっては、これを形成
する圧延鋼板にエッジドロップと云う厚み偏差があり、
その偏差によって鉄心端部に生じるギャップを鉄心スペ
ーサ8a,8bの挿入によって小さくしているものの、
鉄心端部に生じるギャップを完全に無くすことはできな
い。特に、偏向電磁石の鉄心6のように、鉄心内部に生
じるギャップを鉄心スペーサ8a,8bで完全に埋める
ことができず、直線型偏向電磁石の鉄心においても不可
能である。即ち、ギャップ形状は、製作条件等に依存し
た複雑な形状となるので、鉄板スペーサ8a,8bをそ
の都度、その形状に加工することは実質的に不可能であ
ることから、ギャップを完全に埋めるこができなく、必
然的に占積率の悪い鉄心となる。特に、上記鉄心6を治
療用シンクロトロン等のような加速器に使用した場合、
偏向電磁石はシンクロトロンを運動する荷電粒子ビーム
の設計軌道を直接決めている重要な機能を担うものであ
るため、電磁石鉄心に上記欠点(占積率低下)が生じた
場合、占積率低下に伴う不整四極成分の発生、電磁石毎
のばらつきによる設計軌道のゆがみ、ビーム安定加速空
間の減少等の問題がある。
By the way, in the synchrotrons up to now, the magnetic field of the multi-pole component, the variation of the deflection angle for each electromagnet, and the like were within the range that the conventional technique can sufficiently cope with. In that case, a higher space factor is required. However, in the iron core of the sector type deflection electromagnet formed by stacking the thin steel plates 1 in the longitudinal direction of the iron core 6 in the sector type, the rolled steel plate forming this has a thickness deviation called edge drop,
Although the gap generated at the end of the iron core due to the deviation is reduced by inserting the iron core spacers 8a and 8b,
It is not possible to completely eliminate the gap that occurs at the end of the core. In particular, unlike the iron core 6 of the bending electromagnet, the gaps generated inside the iron core cannot be completely filled with the iron core spacers 8a and 8b, and this is not possible even in the iron core of the linear bending electromagnet. That is, since the gap shape is a complicated shape depending on the manufacturing conditions and the like, it is substantially impossible to process the iron plate spacers 8a and 8b to that shape each time, so the gap is completely filled. It cannot be done, and it will inevitably become an iron core with a low space factor. In particular, when the iron core 6 is used in an accelerator such as a therapeutic synchrotron,
Since the bending electromagnet has an important function of directly determining the design trajectory of the charged particle beam moving in the synchrotron, when the above-mentioned defect (decrease in space factor) occurs in the electromagnet core, the space factor is reduced. There are problems such as generation of irregular quadrupole component, distortion of design trajectory due to variation of each electromagnet, and reduction of beam stable acceleration space.

【0004】本発明の目的は、積層鋼板を所定枚数積層
しても、鉄心内のギャップ(空気層)をなくすことがで
き、占積率をより向上させて不整四極成分等を低減させ
ることができる積層偏向電磁石を提供することにあり、
他の目的は確実に製作できる積層偏向電磁石を提供する
ことにある。
The object of the present invention is to eliminate the gap (air layer) in the iron core even if a predetermined number of laminated steel plates are laminated, and further improve the space factor to reduce irregular quadrupole components and the like. To provide a laminated bending electromagnet capable of
Another object is to provide a laminated bending electromagnet that can be reliably manufactured.

【0005】[0005]

【課題を解決するための手段】本発明の積層偏向電磁石
においては、厚みがセクタ型鉄心の外周円弧面側から内
周円弧面に至るに従い次第に狭くなるテーパ形状をなし
て積層鋼板を形成している。また本発明の積層偏向電磁
石の製造方法においては、積層鋼板を、予めその厚みが
セクタ型鉄心の外周円弧面側から内周円弧面側に至るに
従い次第に狭くなるテーパ状に形成するテーパ行程と、
その積層鋼板を互いに厚み方向に所定枚数重ねてセクタ
型の鉄心を形成する成形行程とを有している。
In the laminated deflecting electromagnet of the present invention, a laminated steel sheet is formed in a tapered shape whose thickness gradually decreases from the outer peripheral arc surface side of the sector core to the inner peripheral arc surface. There is. Further, in the method for manufacturing a laminated deflecting electromagnet of the present invention, a laminated steel plate, a taper step of forming a taper shape, the thickness of which gradually becomes narrower from the outer peripheral arc surface side of the sector core to the inner peripheral arc surface side,
A forming step of forming a sector type iron core by stacking a predetermined number of the laminated steel plates in the thickness direction.

【0006】[0006]

【作用】本発明では、積層鋼板を所定枚数互いに重ねて
セクタ型の鉄心を形成すると、積層鋼板の厚みが上述の
如く、鉄心の外周円弧面側から内周円弧面に至るに従い
次第に狭くなるテーパ形状をなしているので、積層鋼板
を密に重ねることができ、しかもその際、鉄心ギャップ
が生じても、その鉄心ギャップを極力小さくものにする
ことができ、従って、それだけ鉄心の占積率をより確実
に向上させることができる。また本発明方法では、上述
の如く、積層鋼板を、予めその厚みがセクタ型鉄心の外
周円弧面側から内周円弧面側に至るに従い次第に狭くな
るテーパ状に形成するテーパ行程と、その積層鋼板を互
いに厚み方向に所定枚数重ねてセクタ型の鉄心を形成す
る成形行程とを有しているので、上記積層偏向電磁石を
確実に製作できる。
According to the present invention, when a predetermined number of laminated steel plates are stacked on each other to form a sector type iron core, the thickness of the laminated steel plates gradually decreases from the outer peripheral circular arc surface side to the inner peripheral circular arc surface as described above. Since it has a shape, the laminated steel sheets can be closely stacked, and at the same time, even if an iron core gap occurs, the iron core gap can be made as small as possible, so that the space factor of the iron core is reduced accordingly. It can be improved more reliably. Further, in the method of the present invention, as described above, a laminated steel sheet is formed by a taper process in which the thickness of the laminated steel sheet is gradually reduced in advance from the outer circumferential arc surface side of the sector core to the inner circumferential arc surface side, and the laminated steel sheet. And a forming step of forming a sector type iron core by stacking a predetermined number of them on each other in the thickness direction, the laminated bending electromagnet can be reliably manufactured.

【0007】[0007]

【実施例】以下、本発明の実施例を図1乃至図6により
説明する。図1及び図2は本発明による積層偏向電磁石
の第一の実施例を示し、同図において図7及び図8と同
一符号のものは夫々同じもの若しくは相当するものを表
している。実施例の偏向電磁石は、例えば図1(c)に
示す如く、断面がH型に打ち抜かれた鉄心6を有してい
る。該鉄心6は、薄い積層鋼板1がH型に打ち抜かれ、
その積層鋼板1がビーム偏向角方向に沿って互いに積み
重ねられ、その積み重ねられた積層鋼板1の外周円弧面
側Aと内周円弧面側Bとに側板3を溶接ビート4によっ
て夫々固着すると共に、ビーム偏向角方向の両端面に端
板2を溶接ビート4によつて固着することにより、セク
タ型を形成している。従って、この偏向電磁石は積層鋼
板1と、これを偏向角方向に所定枚数積層する鉄心6と
を有している。そして、各々の積層鋼板1は両端の厚み
寸法が互いに同一ではなく、異なるようにテーパ状をな
している。即ち、各積層鋼板1は図1(b)に示すよう
に、鉄心の6の外周円弧面側Aを画成する外端の厚みが
約0.5ミリのとき、内周円弧面側Bを画成する内端の
厚みを0.4ミリ程度に小さくさせ、従って外周円弧面
側Aから内周円弧面側Bに至るに従い厚みが小さいなる
ことにより、両端の厚み寸法に差をもたせ、各々を積層
したときに鉄心ギャップ(空気層)が生じるのを極力抑
制するようにしている。この場合、積層鋼板1の両面に
斜面1a,1bを設けることによってテーパ状に形成す
る。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2 show a first embodiment of a laminated bending electromagnet according to the present invention, in which the same reference numerals as those in FIGS. 7 and 8 represent the same or corresponding ones. The deflection electromagnet of the embodiment has an iron core 6 whose cross section is punched into an H shape, as shown in FIG. In the iron core 6, the thin laminated steel plate 1 is punched into an H shape,
The laminated steel plates 1 are stacked on each other along the beam deflection angle direction, and the side plates 3 are fixed to the outer peripheral arc surface side A and the inner peripheral arc surface side B of the stacked laminated steel plates 1 by welding beats 4, respectively, A sector type is formed by fixing the end plates 2 to both end faces in the beam deflection angle direction with welding beats 4. Therefore, this deflecting electromagnet has the laminated steel plates 1 and the iron core 6 for laminating a predetermined number of the laminated steel plates 1 in the deflection angle direction. The laminated steel sheets 1 are tapered so that the thickness dimensions at both ends are not the same but different. That is, as shown in FIG. 1B, when the thickness of the outer end of the iron core 6 defining the outer peripheral arc surface side A of the iron core is about 0.5 mm, the inner peripheral arc surface side B is The thickness of the defining inner end is reduced to about 0.4 mm, and therefore the thickness becomes smaller from the outer peripheral arc surface side A to the inner peripheral arc surface side B, so that there is a difference in the thickness dimension of both ends. The core gap (air layer) is prevented from being generated as much as possible when laminated. In this case, the laminated steel plates 1 are formed in a tapered shape by providing inclined surfaces 1a and 1b on both surfaces.

【0008】このような偏向電磁石の鉄心6を製作する
には、まず積層鋼板1を所望形状に複数打ち抜くが、実
際には、鉄心ギャップ内に荷電粒子ビームを通すための
ビームダクト(図示せず)を設置する関係上、積層鋼板
1を図1(c)に示す水平軸O−O′を境にし、上下二
つのブロックに分割してほぼE形とし、そのE形の形状
に図2(a)に示す如く打ち抜く。この場合、積層鋼板
1は図1(b)に示す如く、両面に斜面1a,1bを設
けることによって予め形成しておく。次いで、打ち抜い
た積層鋼板1の表面を絶縁処理した後、その積層鋼板1
を図2(b)及び(c)に示すように偏向角方向に沿っ
て互いに所定枚数積み重ねる。これを各ブロック毎に行
う。そして、各ブロック毎に積み重ねた積層鋼板1に図
2(d)に示すように側板3を押し当て、これを加圧装
置等を用いて加圧し,固定する。さらに、加圧固定した
状態のままで図2(e)に示す如く、積層鋼板1の上面
と側面とにセクタ型の側板3を押し当て、かつ溶接ビー
ト4によって溶接することにより、各ブロック毎の積層
鋼板1を製作する。これにより、セクタ型のブロック鉄
心6A,6Bを形成する。しかる後、各ブロックの積層
鋼板1間に図示しないビームダクト等の所定物を設置
し、その後、上下各ブロックの積層鋼板1を図1(c)
に示す如く突き合わせ、端板2を溶接ビート4等で溶接
することにより、セクタ型偏向電磁石の鉄心6を形成す
る。
In order to manufacture the iron core 6 of such a bending electromagnet, first, a plurality of laminated steel plates 1 are punched into a desired shape. Actually, however, a beam duct (not shown) for passing the charged particle beam into the iron core gap. ) Is installed, the laminated steel plate 1 is divided into two upper and lower blocks with a horizontal axis OO ′ shown in FIG. 1 (c) as a boundary into an almost E shape, and the E shape is shown in FIG. Punch as shown in a). In this case, the laminated steel plate 1 is formed in advance by providing slopes 1a and 1b on both sides as shown in FIG. 1 (b). Then, after the surface of the punched laminated steel sheet 1 is subjected to insulation treatment, the laminated steel sheet 1
As shown in FIGS. 2B and 2C, a predetermined number of sheets are stacked on each other along the deflection angle direction. This is performed for each block. Then, as shown in FIG. 2D, the side plate 3 is pressed against the laminated steel plates 1 stacked in each block, and this is pressed and fixed using a pressing device or the like. Further, as shown in FIG. 2E, the sector type side plates 3 are pressed against the upper surface and the side surface of the laminated steel sheet 1 while being pressed and fixed, and are welded by the welding beats 4, so that each block The laminated steel plate 1 is manufactured. As a result, the sector block iron cores 6A and 6B are formed. Then, a predetermined object such as a beam duct (not shown) is installed between the laminated steel plates 1 of each block, and then the laminated steel plates 1 of the upper and lower blocks are attached to each other as shown in FIG.
The end plates 2 are abutted as shown in FIG. 2 and the end plates 2 are welded with a welding beat 4 or the like to form the iron core 6 of the sector type bending electromagnet.

【0009】即ち、実施例の積層偏向電磁石は、積層鋼
板1を所定枚数互いに重ねてセクタ型の鉄心6を形成す
ると、積層鋼板1の厚みが鉄心6の外周円弧面側から内
周円弧面に至るに従い次第に狭くなるテーパ形状をなし
ているので、積層鋼板を密に重ねることができ、しかも
その際、鉄心ギャップが生じても、その鉄心ギャップを
極力小さくものにすることができ、従って、それだけ鉄
心6の占積率をより確実に向上させることができ。しか
も、鉄心ギャップを小さくできることによって鉄板スペ
ーサの使用量を大幅に低減できると共に、作業工数も低
減することができる。また、積層偏向電磁石の製造課程
においては、積層鋼板1の厚みをテーパ状に形成するテ
ーパ行程と、そのテーパ状の積層鋼板1を偏向角方向に
互いに積み重ねることによって鉄心6を形成する成形行
程とを有しているので、セクタ型の鉄心6を確実に製作
することができる。なお、本件実施例によれば、一端の
寸法が0.5ミリ、他端の寸法が0.4ミリとしたテー
パ状の積層鋼板1によって鉄心6を形成し、これを用い
て偏向電磁石を形成した場合、従来技術のような同一厚
みの積層鋼板を用いたものに比較すると、従来ではセク
タ鉄心の占積率が95%で、磁場解析により求められた
磁場分布が1×10~3の精度であったのに対し、97.
5%にまで占積率を向上させることができ、それにより
磁場分布を±2×10~4まで向上できることが確認され
た。
That is, in the laminated bending electromagnet of the embodiment, when a predetermined number of laminated steel plates 1 are stacked on each other to form a sector type iron core 6, the thickness of the laminated steel plate 1 is changed from the outer peripheral arc surface side of the iron core 6 to the inner peripheral arc surface. Since it has a taper shape that gradually becomes narrower as it gets closer, the laminated steel sheets can be closely stacked, and at that time, even if an iron core gap occurs, the iron core gap can be made as small as possible. The space factor of the iron core 6 can be more reliably improved. Moreover, since the iron core gap can be reduced, the amount of iron plate spacers used can be significantly reduced, and the number of working steps can be reduced. Further, in the manufacturing process of the laminated deflection electromagnet, a taper step of forming the laminated steel sheet 1 in a tapered shape and a forming step of forming the iron core 6 by stacking the tapered laminated steel sheets 1 on each other in the deflection angle direction. Therefore, the sector type iron core 6 can be reliably manufactured. According to the present embodiment, the iron core 6 is formed by the laminated steel plate 1 having a tapered shape with one end having a size of 0.5 mm and the other end having a size of 0.4 mm, and a bending electromagnet is formed by using the iron core 6. In this case, as compared with the conventional technique using laminated steel sheets having the same thickness, the space factor of the sector core is 95% and the magnetic field distribution obtained by the magnetic field analysis has an accuracy of 1 × 10 to 3 in the related art. It was 97.
It was confirmed that the space factor can be improved to 5%, and thereby the magnetic field distribution can be improved to ± 2 × 10 to 4 .

【0010】図3及び図4は本発明による偏向電磁石の
第二の実施例を示している。この実施例は、鉄心6を形
成する積層鋼板1の幅寸法が大きく、該積層鋼板1を一
度でテーパ状に加工することが困難な場合の例である。
即ち、この場合、積層鋼板1を図3に示すように水平軸
O−O′を中心に上下のブロックに分割する他、積層鋼
板1を垂直軸P−P′を中心とし幅方向である左右のブ
ロックに分割し、計上下左右の四分割する形状とする。
その際図4(a)に示すように、各ブロックにおいて幅
方向に分割すべき一方の積層鋼板10A,11Aの外側
円弧面の端部の厚みを0.5ミリとし、内周の端部の厚
みを0.45ミリとしてテーパ状に形成し、同図(b)
に示すように、他方の積層鋼板10B,11Bの外側端
部の厚みを0.45ミリとし、内周円弧面の端部の厚み
を0.4ミリとしてテーパ状に形成する。そして、分割
された積層鋼板10A,10B,11A,11Bを夫々
偏向角方向に沿って所定枚数積み重ねることによって各
ブロックを形成し、その後、これらの各ブロックを図3
に示す如く突き合わせることによってセクタ型の鉄心6
を形成する。この実施例によれば、積層鋼板1の幅寸法
が大きい場合、積層鋼板1を幅方向に分割すると共に、
その分割した積層鋼板1を夫々テーパ状に形成し、これ
を積み重ねることによってセクタ型の鉄心6を形成する
ので、積層鋼板1の幅寸法が大きい場合であっても、セ
クタ型の鉄心6を確実に形成することができ、前記第一
の実施例とほぼ同様の作用効果を得ることができる。
3 and 4 show a second embodiment of the bending electromagnet according to the present invention. In this embodiment, the width dimension of the laminated steel sheet 1 forming the iron core 6 is large, and it is difficult to process the laminated steel sheet 1 into a taper shape at one time.
That is, in this case, the laminated steel plate 1 is divided into upper and lower blocks about the horizontal axis O-O 'as shown in FIG. 3, and the laminated steel plate 1 is laterally centered on the vertical axis P-P'. It will be divided into four blocks, and the shape will be divided into four on the left and right under the accounting.
At that time, as shown in FIG. 4A, the thickness of the end of the outer circular arc surface of one of the laminated steel plates 10A and 11A to be divided in the width direction in each block is set to 0.5 mm, and the end of the inner circumference is The thickness is 0.45 mm and it is formed in a taper shape.
As shown in FIG. 5, the other laminated steel plates 10B and 11B are formed in a tapered shape with the outer end portion having a thickness of 0.45 mm and the inner circumferential arc surface having an end portion having a thickness of 0.4 mm. Then, each block is formed by stacking a predetermined number of the divided laminated steel plates 10A, 10B, 11A, 11B along the deflection angle direction, and thereafter, each of these blocks is formed as shown in FIG.
Sector type iron core 6 by abutting as shown in
To form. According to this embodiment, when the width dimension of the laminated steel sheet 1 is large, the laminated steel sheet 1 is divided in the width direction, and
Each of the divided laminated steel plates 1 is formed into a taper shape, and the sector-shaped iron core 6 is formed by stacking the tapered laminated steel plates 1. Therefore, even when the width of the laminated steel plate 1 is large, the sector-shaped iron core 6 is surely formed. It is possible to obtain the same effects as those of the first embodiment.

【0011】図5及び図6は本発明によるさらに他の実
施例を夫々示している。図5の実施例は、電磁石の偏向
半径の大きい(偏向角が小さい)場合に適用したもので
ある。即ち、この場合は、両端の厚みがテーパ状に形成
された積層鋼板1と、テーパ状に形成されていない通常
の積層鋼板21とを組み合わせることによって偏向角の
小さい鉄心を形成するようにしたものである。従って、
同実施例によれば、偏向角の小さいものでも容易に製作
することができ、しかも偏向角の大きさに応じテーパ状
積層鋼板1の使用量を調節すれば、種々の偏向角に応じ
たセクタ型の鉄心を製作できる。
FIGS. 5 and 6 respectively show still another embodiment according to the present invention. The embodiment of FIG. 5 is applied when the deflection radius of the electromagnet is large (the deflection angle is small). That is, in this case, an iron core having a small deflection angle is formed by combining the laminated steel sheet 1 having both ends formed in a tapered shape and the ordinary laminated steel sheet 21 not formed in a tapered shape. Is. Therefore,
According to this embodiment, even a small deflection angle can be easily manufactured, and if the usage amount of the tapered laminated steel sheet 1 is adjusted according to the size of the deflection angle, sectors corresponding to various deflection angles can be obtained. Can make a mold iron core.

【0012】図6の実施例は、テーパ加工された積層鋼
板1を用いて鉄心を形成した場合、その積層鋼板1の圧
延行程で厚み偏差(エッジドロップ)が生じることか
ら、鉄板スペーサを用いて調整しても、不本意ながら空
気層が発生してしまうおそれがある。そこで、鉄粉を混
入した充填材を71を用い、該充填材71を空気層の部
分に充填することによって鉄心の高占積率を図るように
する。特に、鉄心断面の水平方向磁場分布において不整
四極磁場が生じるのは、鉄心断面の水平方向位置におけ
る長手方向の鉄心占積率の不揃いが原因と考えられ、そ
の点、充填材71に混入した鉄粉の混合割合を変える
と、鉄心占積率の不揃いを抑えることができ、極めて有
効である。また、充填材71として接着剤を用いると、
該接着剤によって鉄心全体の剛性を上げることができる
ので、強度的にも有利である。
In the embodiment shown in FIG. 6, when an iron core is formed by using a laminated steel sheet 1 that has been tapered, a thickness deviation (edge drop) occurs in the rolling process of the laminated steel sheet 1. Therefore, an iron plate spacer is used. Even if it is adjusted, an air layer may be undesirably generated. Therefore, a filling material 71 containing iron powder is used, and the filling material 71 is filled in the air layer portion to achieve a high space factor of the iron core. In particular, the occurrence of the irregular quadrupole magnetic field in the horizontal magnetic field distribution of the iron core cross section is considered to be due to the unevenness of the iron core space factor in the longitudinal direction at the horizontal position of the iron core cross section. Changing the mixing ratio of the powder can suppress unevenness in the space factor of the iron core, which is extremely effective. Moreover, if an adhesive is used as the filling material 71,
Since the rigidity of the entire iron core can be increased by the adhesive, it is also advantageous in strength.

【0013】なお何れの図示実施例でも、積層鋼板1の
両面を削ることによってテーパ状に形成した例を示した
が、例えば、一方の面だけを斜面に削ることによってテ
ーパ状に形成し、その積層鋼板1を互いに重ねてセクタ
型の鉄心を形成することもできる。一般に、積層鋼板1
の表面が絶縁処理され、その絶縁処理された積層鋼板を
重ねることとなるが、上述の如く、積層鋼板1の一方の
面だけをテーパ状に形成した場合、そのテーパ面を、隣
の積層鋼板のテーパ状に形成されていない絶縁面に重ね
ると、積層鋼板間の絶縁を確保することができる。従っ
て、一方のテーパ面をいちいち絶縁処理することが不要
になるので、この積層鋼板で鉄心を形成すれば、絶縁処
理する手間を省くことができ、また鉄心の製作をそれだ
け容易に行うこともできる。
In each of the illustrated embodiments, an example is shown in which both sides of the laminated steel plate 1 are shaved to form a taper shape. However, for example, only one surface is shaved to form a taper shape, and It is also possible to stack the laminated steel plates 1 on top of each other to form a sector core. Generally, laminated steel sheet 1
The surface of the laminated steel sheet is subjected to an insulation treatment, and the laminated steel sheet subjected to the insulation treatment is stacked. However, as described above, when only one surface of the laminated steel sheet 1 is formed in a tapered shape, the tapered surface is adjacent to the adjacent laminated steel sheet. When it is stacked on the insulating surface that is not formed in the taper shape, the insulation between the laminated steel sheets can be secured. Therefore, it is not necessary to insulate one of the tapered surfaces one by one. If the iron core is formed of this laminated steel sheet, the labor of the insulating treatment can be saved and the iron core can be manufactured so much. .

【0014】[0014]

【発明の効果】以上述べたように、本発明の請求項1及
び2によれば、積層鋼板をテーパ状に形成し、そのテー
パ状の積層鋼板を用いることによって鉄心を形成するよ
うに構成したので、積層鋼板を偏向角に沿って密に重ね
ることができ、またその鉄心ギャップを極力小さくもの
にすることができ、それだけ鉄心の占積率をより確実に
向上させることができる結果、不整四極成分の発生,電
磁石毎のばらつきによる設計軌道のゆがみ,ビーム安定
加速空間の減少等の諸問題を抑止し得る効果があり、特
に、請求項1では鉄板スペーサの使用量を大幅に低減で
きると共に、それだけ作業工数も低減でき、また請求2
では偏向角の小さい鉄心でも容易に形成できる。また、
請求項3によれば、磁性粉を混入した充填材を用いるの
で、占積率をいっそう高めることができ、請求項4によ
れば、積層鋼板間の絶縁を確保できるので、鉄心製作が
より容易となる。従って、高精度磁場分布のセクタ型積
層偏向電磁石を容易に製作できるので、直線型偏向電磁
石を利用することによる端部磁場収束効果(edge
focus)を考慮する必要の無いシンプルなシンクロ
トロン電磁石の設計が可能になると云う副次的効果もあ
る。請求項5及び7によれば、請求項1及び2の積層偏
向電磁石を確実に製作でき、請求項6によれば、積層鉄
心の幅が大きいものであっても、容易かつ確実に製作で
きる効果がある。また、請求項8によれば請求項5〜7
の効果に加え、請求項3を実現でき、請求項9によれ
ば、それだけ鉄心全体の剛性が上がるので、それだけ強
度を高めることができる効果がある。
As described above, according to the first and second aspects of the present invention, the laminated steel plates are formed in a tapered shape, and the tapered laminated steel plates are used to form the iron core. Therefore, the laminated steel sheets can be closely stacked along the deflection angle, and the core gap can be made as small as possible. As a result, the space factor of the iron core can be improved more reliably. There is an effect that various problems such as generation of components, distortion of design trajectory due to variation of each electromagnet, reduction of beam stable acceleration space, and the like can be suppressed. In particular, claim 1 can significantly reduce the amount of iron plate spacers used, The work man-hour can be reduced by that much, and claim 2
Can easily form an iron core having a small deflection angle. Also,
According to the third aspect, since the filler containing the magnetic powder is used, the space factor can be further increased, and according to the fourth aspect, the insulation between the laminated steel sheets can be secured, so that the iron core can be manufactured more easily. Becomes Therefore, it is possible to easily manufacture a sector type laminated bending electromagnet having a high-precision magnetic field distribution, so that the end portion magnetic field converging effect (edge) obtained by using the linear bending electromagnet is improved.
There is also a side effect that it is possible to design a simple synchrotron electromagnet without having to consider the focus. According to Claims 5 and 7, the laminated bending electromagnet according to Claims 1 and 2 can be reliably manufactured, and according to Claim 6, even if the width of the laminated core is large, it can be easily and reliably manufactured. There is. According to claim 8, claims 5 to 7
In addition to the above effect, the third aspect can be realized, and according to the ninth aspect, the rigidity of the entire iron core is increased accordingly, so that the strength can be increased accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による積層偏向電磁石の第一の実施例を
示し、鉄心全体の平面図(a),積層鋼板の説明用平面
図(b),同図(a)のI−I断面図(c)。
FIG. 1 shows a first embodiment of a laminated bending electromagnet according to the present invention, showing a plan view of the entire iron core (a), an explanatory plan view of a laminated steel plate (b), and a sectional view taken along the line I-I of FIG. (C).

【図2】鉄心を形成する行程を順に示す説明図。FIG. 2 is an explanatory view sequentially showing a process of forming an iron core.

【図3】本発明による積層偏向電磁石の第二の実施例を
示し、図1(c)に対応する説明用断面図。
FIG. 3 is a sectional view for explaining a second embodiment of the laminated bending electromagnet according to the present invention and corresponding to FIG. 1 (c).

【図4】図1(b)に対応した積層鉄心の厚みを示し、
図3における左半分を示す説明図(a),同じく右半分
を示す説明図(b)。
FIG. 4 shows the thickness of the laminated core corresponding to FIG. 1 (b),
Explanatory drawing (a) which shows the left half in FIG. 3, and explanatory drawing (b) which similarly shows the right half.

【図5】積層偏向電磁石の他の実施例を示す要部の説明
図。
FIG. 5 is an explanatory view of a main part showing another embodiment of the laminated bending electromagnet.

【図6】積層偏向電磁石のさらに他の実施例を示す要部
の説明図。
FIG. 6 is an explanatory view of a main part showing still another embodiment of the laminated bending electromagnet.

【図7】従来の積層偏向電磁石の一構成例を示す平面
図。
FIG. 7 is a plan view showing a configuration example of a conventional laminated bending electromagnet.

【図8】図7のII−II線断面図8 is a sectional view taken along line II-II in FIG.

【符号の説明】[Explanation of symbols]

1…積層鋼板、1a,1b…テーパをなす斜面、6…鉄
心、7…鉄心ギャップ(空気層)、10A,10B,A
…鉄心の外周円弧面側、B…鉄心の内周円弧面側。
DESCRIPTION OF SYMBOLS 1 ... Laminated steel plate, 1a, 1b ... Tapered slope, 6 ... Iron core, 7 ... Iron core gap (air layer), 10A, 10B, A
… Both the outer peripheral arc surface of the iron core, B… the inner arc surface of the iron core.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所望形状に形成された積層鋼板と、該積
層鋼板を偏向角方向に所定枚数互いに重ねて形成するセ
クタ型の鉄心とを有する積層偏向電磁石において、前記
積層鋼板は、各々の厚みがセクタ型鉄心の外周円弧面側
から内周円弧面に至るに従い次第に狭くなるテーパ形状
をなしていることを特徴とする積層偏向電磁石。
1. A laminated deflection electromagnet having a laminated steel sheet formed in a desired shape and a sector type iron core formed by laminating a predetermined number of the laminated steel sheets on each other in a deflection angle direction, wherein the laminated steel sheets have respective thicknesses. Of the sector type iron core has a taper shape which gradually becomes narrower from the outer peripheral circular arc surface side to the inner peripheral circular arc surface.
【請求項2】 所望形状に形成された積層鋼板と、該積
層鋼板を偏向角方向に所定枚数互いに重ねて形成するセ
クタ型の鉄心とを有する積層偏向電磁石において、前記
積層鋼板を、厚みがセクタ型の外周円弧面側から内周円
弧面側に至るに従い次第に狭くなるテーパ状に形成され
た積層鋼板と、両端の厚み寸法が同一の積層鋼板とで構
成し、これらテーパ状の積層鋼板と厚みが同一の積層鋼
板とを適宜に重ね合わせて積層鉄心を形成することを特
徴とする積層偏向電磁石。
2. A laminated bending electromagnet having a laminated steel sheet formed in a desired shape and a sector type iron core formed by stacking a predetermined number of the laminated steel sheets on each other in a deflection angle direction. It consists of a laminated steel plate that is formed in a tapered shape that gradually narrows from the outer peripheral circular arc surface side of the mold to the inner peripheral circular arc surface side, and a laminated steel plate with the same thickness dimension at both ends. A laminated bending electromagnet, which is formed by appropriately laminating the same laminated steel sheets with each other to form a laminated iron core.
【請求項3】 積層鋼板間の空気層に配置され、かつ磁
性体を混入した充填材を有することを特徴とする請求項
1または2に記載の積層偏向電磁石。
3. The laminated deflecting electromagnet according to claim 1, further comprising a filler which is arranged in an air layer between the laminated steel plates and which contains a magnetic material.
【請求項4】 前記テーパ形状の積層鋼板は、一方の面
に斜面を設けて形成することを特徴とする請求項1また
は2に記載の積層偏向電磁石。
4. The laminated bending electromagnet according to claim 1, wherein the tapered laminated steel plate is formed by providing an inclined surface on one surface.
【請求項5】 積層鋼板を偏向角方向に所定枚数互いに
重ね、セクタ型の鉄心を形成する積層偏向電磁石の製造
方法において、前記積層鋼板を、予めその厚みがセクタ
型鉄心の外周円弧面側から内周円弧面側に至るに従い次
第に狭くなるテーパ状に形成するテーパ行程と、その積
層鋼板を互いに厚み方向に所定枚数重ねてセクタ型の鉄
心を形成する成形行程とを有することを特徴とする積層
偏向電磁石の製造方法。
5. A method for manufacturing a laminated deflection electromagnet, wherein a predetermined number of laminated steel sheets are stacked on each other in a deflection angle direction to form a sector type iron core. Lamination characterized in that it has a taper step of forming a taper shape that becomes gradually narrower toward the inner circumferential arc surface side, and a forming step of forming a sector type iron core by laminating a predetermined number of the laminated steel plates in the thickness direction. Bending electromagnet manufacturing method.
【請求項6】 積層鋼板を偏向角方向に所定枚数互いに
重ね、セクタ型の鉄心を形成する電磁石の製造方法にお
いて、前記積層鋼板を、予め幅方向に沿って複数のブロ
ックに分割すると共に、ブロック毎に分割した積層鉄心
を、各々の厚みがセクタ型鉄心の外周円弧面側から内周
円弧面側に至るに従い次第に狭くなるテーパ状に形成す
るテーパ行程と、各々の積層鋼板をブロック毎に互いに
厚み方向に重ねる行程と、各ブロック毎に積層されたブ
ロック積層鋼板を、積層鋼板の幅方向に突き合わせてセ
クタ型の鉄心を形成する成形行程とを有することを特徴
とする積層偏向電磁石の製造方法。
6. A method of manufacturing an electromagnet in which a predetermined number of laminated steel plates are stacked on each other in the deflection angle direction to form a sector type iron core, the laminated steel plates are divided into a plurality of blocks in advance along the width direction, and the blocks are divided into blocks. A taper process in which each laminated steel core is formed into a tapered shape in which the thickness of each laminated iron core gradually becomes narrower from the outer peripheral arc surface side to the inner peripheral arc surface side of the sector core, and each laminated steel plate is block by block. A method for manufacturing a laminated deflection electromagnet, characterized by having a step of stacking in a thickness direction and a forming step of forming a sector type iron core by abutting block laminated steel sheets laminated for each block in a width direction of the laminated steel sheets. .
【請求項7】 積層鋼板を偏向角方向に所定枚数互いに
重ね、セクタ型の鉄心を形成する電磁石の製造方法にお
いて、積層鋼板を、予めその厚みがセクタ型鉄心の外周
円弧面側から内周円弧面側に至るに従い次第に狭くなる
テーパ状に形成するテーパ行程と、該テーパ行程によっ
て形成されたテーパ状の積層鋼板と両端の厚みが同一で
ある積層鋼板とを適宜枚数重ね合わせ、鉄心を形成する
成形行程とを有することを特徴とする積層偏向電磁石の
製造方法。
7. A method for manufacturing an electromagnet in which a predetermined number of laminated steel plates are stacked on each other in the deflection angle direction to form a sector-type iron core, wherein the laminated steel plates are preliminarily made to have an inner circular arc whose thickness is from the outer circumferential arc surface side of the sector-shaped iron core. A taper process that forms a taper shape that gradually narrows toward the surface side and a tapered laminated steel plate formed by the taper process and a laminated steel plate having the same thickness at both ends are stacked as appropriate to form an iron core. A method of manufacturing a laminated bending electromagnet, comprising: a forming step.
【請求項8】 重ねた積層鋼板間に空気層が生じたと
き、該空気層に、磁性体を混入した充填材を充填する行
程を有することを特徴とする請求項5〜7の一項に記載
の積層偏向電磁石の製造方法。
8. The method according to claim 5, wherein when an air layer is formed between the laminated steel sheets, there is a step of filling the air layer with a filler mixed with a magnetic material. A method for manufacturing the laminated bending electromagnet described.
【請求項9】 前記充填材として磁性体を混入した接着
剤を用いることを特徴とする請求項8に記載の積層偏向
電磁石の製造方法。
9. The method for manufacturing a laminated deflecting electromagnet according to claim 8, wherein an adhesive containing a magnetic material is used as the filling material.
JP4058403A 1992-03-16 1992-03-16 Laminated bending magnet and method for manufacturing the same Expired - Lifetime JP2568018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4058403A JP2568018B2 (en) 1992-03-16 1992-03-16 Laminated bending magnet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4058403A JP2568018B2 (en) 1992-03-16 1992-03-16 Laminated bending magnet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05258950A JPH05258950A (en) 1993-10-08
JP2568018B2 true JP2568018B2 (en) 1996-12-25

Family

ID=13083399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058403A Expired - Lifetime JP2568018B2 (en) 1992-03-16 1992-03-16 Laminated bending magnet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2568018B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168158A1 (en) * 2018-03-02 2019-09-06 Tdk株式会社 Magnetic core and method for manufacturing same, and coil component
CN109920627B (en) * 2019-04-24 2024-06-18 四川智翔电器有限公司 Three-phase three-dimensional lamination type iron core of three-phase reactor

Also Published As

Publication number Publication date
JPH05258950A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
EP0251321B1 (en) Iron core of electromagnet and method of producing the same
EP2549623A1 (en) Rotor and process for production thereof
EP2445086B1 (en) Stator core and method for manufacturing same
JPS63895B2 (en)
US20220051840A1 (en) Iron core for stationary induction apparatus and stationary induction apparatus
JP2568018B2 (en) Laminated bending magnet and method for manufacturing the same
JP2013211371A (en) Reactor
JPH1154300A (en) Deflection electromagnet and manufacture of the same
JP3505877B2 (en) Electromagnetic device and method of manufacturing the same
JP2000195699A (en) Deflection electromagnet and cutting die for manufacturing thin steel plate
JPH07222409A (en) Formation of iron core of electric apparatus
JP2003217939A (en) Iron core for electric apparatus
JP3136522B2 (en) Cathode ray tube electron gun electrode
JPS60182704A (en) Coil for electromagnet
CN117961219B (en) Welding method for improving flatness of laminated iron core
JP2000252100A (en) Deflecting electromagnet and its manufacture
JPH01230209A (en) Electromagnetic steel plate for laminated iron core
JP6254310B2 (en) Manufacturing method of stator core
WO2023195526A1 (en) Electrolytic capacitor lead terminal, device for manufacturing rolled part, and method for manufacturing rolled part
JP2672502B2 (en) Method for manufacturing electrode for color cathode ray tube electron gun
JPS6251200A (en) Magnetic electrode structure of cyclotron having isochronismmagnetic field distribution
JPH01296603A (en) Iron core for electromagnet
JP2024017232A (en) Manufacturing method of laminated iron core
JPH08241679A (en) Electrode of crt electron gun and working method for electrode
JPS6240133A (en) Electrode of electron gun