JP2000249636A - Method for predicting and evaluating dentability and method for selecting metal plate for press forming - Google Patents

Method for predicting and evaluating dentability and method for selecting metal plate for press forming

Info

Publication number
JP2000249636A
JP2000249636A JP11049297A JP4929799A JP2000249636A JP 2000249636 A JP2000249636 A JP 2000249636A JP 11049297 A JP11049297 A JP 11049297A JP 4929799 A JP4929799 A JP 4929799A JP 2000249636 A JP2000249636 A JP 2000249636A
Authority
JP
Japan
Prior art keywords
strain
press
dent resistance
metal plate
dent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11049297A
Other languages
Japanese (ja)
Inventor
Shunji Hiwatari
俊二 樋渡
Koji Sakuma
康治 佐久間
Akinobu Murasato
映信 村里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11049297A priority Critical patent/JP2000249636A/en
Publication of JP2000249636A publication Critical patent/JP2000249636A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently select an optimum material and its plate thickness by considering strength characteristics considered for work hardening or bake hardening of the material by calculating a dentability evaluation index and using a value of the index. SOLUTION: A metal plate having a relation between a corresponding plastic stress and a corresponding plastic strain represented by σeq=f(εeq) with an initial plate thickness t0, wherein σeq is the stress and εeq is the strain and a cured amount by heat treating for coating baking represented by σeq=g(εeq) is used, a strain introduced in the case of press forming the plate is measured, and the strain after press forming and the plate thickness t are obtained from the measured strain. The stress σeq after forming and a curing amount σHB when the formed article is coating baked are obtained by using the σeq=f(εeq) and σHB=g(εeq) from the strain εeq. Further, characteristic against dent evaluation index X defined by S=h(σeq,σHB.t) is calculated, and the characteristic against dent predicted evaluation of the press formed article is executed by using the index.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】自動車や家電製品などの外表
面を構成するパネルが金属板のプレス成形と塗装焼付け
の工程を経て得られる場合において、耐デント性を満足
するように使用する金属板とその初期板厚を選定する方
法に関するものである。
The present invention relates to a metal plate used to satisfy dent resistance when a panel constituting an outer surface of an automobile, a home electric appliance or the like is obtained through a process of pressing a metal plate and baking paint. The present invention relates to a method for selecting the initial thickness.

【0002】[0002]

【従来の技術】デントとはパネルに局所的な力を負荷
し、除荷した際にくぼみが残留する現象のことである。
この現象を回避するためには、適切な板厚と強度特性を
有する金属板を用いる必要がある。特に強度特性として
は、降伏強さや引張強さだけでなく、このパネルを製造
する工程で材料がプレス成形と塗装焼付け処理を経るた
め、プレス成形で受ける塑性ひずみによる硬化(加工硬
化)と塗装焼付け時に受ける170℃での20分ほどの
熱処理による硬化(焼付け硬化)も考慮する必要があ
る。
2. Description of the Related Art Dent is a phenomenon in which a local force is applied to a panel, and a dent remains when the panel is unloaded.
In order to avoid this phenomenon, it is necessary to use a metal plate having appropriate thickness and strength characteristics. In particular, the strength properties include not only yield strength and tensile strength, but also the material undergoes press forming and paint baking in the process of manufacturing this panel, so it hardens due to plastic strain received in press forming (work hardening) and paint baking. It is also necessary to consider the occasional hardening (baking hardening) by heat treatment at 170 ° C. for about 20 minutes.

【0003】このような特性が重要であることは、特開
平8−41585号公報で加工硬化性に優れた鋼板や、
特開平10−46289号公報で焼付け硬化特性を有す
る鋼板が、耐デント性の良好な鋼板として提案されてい
ることからも明らかである。例えば、製品の重量を低減
したい場合、プレス製品製造業者または材料製造業者に
とって、所定の耐デント性を満足しつつ用いる材料の板
厚を最小にできるように、プレス成形性や降伏強さだけ
でなく、加工硬化や焼付け硬化を考慮して材料を選定す
ることが重要となる。
[0003] The importance of such properties is disclosed in Japanese Patent Application Laid-Open No. 8-41585, such as a steel sheet having excellent work hardening properties,
It is also clear from the fact that a steel sheet having bake hardening characteristics is proposed as a steel sheet having good dent resistance in JP-A-10-46289. For example, when it is desired to reduce the weight of a product, a press product manufacturer or a material manufacturer can use only press formability and yield strength to minimize the thickness of the material used while satisfying the prescribed dent resistance. Therefore, it is important to select a material in consideration of work hardening and bake hardening.

【0004】このような材料選定を行うためには各種の
板厚・強度特性を有する材料についてプレス成形と焼付
け硬化処理を行って実際にパネルを作成し、そのデント
挙動を実測する必要がある。デント量の測定方法として
特開平7−225181号公報には金属材料のデント性
測定方法およびその装置が開示されている。このように
して得た各種材料のデント量の実測値をもとに、所定の
基準条件を満たす材料を選定する方法が考えられる。
In order to select such materials, it is necessary to press-mold and bake harden materials having various thickness and strength characteristics to actually produce panels, and to measure the dent behavior of the panels. As a method for measuring the dent amount, Japanese Patent Application Laid-Open No. 7-225181 discloses a method and an apparatus for measuring the dent property of a metal material. A method is conceivable in which a material that satisfies predetermined reference conditions is selected based on the measured values of the dent amounts of various materials obtained in this manner.

【0005】[0005]

【発明が解決しようとする課題】近年、耐デント性に優
れた材料が数多く開発されているが、多様な強度特性と
板厚の材料から最適材料を選定するにあたり、このよう
な実験的手法のみを用いようとすると、数多くの材料に
ついてプレス成形だけでなく、焼付け硬化処理とデント
量測定実験を行う必要があり、その作業は極めて煩雑で
ある。また、一度、デント量測定実験を行うとパネルに
圧痕が残るため、他の用途に供すことは困難である。し
たがって、最終的な性能確認以外の実験はできるだけ少
ない数にとどめたい。
In recent years, many materials having excellent dent resistance have been developed. However, in selecting an optimum material from materials having various strength characteristics and plate thicknesses, only such an experimental method is used. If it is intended to use, it is necessary to perform not only press molding but also baking hardening treatment and dent amount measurement experiment for many materials, and the operation is extremely complicated. In addition, once the dent amount measurement experiment is performed, indentations remain on the panel, and it is difficult to use the panel for other purposes. Therefore, we want to minimize the number of experiments other than final performance confirmation as much as possible.

【0006】有限要素法を用いて、成形工程とデント実
験工程のコンピュータシミュレーションを行い、材料選
定作業に必要な実験作業を低減することも不可能ではな
い。しかしながら、コンピュータシミュレーションを使
用する場合でも、プレス工程のシミュレーションの結果
から焼付け硬化処理を反映させた材料データや境界条件
・初期条件の入力データを作成し、デント試験工程のシ
ミュレーションを行うのは煩雑である。本発明は上述し
た従来技術の問題を解決することを技術課題としてお
り、材料の加工硬化や焼付け硬化も考慮した強度特性を
考慮して、最適な材料とその板厚を効率的に選定するこ
とを目的とする。
It is not impossible to carry out computer simulation of the molding process and the dent experiment process by using the finite element method to reduce the experiment work required for material selection work. However, even when using computer simulation, it is complicated to create material data reflecting the bake hardening process and input data of boundary conditions and initial conditions from the results of the simulation of the press process, and to simulate the dent test process. is there. An object of the present invention is to solve the above-described problems of the prior art, and to efficiently select an optimal material and its thickness in consideration of strength characteristics in consideration of work hardening and baking hardening of the material. With the goal.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明者らが鋭意研究を重ねた結果、プレス成形品の
ひずみを事前に知ることができれば、素材の単軸引張試
験による加工硬化と焼付け硬化のデータを基に耐デント
性と相関の高い指標を簡単な計算により得ることができ
ることを見出し、本発明をなすに至った。すなわち、本
発明は以下のような点を特徴とするプレス成形品の耐デ
ント性の予測評価方法およびプレス成形用金属板の選択
方法を提供する。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, if the strain of a press-formed product can be known in advance, the work hardening of the material by a uniaxial tensile test is performed. The present inventors have found that an index having a high correlation with the dent resistance can be obtained by simple calculation based on the data of baking hardening and baking hardening, and the present invention has been accomplished. That is, the present invention provides a method for predicting and evaluating dent resistance of a press-formed product and a method for selecting a metal plate for press-forming, which are characterized by the following points.

【0008】(1)初期板厚がt0 であり、相当塑性応
力σeqと相当塑性ひずみεeqの関係がσeq=f(εeq
で表され、塗装焼付けのための熱処理による硬化量がσ
HB=g(εeq)で表される金属板を用い、その金属板に
プレス成形を施した際に導入されるひずみを測定し、測
定したひずみからプレス成形後の相当塑性ひずみεeq
板厚tを求め,相当塑性ひずみεeqからσeq=f
(εeq)とσHB=g(εeq)を用いて成形後の相当塑性
応力σeqとその成形品に塗装焼き付け処理を行ったとき
の硬化量σHBを求め、さらにS=h(σeq,σHB・t)
で定義される耐デント性評価指標Sを計算し、この耐デ
ント性評価指標Sの値を用いることを特長とするプレス
成形品の耐デント性の予測評価方法。
(1) The initial plate thickness is t 0 , and the relationship between the equivalent plastic stress σ eq and the equivalent plastic strain ε eq is σ eq = f (ε eq )
And the amount of curing by heat treatment for baking paint is σ
Using a metal plate represented by HB = g (ε eq ), the strain introduced when the metal plate was subjected to press forming was measured, and from the measured strain, the equivalent plastic strain ε eq after press forming and the plate The thickness t is determined, and σ eq = f from the equivalent plastic strain ε eq
Using (ε eq ) and σ HB = g (ε eq ), the equivalent plastic stress σ eq after molding and the hardening amount σ HB when the molded product is subjected to paint baking are determined, and then S = h (σ eq , σ HB · t)
A method for predicting and evaluating dent resistance of a press-formed product, wherein a dent resistance evaluation index S defined by the following formula is calculated, and the value of the dent resistance evaluation index S is used.

【0009】(2)前記(1)においてプレス成形によ
り導入されるひずみの実測値に代え、成形シミュレーシ
ョンにより計算されたひずみを用いることを特徴とする
プレス成形品の耐デント性の予測評価方法。 (3)前記(1)または(2)において測定したひずみ
もしくは計算されたひずみから相当塑性ひずみの値を計
算する際に最大主ひずみε1 と最小主ひずみε2とr値
の板面内平均値rm を用いた式εeq=(rm +1)√1
/(2rm +1)(ε1 2 +2rm /(rm +1)ε1
ε2 +ε2 2 )を用いることを特徴とするプレス成形品
の耐デント性の予測評価方法。
(2) A method for predicting and evaluating the dent resistance of a press-formed product, wherein a strain calculated by a forming simulation is used instead of the actually measured value of the strain introduced by the press forming in the above (1). (3) (1) or the plate surface of the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 and r value in calculating the equivalent plastic strain values from the strain were measured or calculated strain in (2) Average the value r expression with m ε eq = (r m +1 ) √1
/ (2r m +1) (ε 1 2 + 2r m / (r m +1) ε 1
ε 2 + ε 2 2) dent resistance predictive evaluation methods of the press-molded product, which comprises using a.

【0010】(4)前記(1)〜(3)においてσeq
f(εeq)として、K,ε0 ,nを材料パラメータとす
る式σeq=K(ε0 +εeqn を用いることを特徴とす
るプレス成形品の耐デント性の予測評価方法。 (5)前記(1)〜(4)においてσBH=g(εeq)と
して、εeq<0.01ならσBH=0を、εeq≧0.01
ならばその金属板の2%予ひずみ後の焼付け硬化量cを
材料パラメータとする式σBH=cを用いることを特徴と
するプレス成形品の耐デント性の予測評価方法。
(4) In the above (1) to (3), σ eq =
A method for predicting and evaluating the dent resistance of a press-formed product, wherein f (ε eq ) is an equation σ eq = K (ε 0 + ε eq ) n using K, ε 0 and n as material parameters. (5) In the above (1) to (4), assuming that σ BH = g (ε eq ), if ε eq <0.01, σ BH = 0 and ε eq ≧ 0.01
Then, a method for predicting and evaluating the dent resistance of a press-formed product, characterized by using the equation σ BH = c using the baking hardening amount c of the metal plate after 2% prestrain as a material parameter.

【0011】(6)前記(1)〜(5)において耐デン
ト性評価指標Sを定義するS=h(σ eq,σBH,t)と
して、1.0≦m≦2.4を満たすmを用いた式S=√
(rm+1)/2(σeq+σBH)tm を用いることを特
徴とするプレス成形品の耐デント性の予測評価方法。 (7)前記(1)〜(6)に記載の方法を用いて求めた
耐デント性予測評価指標Sがあらかじめ定めた基準値S
* との間でS≧S* を満足するように金属板の種類と初
期板厚t0 を選定することを特徴とするプレス成形用金
属板の選択方法である。
(6) In the above (1) to (5), the anti-density
S = h (σ) defining the property evaluation index S eq, ΣBH, T) and
The equation S = √ using m satisfying 1.0 ≦ m ≦ 2.4
(Rm+1) / 2 (σeq+ ΣBH) TmIt is special to use
Predictive evaluation method for dent resistance of press-formed products. (7) Determined using the method described in (1) to (6) above.
The dent resistance prediction evaluation index S is a predetermined reference value S
*S ≧ S*The type of metal plate and the first to satisfy
Initial plate thickness t0Press forming metal characterized by selecting
This is a method of selecting a genus plate.

【0012】[0012]

【発明の実施の形態】貼付図面を参照して本発明の好ま
しい実施形態を説明する。図1を参照すると、まず、適
用される材料とその板厚の組み合わせの候補を1つ適当
に選ぶ ステップS10]。このとき、プレス成形性や
コストなど、他に重要な項目も考慮して候補を選ぶとよ
い。次にこの材料で機械試験を行い ステップS2
0]、板面内の平均r値rm (ステップS22)、相当
塑性応力σeqと相当塑性ふずみεeqの関係式σeq=f
(εeq) ステップS24]、焼付け硬化量σBHと相当
塑性ひずみεeqの関係式σBH=(εeq) ステップS2
6]を求める。ステップS20では次ステップでrm
σeq=f(εeq),σBH=g(εeq)を求めるためのデ
ータを採取するが、試験方法としては単軸引張試験が簡
便であり好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described with reference to the attached drawings. Referring to FIG. 1, first, one candidate of a combination of a material to be applied and a thickness thereof is appropriately selected (Step S10). At this time, candidates may be selected in consideration of other important items such as press formability and cost. Next, a mechanical test is performed using this material. Step S2
0], the average r value r m (step S22) in the plate surface, the relationship equation between the equivalent plastic stress sigma eq equivalent plastic Fuzumi ε eq σ eq = f
eq ) Step S24], Relational expression σ BH between bake hardening amount σ BH and equivalent plastic strain ε eq = (ε eq ) Step S2
6]. In step S20, r m ,
Data for obtaining σ eq = f (ε eq ) and σ BH = g (ε eq ) are collected. As a test method, a uniaxial tensile test is simple and preferable.

【0013】具体的にはr値として圧延方向から0°,
45°,90°の方向のr値r0, 45, 90を、σeq
f(εeq)を決定するためのデータとして特定の方向の
引張試験による応力−ひずみ曲線を、σBH=g(εeq
を決定するためのデータとして2%の引張り予ひずみを
付与し170℃で20分間の焼付け硬化処理を施した際
の引張試験での焼付け硬化量を測定するのが好ましい。
当然のことながら、単軸引張り以外の方法でこれらのデ
ータを準備しても良いし、170℃で20分間の焼付け
硬化処理に代わり、実際の塗装焼付け処理に基づく熱履
歴をシミュレートした別の熱処理を行って焼付け硬化量
を測定しても構わない。当然のことながら、ステップS
10の時点で候補材のrm ,σeq=f(εeq),σBH
g(εeq)が既知あるいは推定可能ならば,改めて機械
試験 ステップS20]を行ってこれらを求め直す必要
はない。
Specifically, the r value is 0 ° from the rolling direction,
R value r in the direction of 45 ° and 90 °0,r 45,r90And σeq=
f (εeq) To determine the data for a particular direction
The stress-strain curve obtained by the tensile test is represented by σBH= G (εeq)
2% tensile prestrain as data to determine
When applied and baked and hardened at 170 ° C for 20 minutes
It is preferable to measure the amount of bake hardening in a tensile test.
Not surprisingly, these data can be obtained by means other than uniaxial tension.
Or baking at 170 ° C for 20 minutes
Thermal wear based on actual paint baking instead of curing
Bake hardening amount by performing another heat treatment simulating the history
May be measured. Naturally, step S
R of candidate material at 10m, Σeq= F (εeq), ΣBH=
g (εeq) Is known or can be estimated,
Test step S20] to obtain these again
There is no.

【0014】ステップS22で求める塑性異方性のパラ
メータrm はrm =(r0 +2r45+r90)/4により
得られる。この値は後のステップで材料の変形挙動の解
析に用いるが、ここでは材料の変形挙動が板面内等方性
の2次降伏関数を用いた相当塑性応力σeqとそれに基づ
く相当塑性ひずみσeqにより簡便かつ高精度に記述可能
であることに基づいている。さらに複雑な異方性の表現
を用いれば、予測評価精度がさらに向上する可能性もあ
るが、ここでは板面内等方性を仮定してrm のみで代表
させても精度は十分高いことと、他のより複雑な異方性
の表現では簡便さが損なわれることから、rm を用い
る。
The parameter r m of the plastic anisotropy obtained in step S22 is obtained by r m = (r 0 + 2r 45 + r 90 ) / 4. This value will be used in the analysis of the deformation behavior of the material in a later step. Here, the deformation behavior of the material is the equivalent plastic stress σ eq using the in-plane isotropic quadratic yield function and the equivalent plastic strain σ eq based on it. It is based on the fact that it can be described simply and with high precision by eq . The use of more complex anisotropy of expression, there is also a possibility that the prediction evaluation accuracy further improves, wherein the sufficiently high accuracy as a representative only r m assuming the plate plane isotropy If, because the convenience is impaired in terms of other more complex anisotropy, using r m.

【0015】ステップS24ではσeq=f(εeq)とし
て適当な材料パラメータを含む関数式を仮定して応力−
ひずみ曲線にフィッティングして材料パラメータを決定
して完全なσeq=f(εeq)を得る。応力−ひずみの関
係を数式で表現せずに、直接、グラフ上にプロットした
応力−ひずみ曲線を用いて、必要に応じてその曲線から
読み取っても良いが、後で行う数値解析処置において数
式で表す方が簡便である。相当塑性応力σeqと相当塑性
ひずみεeqは、板面内等方性を仮定して、r値の板面内
平均値rm を用いて式εeq=√σ1 2 −2rm /(rm
+1)σ1 σ2+σ2 2 およびεeq=(rm +1)√1
/(2rm +1)(ε1 2 +2rm /(rm +1)ε1
ε2 +ε2 2 )により求めるとよい。こうすると単軸引
張試験の場合、σeq=σ1 、σeq=ε1 となり処理が容
易になるからである。
In step S24, stress σ eq = f (ε eq ) is assumed assuming a function formula including appropriate material parameters.
Fit the strain curve to determine the material parameters to get the complete σ eq = f (ε eq ). The stress-strain relationship may not be represented by a mathematical expression, but may be directly read from the curve using a stress-strain curve plotted on a graph as needed. It is simpler to represent. Equivalent plastic stress sigma eq and the equivalent plastic strain epsilon eq, assuming the plate plane isotropy, wherein using the plate plane average value r m of r value ε eq = √σ 1 2 -2r m / ( r m
+1) σ 1 σ 2 + σ 2 2 and ε eq = (r m +1) √1
/ (2r m +1) (ε 1 2 + 2r m / (r m +1) ε 1
may obtained by ε 2 + ε 2 2). This is because, in the case of a uniaxial tensile test, σ eq = σ 1 and σ eq = ε 1 , thereby facilitating the processing.

【0016】さらに高度な異方性降伏関数を用いて、相
当塑性応力εeqと相当塑性ひずみε eqを定義しても良い
が、パラメータが多く、処理の際に板面内の方向まで考
慮する必要が生じるため、煩雑な割には精度の向上代が
十分でない。実用上は上記の式で十分である。加工硬化
の関数f(εeq)として例えばεeqの高次多項式やその
他の形式を用いてもよいが、近似の精度が高く、成形シ
ミュレーションでよく用いられるSwiftの式σeq
K(ε0 +εeqn を用いるのが好ましい。
Using a more sophisticated anisotropic yield function,
This plastic stress εeqAnd equivalent plastic strain ε eqMay be defined
However, there are many parameters.
Need to be taken into account.
not enough. In practice, the above formula is sufficient. Work hardening
Function f (εeq) As e.g.eqHigher-order polynomials and their
Other formats may be used, but the approximation accuracy is high and
Swift equation σ often used in simulationeq=
K (ε0+ Εeq)nIt is preferable to use

【0017】ステップS26ではσBH=g(εeq)とし
て適当な材料パラメータを含む関数式を仮定して、予ひ
ずみと焼付け硬化量の関係を示す曲線にフィッティング
して材料パラメータを決定して完全なσBH=g(εeq
を得る。予ひずみと焼付け硬化量の関係を数式で表現せ
ずに、直接、グラフ上にプロットした応力−ひずみ曲線
を用いて、必要に応じてその曲線から読み取っても良い
が、後で行う数値解析処置において数式で表す方が簡便
である。
In step S26, a function formula including appropriate material parameters is assumed as σ BH = g (ε eq ), and the material parameters are determined by fitting to a curve showing the relationship between the pre-strain and the bake hardening amount. Σ BH = g (ε eq )
Get. The relationship between the prestrain and the bake hardening amount may not be expressed by a mathematical expression, but may be directly read from the curve using a stress-strain curve plotted on a graph. It is simpler to express the formula by

【0018】予ひずみが焼付け硬化量におよぼす影響と
して予ひずみの相当塑性ひずみ量の他に、予ひずみのモ
ード(最大主ひずみと最小主ひずみの比や方向)に影響
される場合は、予ひずみテンソルεの関数式σBH=g1
(ε)を用いてもよいが、本発明者らが種々の材料や変
形モードについて実験を行い調べた結果、一般的には相
当塑性ひずみの関数σBH=g(εeq)を用いてもよい
が、本発明者らが種々の材料や変形モードについて実験
を行い調べた結果、一般的には相当塑性ひずみの関数σ
BH=g(εeq)としても十分に精度が高いことが明らか
になった。特に予ひずみがεeq<0.01ならσBH=0
を、εeq≧0.01ならばその金属板の2%予ひずみ後
の焼付け硬化量cを材料パラメータとする式σBH=cを
用いると簡便であり、かつ十分な精度が得られるため、
σBH=0(εeq<0.01)、c(εeq≧0.01)が
好ましい。
When the prestrain is affected by the prestrain mode (the ratio and direction of the maximum principal strain to the minimum principal strain) in addition to the equivalent plastic strain of the prestrain, Function equation σ BH = g 1 of tensor ε
(Ε) may be used, but as a result of the present inventors' experiments and investigations on various materials and deformation modes, in general, the function σ BH = g (ε eq ) of the equivalent plastic strain can be used. As a result, the present inventors have conducted experiments on various materials and deformation modes, and as a result, in general, a function σ of an equivalent plastic strain has been obtained.
It became clear that the accuracy was sufficiently high even when BH = g (ε eq ). In particular, if the prestrain is ε eq <0.01, σ BH = 0
If ε eq ≧ 0.01, using the equation σ BH = c using the baking hardening amount c of the metal plate after 2% prestrain as a material parameter is simple and sufficient accuracy can be obtained.
σ BH = 0 (ε eq <0.01) and c (ε eq ≧ 0.01) are preferred.

【0019】次にステップS10で選定した候補材を用
いてプレス成形を行うか、もしくはステップS22とS
24で求めた材料特性データを用いて成形シミュレーシ
ョンを行う[ステップS30]。この際に破断、ネッキ
ング、しわ、面ひずみなどのプレス成形不具合が発生し
ないことが必要であるが、もし、このステップでプレス
成形不具合が発生した場合や、生産時にプレス成形不具
合の発生が予想される場合は、ステップS10に戻り、
評価する材料と板厚の組み合わせを選定し直すとよい。
成形が可能であるならば、次に、パネルに付与されたひ
ずみを測定する[ステップS32]が、プレス成形を行
った場合は、ひずみテンソルのすべての成分を測定する
のは容易でないので、板面内等方性材料を仮定し、スク
ライブドサークル法により最大主ひずみε1 と最小主ひ
ずみε2 を測定すればよい。
Next, press forming is performed using the candidate material selected in step S10, or step S22 and step S22 are performed.
A molding simulation is performed using the material characteristic data obtained in 24 [Step S30]. At this time, it is necessary that press forming defects such as breakage, necking, wrinkles, and surface distortion do not occur, but if press forming defects occur at this step or press forming defects are expected during production, Return to step S10,
It is advisable to reselect the combination of the material to be evaluated and the thickness.
If molding is possible, then the strain applied to the panel is measured [Step S32]. However, if press molding is performed, it is not easy to measure all components of the strain tensor. assuming plane isotropic material, it may be measured maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 by scribed circle method.

【0020】一般の金属材料ではひずみの弾性成分は無
視できるほど小さいため、測定値をそのまま塑性ひずみ
として、後の処理を行って構わない。一方、成形シミュ
レーションを用いる場合は、プレス成形を行う場合と同
様にしてシミュレーション結果から塑性ひずみの最大主
ひずみε1 と最小主ひずみε2 を得ても良いし、さらに
板面内等方性材料の仮定よりも高度な異方性を用いる必
要があるならば、ひずみテンソルの全成分値を得て、そ
の後の処理を行っても良い。効率の観点からは、板面内
等方性を仮定し最大主ひずみε1 と最小主ひずみε2
用いる方法が、ひずみの測定作業とその後の処理が簡便
で、かつ最終的に十分な精度が得られるため好ましい。
In general metal materials, the elastic component of the strain is so small that it can be ignored. Therefore, the subsequent processing may be performed using the measured value as it is as the plastic strain. On the other hand, when using the molding simulation, to simulate it may be obtained the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 of plastic strain results, further plate plane isotropic material as in the case of performing press molding If it is necessary to use a higher degree of anisotropy than the above assumption, all the component values of the strain tensor may be obtained, and the subsequent processing may be performed. From the viewpoint of efficiency, a method of using the maximum principal strain epsilon 1 and the minimum principal strain epsilon 2 assumes a plate plane isotropy, simple measuring operation and the subsequent processing of the distortion, and finally sufficient precision Is preferred because

【0021】次いで、測定したひずみからプレス成形後
の板厚tと相当塑性ひずみεeqの値を計算する[ステッ
プS34]。板厚tは初期板厚t0 と板厚ひずみε3
ら、t=texp(ε3 )を用いて計算できる。ステッ
プS32で最大主ひずみε1と最小主ひずみε2 のみを
得た場合は板厚ひずみε3 をε3 =−ε1 −ε2 により
求めればよい。当然のことながら、ステップS30のプ
レス成形品の板厚を実測した値、もしくは、成形シミュ
レーションの結果から得られる板厚を直接、用いても良
い。また、相当塑性ひずみεeqの値はステップS24で
機械試験値からσeq=f(εeq)を求めた際に用いたε
eqの式を用いて計算すればよい。
Next, the value of the sheet thickness t after press forming and the equivalent plastic strain ε eq are calculated from the measured strain [Step S34]. The thickness t can be calculated from the initial thickness t 0 and the thickness strain ε 3 using t = tex (ε 3 ). Maximum principal strain epsilon 1 and a plate thickness strain epsilon 3 If the minimum yield principal strain epsilon 2 only may be obtained by ε 3 = -ε 12 in step S32. As a matter of course, a value obtained by actually measuring the thickness of the press-formed product in step S30 or the thickness obtained from the result of the forming simulation may be directly used. The value of the equivalent plastic strain ε eq is the ε used when σ eq = f (ε eq ) was obtained from the mechanical test values in step S24.
What is necessary is just to calculate using the formula of eq .

【0022】続いて,ステップS24とS26で求めた
σeq=f(εeq)とσBH=g(εeq)を用いて、このパ
ネルに対するσeqとσBHの値を計算する ステップS4
0]。さらに得られたt、σeq、σBHから耐デント性の
予測評価指標Sを計算するステップS42]。ここで、
Sはt、σeq、σBHの関数h(t,σeq,σBH)を用い
てS=h(t,σeq,σBH)で定義される。この関数と
しては実際のデント量と相関が高いことが実証された関
数を用いるべきであり、本発明者が鋭意研究を進めた結
果、h(t,σeq,σBH)=√(rm +1)/2(σeq
+σBH)tmで定義される関数が金属板の種類、板厚、
プレス成形による加工硬化、焼付け硬化量を問わず、実
際のデント量とよく一致することが見出された。
Subsequently, the values of σ eq and σ BH for this panel are calculated using σ eq = f (ε eq ) and σ BH = g (ε eq ) obtained in steps S 24 and S 26.
0]. Further, a step S42 of calculating a dent resistance prediction evaluation index S from the obtained t, σ eq , and σ BH ]. here,
S is t, σ eq, σ BH function h (t, σ eq, σ BH) with S = h (t, σ eq , σ BH) is defined. As the function should be used the function was demonstrated that high correlation with the actual dent amount, the inventors of the present inventors have proceeded extensive studies, h (t, σ eq, σ BH) = √ (r m +1) / 2 (σ eq
+ Sigma BH) type functions metal plate defined by t m, plate thickness,
Regardless of the amount of work hardening and bake hardening by press molding, it was found that the amount matched well with the actual dent amount.

【0023】ここで、mはパネルの形状や固定方法に応
じて1.0≦m≦2.4の範囲の値をとる。したがっ
て、S=√(rm +1)/2(σeq+σBH)tm を用い
ることが好ましいが、√(rm +1)/2(σeq
σBH)tm と相関の強い別の関数を用いても同様の効果
が得られることはいうまでもないため、別の形式の関数
h(t,σeq,σBH)により、本発明の権利のおよぶ範
囲が不当に制限されるものではない。
Here, m takes a value in the range of 1.0 ≦ m ≦ 2.4 depending on the shape and fixing method of the panel. Therefore, it is preferable to use S = √ (r m +1) / 2 (σ eq + σ BH) t m, √ (r m +1) / 2 (σ eq +
sigma BH) for it goes without saying that similar effect can be obtained by using a strong another function correlated with t m, another form of the function h (t, σ eq, the sigma BH), the present invention The scope of rights is not unduly limited.

【0024】次いで、得られた耐デント性予測評価指標
Sの値を、要求される耐デント性に応じて予め設定され
た基準値S* と比較する ステップS44]。Sの値が
*より小さい場合は、この材料と板厚の組み合わせで
は要求される耐デント性を確保できないことを示すた
め、再度、ステップS10に戻り、別の材料もしくは別
の板厚について上記の方法を繰り返す。一方、S≧S*
が満足されている場合は、この材料と板厚の組み合わせ
を用いて生産を行っても良いと判断されるが、特にS−
* が大きい場合は、コストや成形性の観点から、別の
材料や板厚についてステップS10から評価を行っても
よい。
Next, the obtained value of the dent resistance prediction evaluation index S is compared with a reference value S * preset in accordance with the required dent resistance [Step S44]. If the value of S is smaller than S *, it indicates that the required dent resistance cannot be secured with the combination of the material and the plate thickness. Repeat the above procedure. On the other hand, S ≧ S *
Is satisfied, it is determined that the production may be performed using the combination of the material and the plate thickness.
If S * is large, another material or plate thickness may be evaluated from step S10 from the viewpoint of cost and formability.

【0025】[0025]

【実施例】以下に本発明の一実施例を図面を参照して説
明する。表1に示す材料(鋼板)から、200mm×2
00mmと200mm×125mmのブランクを切り出
し、直径100mmの円筒ポンチで異なる成形高さに張
出し、底面中央に異なる大きさの等2軸引張変形と平面
ひずみ引張り近傍の変形を与えた。図2に付与されたひ
ずみの測定値を示す。この成形品に170℃での20分
間の熱処理を施した後、直径50mmのリングで固定
し、半径25mmの半球状の圧子を用いて200Nの荷
重を加え、除荷したあとのくぼみdを測定した。こうし
て得られたdと本発明により得られた耐デント性予測評
価指数Sとの相関を図3に示す。ここではmの値として
2.0を用いた。Sがデント量の実測値と高い相関を示
している。したがって、本発明の方法により得られた耐
デント性を予測評価できることがわかる。
An embodiment of the present invention will be described below with reference to the drawings. From the material (steel plate) shown in Table 1, 200 mm x 2
Blanks of 00 mm and 200 mm × 125 mm were cut out, stretched to different molding heights with a cylindrical punch having a diameter of 100 mm, and subjected to equibiaxial tensile deformation of different sizes and deformation near plane strain tensile at the center of the bottom surface. FIG. 2 shows the measured values of the applied strain. This molded product was subjected to a heat treatment at 170 ° C. for 20 minutes, then fixed with a ring having a diameter of 50 mm, applied a load of 200 N using a hemispherical indenter having a radius of 25 mm, and measured the dent d after unloading. did. FIG. 3 shows the correlation between d thus obtained and the dent resistance prediction evaluation index S obtained by the present invention. Here, 2.0 was used as the value of m. S shows a high correlation with the measured value of the dent amount. Therefore, it can be seen that the dent resistance obtained by the method of the present invention can be predicted and evaluated.

【0026】一方、例えばデント深さ0.06mmを与
えるデント評価指標Sの値は約270(MPamm2
であるが、270(MPamm2 )を耐デント性の基準
値S * とした場合、例えば板厚0.9mmの材料Aでは
パネルにεeqが0.18を超える成形ひずみが付与され
ても、耐デント性指標Sが基準値S* =270(MPa
mm2 )より小さく、デント量が0.06mmを超えて
しまうが、板厚0.9mmの材料Bを用いてパネルにε
eqが0.03以上の成形ひずみが付与されるか、板厚
0.8mmの材料Cを用いてパネルにεeqが0.07以
上の成形ひずみが付与されれば、耐デント性指標Sが基
準値S* を超え、デント量が0.06mm以下になるこ
とがわかる。以上の例に示したように、本発明によれ
ば、材料と板厚の選定を効率的にかつ定量的に行うこと
ができる。
On the other hand, for example, a dent depth of 0.06 mm is given.
The value of the dent evaluation index S is about 270 (MPammTwo)
270 (MPammTwo) The dent resistance standard
Value S *In the case of material A having a thickness of 0.9 mm, for example,
Ε on the paneleqHas a molding strain exceeding 0.18
However, the dent resistance index S is equal to the reference value S.*= 270 (MPa
mmTwo) Is smaller and the dent amount exceeds 0.06mm
However, using a material B with a thickness of 0.9 mm,
eqIs given a molding strain of 0.03 or more,
The panel is made of ε using 0.8 mm of material C.eqIs 0.07 or less
If the above molding strain is applied, the dent resistance index S
Reference value S*And the dent amount should be 0.06 mm or less.
I understand. As shown in the above examples, the present invention
If, for example, the selection of materials and plate thickness should be performed efficiently and quantitatively
Can be.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上に詳細に説明したように本発明によ
れば、耐デント性の予測評価を簡単に効率的に行うこと
ができ、プレス成形に適した材料とその板厚を効率良く
定量的に決定できる。
As described in detail above, according to the present invention, the dent resistance can be easily predicted and evaluated easily, and the material suitable for press forming and the thickness thereof can be efficiently determined. Can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態による耐デント性の予測評価方
法を用いた適正材料選択方法のフローチャートである。
FIG. 1 is a flowchart of a proper material selection method using a dent resistance prediction evaluation method according to an embodiment of the present invention.

【図2】本発明の実施例に用いたパネルに加えられた成
形ひずみを示す図である。
FIG. 2 is a diagram showing molding strain applied to a panel used in an example of the present invention.

【図3】本発明の実施例に用いたパネルに対して,本発
明を用いて求めた耐デント性予測評価指標Sとデント量
の実測値dの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a dent resistance prediction evaluation index S obtained by using the present invention and an actually measured value d of a dent amount for a panel used in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村里 映信 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 Fターム(参考) 2G055 AA01 AA07 AA12 EA04 EA08 FA01 2G061 AA01 AA20 AB01 CA01 CB01 DA11 EA04 EA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Terunobu Murazato 1 Kimitsu, Kimitsu-shi, Chiba F-term (reference) in Nippon Steel Corporation Kimitsu Works 2G055 AA01 AA07 AA12 EA04 EA08 FA01 2G061 AA01 AA20 AB01 CA01 CB01 DA11 EA04 EA10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 初期板厚がt0 であり、相当塑性応力σ
eqと相当塑性ひずみεeqの関係がσeq=f(εeq)で表
され、塗装焼付けのための熱処理による硬化量がσHB
g(εeq)で表される金属板を用い、その金属板にプレ
ス成形を施した際に導入されるひずみを測定し、測定し
たひずみからプレス成形後の相当塑性ひずみεeqと板厚
tを求め、相当塑性ひずみεeqからσeq=f(εeq)と
σHB=g(εeq)を用いて成形後の相当塑性応力σeq
その成形品に塗装焼き付け処理を行ったときの硬化量σ
HBを求め、さらにS=h(σeq,σHB・t)で定義され
る耐デント性評価指標Sを計算し、この耐デント性評価
指標Sの値を用いることを特長とするプレス成形品の耐
デント性の予測評価方法。
An initial plate thickness is t 0 and an equivalent plastic stress σ
The relationship between eq and the equivalent plastic strain ε eq is represented by σ eq = f (ε eq ), and the amount of curing by heat treatment for baking paint is σ HB =
Using a metal plate represented by g (ε eq ), the strain introduced when the metal plate is subjected to press forming is measured, and from the measured strain, the equivalent plastic strain ε eq after press forming and the plate thickness t The equivalent plastic stress σ eq after molding using σ eq = f (ε eq ) and σ HB = g (ε eq ) from the equivalent plastic strain ε eq and the paint baking process Curing amount σ
A press-formed product characterized in that HB is determined, a dent resistance evaluation index S defined by S = h (σ eq , σ HB · t) is calculated, and the value of the dent resistance evaluation index S is used. Method for predicting and evaluating dent resistance.
【請求項2】 請求項1においてプレス成形により導入
されるひずみの実測値に代え、成形シミュレーションに
より計算されたひずみを用いることを特徴とするプレス
成形品の耐デント性の予測評価方法。
2. A method for predicting and evaluating dent resistance of a press-formed product, wherein a strain calculated by a forming simulation is used in place of an actually measured value of strain introduced by press forming in claim 1.
【請求項3】 請求項1または2において測定したひず
みもしくは計算されたひずみから相当塑性ひずみの値を
計算する際に最大主ひずみε1 と最小主ひずみε2 とr
値の板面内平均値rm を用いた式εeq=(rm +1)√
1/(2rm+1)(ε1 2 +2rm /(rm +1)ε
1 ε2 +ε2 2 )を用いることを特徴とするプレス成形
品の耐デント性の予測評価方法。
3. A maximum principal strain ε 1 , a minimum principal strain ε 2 and r when calculating an equivalent plastic strain value from the strain measured or the calculated strain according to claim 1 or 2.
Wherein using the plate plane average value r m values ε eq = (r m +1)
1 / (2r m +1) ( ε 1 2 + 2r m / (r m +1) ε
1 ε 2 + ε 2 2) dent resistance predictive evaluation methods of the press-molded product, which comprises using a.
【請求項4】 請求項1〜3においてσeq=f(εeq
として、K,ε0 ,nを材料パラメータとする式σeq
K(ε0 +εeqn を用いることを特徴とするプレス成
形品の耐デント性の予測評価方法。
4. The method according to claim 1, wherein σ eq = f (ε eq ).
Equation σ eq = K, ε 0 , n as material parameters
A method for predicting and evaluating dent resistance of a press-formed product, wherein K (ε 0 + ε eq ) n is used.
【請求項5】 請求項1〜4においてσBH=g(εeq
として、εeq<0.01ならσBH=0を、εeq≧0.0
1ならばその金属板の2%予ひずみ後の焼付け硬化量c
を材料パラメータとする式σBH=cを用いることを特徴
とするプレス成形品の耐デント性の予測評価方法。
5. The method according to claim 1, wherein σ BH = g (ε eq ).
Σ BH = 0 if ε eq <0.01, and ε eq ≧ 0.0
If 1, bake hardening amount after 2% pre-strain of the metal plate c
A method for predicting and evaluating the dent resistance of a press-formed product, characterized by using an equation σ BH = c with を as a material parameter.
【請求項6】 請求項1〜5において耐デント性評価指
標Sを定義するS=h(σeq,σBH,t)として、1.
0≦m≦2.4を満たすmを用いた式S=√(rm
1)/2(σeq+σBH)tm を用いることを特徴とする
プレス成形品の耐デント性の予測評価方法。
6. The dent resistance evaluation index S according to claim 1, wherein S = h (σ eq , σ BH , t).
0 ≦ m ≦ 2.4 using m satisfying the equation S = √ (r m +
1) / 2 (σ eq + σ BH) t m dent resistance predictive evaluation methods of the press-molded product, which comprises using a.
【請求項7】 請求項1〜6に記載の方法を用いて求め
た耐デント性予測評価指標Sがあらかじめ定めた基準値
* との間でS≧S* を満足するように金属板の種類と
初期板厚t0 を選定することを特徴とするプレス成形用
金属板の選択方法。
7. A metal plate such that a dent resistance prediction evaluation index S obtained by using the method according to claim 1 satisfies S ≧ S * with a predetermined reference value S * . A method for selecting a metal plate for press forming, wherein a type and an initial plate thickness t 0 are selected.
JP11049297A 1999-02-26 1999-02-26 Method for predicting and evaluating dentability and method for selecting metal plate for press forming Withdrawn JP2000249636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11049297A JP2000249636A (en) 1999-02-26 1999-02-26 Method for predicting and evaluating dentability and method for selecting metal plate for press forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11049297A JP2000249636A (en) 1999-02-26 1999-02-26 Method for predicting and evaluating dentability and method for selecting metal plate for press forming

Publications (1)

Publication Number Publication Date
JP2000249636A true JP2000249636A (en) 2000-09-14

Family

ID=12827002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11049297A Withdrawn JP2000249636A (en) 1999-02-26 1999-02-26 Method for predicting and evaluating dentability and method for selecting metal plate for press forming

Country Status (1)

Country Link
JP (1) JP2000249636A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035642A (en) * 2001-05-16 2003-02-07 Nippon Steel Corp Method for predicting/evaluating strength, method for providing material data, method for identifying material data, system for predicting/evaluating strength, recording medium, and program
JP2007033067A (en) * 2005-07-22 2007-02-08 Daihatsu Motor Co Ltd Method of estimating dent rigidity
WO2008041745A1 (en) * 2006-10-04 2008-04-10 Honda Motor Co., Ltd. Shaping condition deciding method, and shaping condition deciding system
JP2008087061A (en) * 2006-10-04 2008-04-17 Honda Motor Co Ltd Method of deciding forming speed
JP2008178889A (en) * 2007-01-23 2008-08-07 Honda Motor Co Ltd Forming condition-deciding method of press-forming machine, and forming condition-deciding system
JP2008302405A (en) * 2007-06-08 2008-12-18 Honda Motor Co Ltd Shaping condition deciding system
JP2009133788A (en) * 2007-11-30 2009-06-18 Nippon Steel Corp Strength prediction evaluation method, device, program and recording medium
JP2010169489A (en) * 2009-01-21 2010-08-05 Jfe Steel Corp Material status estimation method
JP2011158270A (en) * 2010-01-29 2011-08-18 Daihatsu Motor Co Ltd Method of estimating dent rigidity
JP2011158271A (en) * 2010-01-29 2011-08-18 Daihatsu Motor Co Ltd Method for predicting dent rigidity
JP2012141138A (en) * 2010-12-28 2012-07-26 Jfe Steel Corp Surface shape design method of automobile outer plate component excellent in dent resistance and its component
KR20190066628A (en) 2016-10-26 2019-06-13 제이에프이 스틸 가부시키가이샤 Method for estimating the strength of a baked product
JP2019090657A (en) * 2017-11-13 2019-06-13 Jfeスチール株式会社 Method for predicting dent resistance of panel component
CN114200102A (en) * 2020-08-28 2022-03-18 宝山钢铁股份有限公司 Measuring device and method for determining physical parameters related to electromagnetic properties of strip steel
JP7401769B2 (en) 2020-03-31 2023-12-20 日本製鉄株式会社 Structural property analysis method, structural property analysis device and computer program

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035642A (en) * 2001-05-16 2003-02-07 Nippon Steel Corp Method for predicting/evaluating strength, method for providing material data, method for identifying material data, system for predicting/evaluating strength, recording medium, and program
JP4568186B2 (en) * 2005-07-22 2010-10-27 ダイハツ工業株式会社 Dent stiffness prediction method
JP2007033067A (en) * 2005-07-22 2007-02-08 Daihatsu Motor Co Ltd Method of estimating dent rigidity
WO2008041745A1 (en) * 2006-10-04 2008-04-10 Honda Motor Co., Ltd. Shaping condition deciding method, and shaping condition deciding system
JP2008087061A (en) * 2006-10-04 2008-04-17 Honda Motor Co Ltd Method of deciding forming speed
US8296110B2 (en) 2006-10-04 2012-10-23 Honda Motor Co., Ltd. Forming condition determination method and forming condition determination system
GB2455941A (en) * 2006-10-04 2009-07-01 Honda Motor Co Ltd Shaping condition deciding method, and shaping condition deciding system
GB2455941B (en) * 2006-10-04 2011-06-22 Honda Motor Co Ltd Forming condition determination method and Forming condition determination system
JP2008178889A (en) * 2007-01-23 2008-08-07 Honda Motor Co Ltd Forming condition-deciding method of press-forming machine, and forming condition-deciding system
JP2008302405A (en) * 2007-06-08 2008-12-18 Honda Motor Co Ltd Shaping condition deciding system
JP2009133788A (en) * 2007-11-30 2009-06-18 Nippon Steel Corp Strength prediction evaluation method, device, program and recording medium
JP2010169489A (en) * 2009-01-21 2010-08-05 Jfe Steel Corp Material status estimation method
JP2011158270A (en) * 2010-01-29 2011-08-18 Daihatsu Motor Co Ltd Method of estimating dent rigidity
JP2011158271A (en) * 2010-01-29 2011-08-18 Daihatsu Motor Co Ltd Method for predicting dent rigidity
JP2012141138A (en) * 2010-12-28 2012-07-26 Jfe Steel Corp Surface shape design method of automobile outer plate component excellent in dent resistance and its component
KR20190066628A (en) 2016-10-26 2019-06-13 제이에프이 스틸 가부시키가이샤 Method for estimating the strength of a baked product
CN109891209A (en) * 2016-10-26 2019-06-14 杰富意钢铁株式会社 The intensity estimating method of sintering processes molded product
CN109891209B (en) * 2016-10-26 2021-06-22 杰富意钢铁株式会社 Method for estimating strength of sintered molded article
JP2019090657A (en) * 2017-11-13 2019-06-13 Jfeスチール株式会社 Method for predicting dent resistance of panel component
JP7401769B2 (en) 2020-03-31 2023-12-20 日本製鉄株式会社 Structural property analysis method, structural property analysis device and computer program
CN114200102A (en) * 2020-08-28 2022-03-18 宝山钢铁股份有限公司 Measuring device and method for determining physical parameters related to electromagnetic properties of strip steel
CN114200102B (en) * 2020-08-28 2023-11-14 宝山钢铁股份有限公司 Measuring device and method for determining physical parameters related to electromagnetic properties of strip steel

Similar Documents

Publication Publication Date Title
JP2000249636A (en) Method for predicting and evaluating dentability and method for selecting metal plate for press forming
Livatyali et al. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations
JP5866892B2 (en) Stress-strain relationship evaluation method and springback amount prediction method
Lin et al. Effect of constitutive model on springback prediction of MP980 and AA6022-T4
KR101065502B1 (en) Breaking prediction method
JP4621216B2 (en) Fracture limit acquisition method and apparatus, program, and recording medium
JP6547763B2 (en) Springback amount prediction method
JP4621217B2 (en) Fracture prediction method and apparatus, program, and recording medium
JP4995052B2 (en) Strength prediction evaluation method and apparatus, program, and recording medium
JP2003194686A (en) Stress-strain relation simulation method and method for determining yield point in unloading process
Venet et al. Direct usage of the wire drawing process for large strain parameter identification
Narita et al. Evaluation of strength of stainless steel bolt without heat treatment considering Bauschinger effect during manufacturing process
Piccininni et al. Genetic algorithm based inverse analysis for the superplastic characterization of a Ti-6Al-4V biomedical grade
Panthi et al. Semi analytical modeling of springback in arc bending and effect of forming load
JP6264425B1 (en) Method for estimating the strength of baked products
JP2003035642A (en) Method for predicting/evaluating strength, method for providing material data, method for identifying material data, system for predicting/evaluating strength, recording medium, and program
Narayanasamy et al. Application of response surface methodology for predicting bend force during air bending process in interstitial free steel sheet
JP4109495B2 (en) Material data identification method, formability prediction evaluation system, program, and recording medium
Boers et al. Operator-split damage-plasticity applied to groove forming in food can lids
US4109515A (en) Photoelastic stamping analysis
Fan et al. Springback characteristics of cylindrical bending of tailor rolled blanks
Yao et al. Techniques to improve springback prediction accuracy using dynamic explicit FEA codes
Hambli et al. Comparison between 2D and 3D numerical modeling of superplastic forming processes
JP7414179B1 (en) Stress-strain relationship estimation method, springback prediction method, and press-formed product manufacturing method
JP2019090657A (en) Method for predicting dent resistance of panel component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509