JP2011158271A - Method for predicting dent rigidity - Google Patents

Method for predicting dent rigidity Download PDF

Info

Publication number
JP2011158271A
JP2011158271A JP2010017996A JP2010017996A JP2011158271A JP 2011158271 A JP2011158271 A JP 2011158271A JP 2010017996 A JP2010017996 A JP 2010017996A JP 2010017996 A JP2010017996 A JP 2010017996A JP 2011158271 A JP2011158271 A JP 2011158271A
Authority
JP
Japan
Prior art keywords
roof panel
molded ceiling
dent
rigidity
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010017996A
Other languages
Japanese (ja)
Other versions
JP5302910B2 (en
Inventor
Katsuya Yamazaki
克也 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010017996A priority Critical patent/JP5302910B2/en
Publication of JP2011158271A publication Critical patent/JP2011158271A/en
Application granted granted Critical
Publication of JP5302910B2 publication Critical patent/JP5302910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for predicting dent rigidity of a roof panel to which a molded ceiling is attached. <P>SOLUTION: The dent rigidity of the roof panel to which the molded ceiling is attached is predicted by a prescribed relation expression, based on factors determining the dent rigidity of the roof panel while the molded ceiling is not attached and factors showing an attached state of the molded ceiling and the roof panel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両の外板パネルのデント剛性を予測する方法、特に、成形天井が取り付けられたルーフパネルの耐荷重量としてのデント剛性を予測する方法に関する。   The present invention relates to a method for predicting dent rigidity of an outer panel of a vehicle, and more particularly, to a method for predicting dent rigidity as a load resistance of a roof panel to which a molded ceiling is attached.

従来、車両の外板パネルのデント剛性の測定は、実際に試作車を用いて行われていた。したがって、設計段階ではデント剛性が不明であり、デント剛性が不足していると判明した場合には、設計にフィードバックされ、再度試作車を製作する必要があった。そのため、開発期間やコストの増大を招く問題が生じていた。   Conventionally, the dent rigidity of the outer panel of a vehicle has been actually measured using a prototype vehicle. Therefore, the dent rigidity is unknown at the design stage, and if it is found that the dent rigidity is insufficient, it is necessary to feed back to the design and make a prototype again. For this reason, there has been a problem that causes an increase in development period and cost.

一方、設計段階において外板パネルのデント剛性が予測できれば、上述のような問題が生じ得ないため、設計段階における外板パネルのデント剛性予測技術が望まれていた。特に、積雪時にはルーフ全体に一様な荷重が加わり、そのような荷重に対して塑性変形があってはならない。そのため、ルーフ全体への一様な荷重に対するデント剛性を的確に予測する技術が望まれていた。   On the other hand, if the dent rigidity of the outer panel can be predicted in the design stage, the above-described problem cannot occur. Therefore, a technique for predicting the dent rigidity of the outer panel in the design stage has been desired. In particular, a uniform load is applied to the entire roof during snowfall, and there should be no plastic deformation against such a load. Therefore, a technique for accurately predicting the dent rigidity with respect to the uniform load on the entire roof has been desired.

そのような技術として、例えば、特許文献1の技術がある。この特許文献1の技術では、金属製の板部材の測定点に負荷をかけた際に測定点の周囲に定義される応力影響領域の面積をタワミ面積として算定し、板部材の測定点の曲率と板部材の測定点の板厚と板部材の材質とタワミ面積とにより、所定の関係式に基づいて測定点の負荷方向での変位をデント剛性として算定している。   As such a technique, for example, there is a technique of Patent Document 1. In the technique of this patent document 1, when a load is applied to a measurement point of a metal plate member, the area of the stress-affected region defined around the measurement point is calculated as a deflection area, and the curvature of the measurement point of the plate member is calculated. The displacement in the load direction of the measurement point is calculated as the dent rigidity based on a predetermined relational expression based on the thickness of the measurement point of the plate member, the material of the plate member, and the tread area.

特開2007−33067号公報JP 2007-33067 A

特許文献1の技術では、板部材のタワミ面積と曲率と板厚と材質(以下、これらを因子と総称する)を所定の関係式に代入することにより、板部材のデント剛性を予測している。なお、板部材のタワミ面積は、板部材の取り付け状態等に基づいて算定されるため、いずれの因子も設計段階で既知となる値である。したがって、特許文献1の技術を用いれば、設計段階において板部材のデント剛性を予測することができる。   In the technique of Patent Document 1, the dent rigidity of a plate member is predicted by substituting the deflection area, curvature, plate thickness, and material (hereinafter collectively referred to as factors) of the plate member into a predetermined relational expression. . In addition, since the deflection area of a board member is calculated based on the attachment state etc. of a board member, all the factors are values which become known at the design stage. Therefore, if the technique of Patent Document 1 is used, the dent rigidity of the plate member can be predicted at the design stage.

しかしながら、近年の車両では、成形天井(ルーフライニング)が取り付けられたルーフを採用しているものが増えてきている。このような成形天井が取り付けられたルーフの外板(以下、ルーフパネルと称する)では、ルーフライニングがルーフパネルに対する荷重の一部を負担している。そのため、ルーフライニングが取り付けられたルーフパネルのデント剛性は、ルーフパネル単体のデント剛性とは異なっている。したがって、特許文献1の技術を用いても、成形天井が取り付けられたルーフパネルのデント剛性を正確に求めることはできない。   However, in recent years, an increasing number of vehicles adopt a roof to which a molded ceiling (roof lining) is attached. In a roof outer plate (hereinafter referred to as a roof panel) to which such a shaped ceiling is attached, roof lining bears a part of the load on the roof panel. Therefore, the dent rigidity of the roof panel to which roofing is attached is different from the dent rigidity of the roof panel alone. Therefore, even if the technique of Patent Document 1 is used, the dent rigidity of the roof panel to which the molded ceiling is attached cannot be obtained accurately.

上記課題に鑑み、本発明の目的は、成形天井が取り付けられたルーフパネルのデント剛性の予測技術を提供することである。   In view of the above problems, an object of the present invention is to provide a technique for predicting dent rigidity of a roof panel to which a molded ceiling is attached.

前記課題を解決するために、本発明のデント剛性予測方法は、成形天井が取り付けられた車両のルーフパネルに対して略一様な荷重を加えた際の当該ルーフパネルの耐荷重量としてのデント剛性を予測するデント剛性予測方法であって、前記成形天井が取り付けられていない状態における前記ルーフパネルのデント剛性を決定付ける因子と前記成形天井と前記ルーフパネルとの取り付け状態を表す因子とに基づき、所定の関係式により前記成形天井が取り付けられた前記ルーフパネルのデント剛性を予測することを特徴としている。   In order to solve the above-mentioned problem, the dent stiffness prediction method of the present invention provides a dent stiffness as a load resistance of the roof panel when a substantially uniform load is applied to the roof panel of the vehicle to which the molded ceiling is attached. Is a dent stiffness prediction method for predicting dent stiffness of the roof panel in a state where the molded ceiling is not attached and a factor representing an attachment state of the molded ceiling and the roof panel. The dent rigidity of the roof panel to which the molded ceiling is attached is predicted according to a predetermined relational expression.

成形天井が取り付けられたルーフパネルに加えられる負荷は、ルーフパネルだけでなく成形天井によっても支えられる。そのため、成形天井が取り付けられているルーフパネルのデント剛性は、ルーフパネルのみのデント剛性を予測しても正確に予測することはできない。そのため、本発明では、成形天井が取り付けられていない状態のルーフパネルのデント剛性、すなわち、ルーフパネル自体のデント剛性を決定付ける因子と、成形天井とルーフパネルとの取り付け状態を表す因子とを用いて、所定の予測式(関係式)から成形天井が取り付けられたルーフパネルのデント剛性を予測している。これにより、成形天井が支える負荷をも加味した状態でルーフパネルのデント剛性を的確に予測することができる。   The load applied to the roof panel to which the molded ceiling is attached is supported not only by the roof panel but also by the molded ceiling. Therefore, the dent rigidity of the roof panel to which the molded ceiling is attached cannot be accurately predicted even if the dent rigidity of only the roof panel is predicted. Therefore, in the present invention, the dent rigidity of the roof panel in a state where the molded ceiling is not attached, that is, a factor that determines the dent rigidity of the roof panel itself and a factor that represents the attachment state of the molded ceiling and the roof panel are used. Thus, the dent rigidity of the roof panel to which the molded ceiling is attached is predicted from a predetermined prediction formula (relational formula). Thereby, it is possible to accurately predict the dent rigidity of the roof panel in consideration of the load supported by the molded ceiling.

また、本発明のデント剛性予測方法の好適な実施形態の一つでは、前記成形天井と前記ルーフパネルとは接着により取り付けられており、前記成形天井が取り付けられていない前記ルーフパネルのデント剛性を決定付ける因子は、前記ルーフパネルの板厚と、前記ルーフパネルの面積と、前記ルーフパネルの曲率と、であり、前記成形天井と前記ルーフパネルとの取り付け状態を表す因子は、当該成形天井と当該ルーフパネルとの接着面積と、当該成形天井と当該ルーフパネルとの間の隙間寸法である。   In one preferred embodiment of the dent stiffness prediction method of the present invention, the molded ceiling and the roof panel are attached by adhesion, and the dent stiffness of the roof panel to which the molded ceiling is not attached is set. Determining factors are the thickness of the roof panel, the area of the roof panel, and the curvature of the roof panel, and the factor indicating the mounting state of the molded ceiling and the roof panel is the molded ceiling and The adhesion area with the roof panel and the gap dimension between the molded ceiling and the roof panel.

この構成では、成形天井とルーフパネルとが接着により取り付けられている場合において、上述のような因子を用いることにより、ルーフパネルのデント剛性を的確に予測することができる。   In this configuration, when the molded ceiling and the roof panel are attached by adhesion, the dent rigidity of the roof panel can be accurately predicted by using the above-described factors.

本発明のデント剛性予測方法を適用する車両のルーフ付近の分解斜視図である。It is a disassembled perspective view of the roof vicinity of the vehicle to which the dent rigidity prediction method of this invention is applied. 車両のルーフの曲率の求め方を表す図である。It is a figure showing how to obtain | require the curvature of the roof of a vehicle. 車両のルーフの曲率の求め方を表す図である。It is a figure showing how to obtain | require the curvature of the roof of a vehicle. 車両のルーフの面積の求め方を表す図である。It is a figure showing how to obtain | require the area of the roof of a vehicle. 車両と成形天井とを接着する際の接着剤の塗布状態を示す図である。It is a figure which shows the application state of the adhesive agent at the time of adhere | attaching a vehicle and a shaping | molding ceiling.

以下に図面を用いて、本発明のデント剛性予測方法の実施形態を説明する。なお、本実施形態におけるデント剛性とは、ルーフパネルに一様な荷重が加えられた際に、ルーフパネルの荷重方向への変位量が所定の許容変位量となる荷重の大きさを意味するが、所定の荷重を加えた際の荷重方向の変位量としても構わない。また、本実施形態では、積雪により車両のルーフへ略一様な荷重が加えられた際のデント剛性を予測する場合を説明し、デント剛性として荷重に代えて、ルーフパネルに一様に積もった積雪量(積雪高さ)を用いる。当然ながら、車両のルーフへの略一様な荷重は積雪に限定されるものではない。   Embodiments of the dent stiffness prediction method of the present invention will be described below with reference to the drawings. The dent rigidity in the present embodiment means the magnitude of the load that causes the amount of displacement in the load direction of the roof panel to be a predetermined allowable displacement when a uniform load is applied to the roof panel. The displacement amount in the load direction when a predetermined load is applied may be used. Further, in the present embodiment, a case where the dent stiffness when a substantially uniform load is applied to the roof of the vehicle due to snow accumulation is described, and the dent stiffness is uniformly accumulated on the roof panel instead of the load. Use snow cover (snow cover height). Of course, the substantially uniform load on the roof of the vehicle is not limited to snow.

図1は、車両Vのルーフ1である。図に示すように、ルーフ1は曲面形状を持つルーフパネル2により構成されている。また、ルーフパネル2の車体側には合成樹脂製の成形天井4が取り付けられている。そのため、ルーフパネル2への荷重はルーフパネル2のみならず成形天井4も負担することとなる。   FIG. 1 shows a roof 1 of a vehicle V. As shown in the figure, the roof 1 includes a roof panel 2 having a curved shape. A synthetic resin molded ceiling 4 is attached to the vehicle body side of the roof panel 2. Therefore, the load on the roof panel 2 bears not only the roof panel 2 but also the molded ceiling 4.

そのため、成形天井4が取り付けられたルーフパネル2のデント剛性を、ルーフパネル2自体の特性のみから予測しても正確な結果を得ることができない。上述したように、ルーフパネル2に加えられる荷重は成形天井4も負担している。本発明の発明者らは実験を通して、このときの成形天井4の荷重の負担量は、ルーフパネル2と成形天井4との取り付け状態が影響していることを見出した。そこで、本発明の発明者らは、ルーフパネル2自体の特性に加えて、ループパネル2と成形天井4との取り付け状態を表す因子を用いてデント剛性を予測することに想到した。   Therefore, even if the dent rigidity of the roof panel 2 to which the molded ceiling 4 is attached is predicted only from the characteristics of the roof panel 2 itself, an accurate result cannot be obtained. As described above, the load applied to the roof panel 2 also bears the molded ceiling 4. The inventors of the present invention have found through experiments that the amount of load applied to the molded ceiling 4 at this time is affected by the mounting state of the roof panel 2 and the molded ceiling 4. Therefore, the inventors of the present invention have come up with the idea of predicting the dent rigidity using a factor representing the attachment state of the loop panel 2 and the molded ceiling 4 in addition to the characteristics of the roof panel 2 itself.

一般的に、ルーフパネル2等の板材のデント剛性は、板材の板厚、板材の曲率および板材の面積に依存することが知られている。そこで、まず、これらのルーフパネル2自体のデント剛性を決定付ける因子について説明する。なお、図2に示すように本実施形態の車両Vのルーフパネル2の車両Vの前後方向の曲率は、ルーフパネル2の前部2Fと後部2Rとで大きく異なっている。そのため、ルーフパネル2のデント剛性も前部2Fと後部2Rとで大きく異なっている。そこで、本実施形態ではルーフパネルを前部2Fと後部2Rとに分割し、それぞれのデント剛性を予測する構成としている。   Generally, it is known that the dent rigidity of a plate material such as the roof panel 2 depends on the plate thickness of the plate material, the curvature of the plate material, and the area of the plate material. Therefore, first, factors that determine the dent rigidity of the roof panel 2 itself will be described. As shown in FIG. 2, the curvature of the vehicle V in the front-rear direction of the roof panel 2 of the vehicle V of the present embodiment is greatly different between the front part 2F and the rear part 2R of the roof panel 2. Therefore, the dent rigidity of the roof panel 2 is also greatly different between the front part 2F and the rear part 2R. Therefore, in the present embodiment, the roof panel is divided into the front part 2F and the rear part 2R, and the respective dent rigidity is predicted.

〔曲率〕
一般的に、車両Vのルーフパネル2の曲率は、車両Vの前後方向(以下、縦方向と称する)と車両Vの左右方向(以下、横方向と称する)とで異なっている。そのため、ルーフパネル2の曲率として、縦方向の曲率(以下、縦方向曲率と称する)と横方向の曲率(横方向曲率)とを用いる。
〔curvature〕
In general, the curvature of the roof panel 2 of the vehicle V differs between the front-rear direction of the vehicle V (hereinafter referred to as the vertical direction) and the left-right direction of the vehicle V (hereinafter referred to as the horizontal direction). Therefore, as the curvature of the roof panel 2, a longitudinal curvature (hereinafter referred to as a longitudinal curvature) and a lateral curvature (lateral curvature) are used.

図2および図3は、本実施形態におけるルーフパネル2の曲率の求め方を示す図である。図2に示すように、本実施形態の車両Vを側面方向から見ると、ルーフパネル2の曲率が大きく変化する位置が存在する。本実施形態では、その位置を境としてルーフパネル2を前部2Fと後部2Rとに分割している。また、ルーフパネル2の前部2F内または後部2R内においても、曲率は一定ではない。そのため、本実施形態では、ルーフパネル2の前部2Fおよび後部2R内に縦方向および横方向の計測線を設定し、その計測線を所定数に等分する点を曲率の計測点として設定し、各々の計測点における曲率の平均値を前部2Fおよび後部2Rの曲率としている。   2 and 3 are diagrams showing how to obtain the curvature of the roof panel 2 in the present embodiment. As shown in FIG. 2, when the vehicle V of the present embodiment is viewed from the side, there is a position where the curvature of the roof panel 2 changes greatly. In the present embodiment, the roof panel 2 is divided into a front portion 2F and a rear portion 2R with the position as a boundary. Further, the curvature is not constant in the front part 2F or the rear part 2R of the roof panel 2. Therefore, in the present embodiment, measurement lines in the vertical direction and the horizontal direction are set in the front part 2F and the rear part 2R of the roof panel 2, and a point that equally divides the measurement line into a predetermined number is set as a measurement point for curvature. The average value of the curvature at each measurement point is the curvature of the front part 2F and the rear part 2R.

このときの計測線および計測点を設定する例を図2および図3に示している。図2および図3に示すように、ルーフパネル2に沿って、縦方向の計測線L1が設定されており、前部2F内に横方向の計測線L2および後部2R内に横方向の計測線L3が設定されている。なお、本実施形態では、計測線L1はルーフパネル2の横方向中央位置に設定しており、計測線L2および計測線L3はそれぞれ前部2Fおよび後部2Rの縦方向の中央位置に設定しているがこれに限定されるものではない。例えば、計測線L2や計測線L3は縦方向曲率が最大または最小となる位置に設定する等しても構わない。   Examples of setting measurement lines and measurement points at this time are shown in FIGS. 2 and 3, a vertical measurement line L1 is set along the roof panel 2, and a horizontal measurement line L2 in the front portion 2F and a horizontal measurement line in the rear portion 2R. L3 is set. In the present embodiment, the measurement line L1 is set at the horizontal center position of the roof panel 2, and the measurement line L2 and the measurement line L3 are set at the vertical center positions of the front part 2F and the rear part 2R, respectively. However, it is not limited to this. For example, the measurement line L2 or the measurement line L3 may be set at a position where the vertical curvature is maximum or minimum.

さらに、計測線L1のうち前部2Fに含まれる線分を所定数(本実施例では4)に等分する等分点が計測点PVF1からPVF5として設定されている。同様に、計測線L1のうち後部2Rに含まれる線分を4等分する等分点が計測点PVR1からPVR5として設定されている。一方、計測線L2および計測線L3をそれぞれ4等分する点をそれぞれ計測点PHF1からPHF5およびPHR1からPHR5として設定している。なお、本実施形態では、各計測線の等分数を4としたが、等分数は適宜変更可能である。また、計測線L1の等分数と計測線L2または計測線L3の等分数とを異ならせても構わない。   Furthermore, the equal dividing points for equally dividing the line segment included in the front portion 2F of the measurement line L1 into a predetermined number (4 in the present embodiment) are set as the measurement points PVF1 to PVF5. Similarly, equally divided points that divide the line segment included in the rear portion 2R into four equal parts in the measurement line L1 are set as measurement points PVR1 to PVR5. On the other hand, points dividing the measurement line L2 and the measurement line L3 into four equal parts are set as measurement points PHF1 to PHF5 and PHR1 to PHR5, respectively. In this embodiment, the equal fraction of each measurement line is set to 4, but the equal fraction can be changed as appropriate. Further, the equal fraction of the measurement line L1 may be different from the equal fraction of the measurement line L2 or the measurement line L3.

このようにして設定された計測点PVF1〜PVF5,PVR1〜PVR5,PHF1〜PHF5およびPHR1〜PHR5において、曲率を求める。具体的には、計測線L1上の計測点においては縦方向曲率、計測線L2および計測線L3上の計測点においては横方向曲率が求められる。すなわち、計測点PVF1からPVF5における縦方向曲率ρVF1からρVF5、計測点PVR1からPVR5における縦方向曲率ρVR1からρVR5が求められる。また、計測点PHF1からPHF5における横方向曲率ρHR1からρHR5、計測点PHR1からPHR5における横方向曲率ρHR1からρHR5が求められる。なお、各測定点における縦方向曲率および横方向曲率は、CAD図面等の設計図面から容易に求めることができる。   Curvatures are obtained at the measurement points PVF1 to PVF5, PVR1 to PVR5, PHF1 to PHF5, and PHR1 to PHR5 set in this way. Specifically, the longitudinal curvature is obtained at the measurement point on the measurement line L1, and the lateral curvature is obtained at the measurement points on the measurement line L2 and the measurement line L3. That is, the longitudinal curvatures ρVF1 to ρVF5 at the measurement points PVF1 to PVF5 and the longitudinal curvatures ρVR1 to ρVR5 at the measurement points PVR1 to PVR5 are obtained. Further, the lateral curvatures ρHR1 to ρHR5 at the measurement points PHF1 to PHF5 and the lateral curvatures ρHR1 to ρHR5 at the measurement points PHR1 to PHR5 are obtained. The longitudinal curvature and the lateral curvature at each measurement point can be easily obtained from a design drawing such as a CAD drawing.

その後、縦方向曲率ρVF1からρVF5の平均値を前部2Fの縦方向曲率ρVF、縦方向曲率ρVR1からρVR5の平均値を後部2Rの縦方向曲率ρVR、横方向曲率ρHF1からρHF5の平均値を前部2Fの横方向曲率ρFH、横方向曲率ρHR1からρHR5の平均値を後部2Rの横方向曲率ρHRとして求める。   After that, the average value of the longitudinal curvatures ρVF1 to ρVF5 is the longitudinal curvature ρVF of the front portion 2F, the average value of the longitudinal curvatures ρVR1 to ρVR5 is the average value of the longitudinal curvature ρVR of the rear portion 2R, and the average value of the lateral curvatures ρHF1 to ρHF5 An average value of the lateral curvature ρFH and the lateral curvatures ρHR1 to ρHR5 of the portion 2F is obtained as the lateral curvature ρHR of the rear portion 2R.

〔面積〕
上述したように、本実施形態ではルーフパネル2を前部2Fと後部2Rとに分割している。そのため、ルーフパネル2の面積も前部2Fの面積と後部2Rの面積とを用いる。図4は、面積の求め方を模式的に表した図である。図に示すように、本実施形態では、ルーフパネル2の前部2Fおよび後部2Rの実際の面積を求めるのではなく、ルーフパネル2の前部2Fおよび後部2Rの上方に仮想面SFおよびSRを設定し、前部2Fを仮想面SFに投影した際の仮想面SF上の面積を前部2Fの面積AF、後部2Rを仮想面SRに投影した際の仮想面SR上の面積を後部2Rの面積ARとしている。このように、前部2Fおよび後部2Rの面積を求めることにより、CAD図面等の図面から前部2Fおよび後部2Rの面積を容易に求めることができる。当然ながら、面積AFおよびARとして、前部2Fおよび後部2Rの実際の面積を用いても構わない。
〔area〕
As described above, in this embodiment, the roof panel 2 is divided into the front part 2F and the rear part 2R. Therefore, the area of the roof panel 2 uses the area of the front part 2F and the area of the rear part 2R. FIG. 4 is a diagram schematically showing how to obtain the area. As shown in the figure, in the present embodiment, the virtual areas SF and SR are provided above the front part 2F and the rear part 2R of the roof panel 2 instead of obtaining the actual areas of the front part 2F and the rear part 2R of the roof panel 2. The area on the virtual surface SF when the front portion 2F is projected onto the virtual surface SF is set as the area AF of the front portion 2F, and the area on the virtual surface SR when the rear portion 2R is projected onto the virtual surface SR is set as that of the rear portion 2R. The area is AR. Thus, by obtaining the areas of the front part 2F and the rear part 2R, the areas of the front part 2F and the rear part 2R can be easily obtained from a drawing such as a CAD drawing. Of course, the actual areas of the front part 2F and the rear part 2R may be used as the areas AF and AR.

〔板厚〕
ルーフパネル2の板厚は設計図面や仕様書等から容易に得ることができるため、説明は省略する。
[Thickness]
Since the thickness of the roof panel 2 can be easily obtained from design drawings, specifications, etc., description thereof is omitted.

次に、ループパネル2と成形天井4との取り付け状態を表す因子を説明する。本実施形態では、ルーフパネル2と成形天井4とは接着剤により接着されているため、このような因子として、ルーフパネル2と成形天井4との接着面積および接着時のルーフパネル2と成形天井4との隙間寸法とを用いている。   Next, the factor showing the attachment state of the loop panel 2 and the shaping | molding ceiling 4 is demonstrated. In the present embodiment, the roof panel 2 and the molded ceiling 4 are bonded by an adhesive, and as such factors, the bonding area between the roof panel 2 and the molded ceiling 4 and the roof panel 2 and the molded ceiling at the time of bonding are included. 4 is used.

〔接着面積〕
ルーフパネル2と成形天井4とは、成形天井4が脱落等しないよう確実に取り付ける必要がある。一般的には、ルーフパネル2と成形天井4との接着面積を大きくすれば、接着力が高まる。しかしながら、接着面積を大きくすると、車両Vの重量やコストの増大を招くため、要求される接着力と車両Vの重量やコストの増加とのバランスにより接着面積が決定される。すなわち、接着面積は仕様により決定されているものである。したがって、設計段階の仕様書等から接着面積を求めることができる。
[Adhesion area]
The roof panel 2 and the molded ceiling 4 need to be securely attached so that the molded ceiling 4 does not fall off. In general, if the adhesion area between the roof panel 2 and the molded ceiling 4 is increased, the adhesion force is increased. However, if the adhesion area is increased, the weight and cost of the vehicle V are increased. Therefore, the adhesion area is determined by the balance between the required adhesion force and the weight and cost increase of the vehicle V. That is, the adhesion area is determined by the specification. Therefore, the adhesion area can be obtained from the specification document at the design stage.

本実施形態では、図5に示すように、接着剤を成形天井4に線状に塗布している。そのため、接着面積は、塗布する接着剤の塗布本数N,接着剤の塗布長さLおよび接着剤の太さφの積により近似することができる。なお、本実施形態では、ルーフパネル2と同様に成形天井4も前部4Fと後部4Rとに分割し、前部4Fの接着面積をGF、後部4Fの接着面積をGRとしている。   In the present embodiment, as shown in FIG. 5, the adhesive is applied linearly to the molded ceiling 4. Therefore, the adhesion area can be approximated by the product of the number N of adhesives to be applied, the application length L of the adhesive, and the thickness φ of the adhesive. In the present embodiment, similarly to the roof panel 2, the molded ceiling 4 is also divided into a front portion 4F and a rear portion 4R, and the bonding area of the front portion 4F is GF, and the bonding area of the rear portion 4F is GR.

〔隙間寸法〕
上述したように、ルーフパネル2と成形天井4とを接着する接着剤は成形天井4の全面に塗布されていないため、部分的にルーフパネル2と成形天井4との間に隙間が生じている。ルーフパネル2と成形天井4との間に隙間が生じている箇所では、ルーフパネル2に加えられた荷重は成形天井4により支えられないため、ルーフパネル2と成形天井4とが接着されている箇所に比べてデント剛性が低くなっている。なお、本発明の発明者らの実験により、ルーフパネル2と成形天井4との隙間が大きいほど、デント剛性の低下度合が大きくなっていることが判明している。
(Gap size)
As described above, since the adhesive that bonds the roof panel 2 and the molded ceiling 4 is not applied to the entire surface of the molded ceiling 4, a gap is partially formed between the roof panel 2 and the molded ceiling 4. . In a portion where a gap is generated between the roof panel 2 and the molded ceiling 4, the load applied to the roof panel 2 is not supported by the molded ceiling 4, so the roof panel 2 and the molded ceiling 4 are bonded. The dent rigidity is lower than that of the point. It has been found from experiments by the inventors of the present invention that the degree of decrease in dent rigidity increases as the gap between the roof panel 2 and the molded ceiling 4 increases.

そのため、本実施形態では、デント剛性を予測するための因子としてルーフパネル2と成形天井4との隙間の寸法(以下、隙間寸法と称する)を用いている。なお、ルーフパネル2と成形天井4との隙間寸法は一様でないため、本実施形態では隙間寸法の最大値をデント剛性を予測するための因子として用いている。また、本実施形態では、上述したようにルーフパネル2を前部2Fと後部2Rとに分割しているため、隙間寸法もルーフパネル2の前部2Fと成形天井4の前部4Fとの隙間寸法DFとルーフパネル2の後部2Rと成形天井4の後部4Rとの隙間寸法DRとを用いている。   Therefore, in this embodiment, the dimension of the gap between the roof panel 2 and the molded ceiling 4 (hereinafter referred to as the gap dimension) is used as a factor for predicting the dent rigidity. Since the gap size between the roof panel 2 and the molded ceiling 4 is not uniform, the maximum value of the gap size is used as a factor for predicting the dent rigidity in this embodiment. Moreover, in this embodiment, since the roof panel 2 is divided | segmented into the front part 2F and the rear part 2R as mentioned above, a clearance gap is also a clearance gap between the front part 2F of the roof panel 2, and the front part 4F of the shaping | molding ceiling 4. The dimension DF and the gap dimension DR between the rear part 2R of the roof panel 2 and the rear part 4R of the molded ceiling 4 are used.

このように、隙間寸法の最大値を用いた場合には、最もデント剛性が低い箇所のデント剛性を予測することができる。その予測値が仕様を満たすように設計を行えば、ルーフパネル2のデント剛性は仕様を満たすこととできるため、好ましい。なお、隙間寸法の最大値だけでなく、隙間寸法の平均値や他の統計値を用いても構わない。   Thus, when the maximum value of the gap dimension is used, the dent stiffness at the location where the dent stiffness is the lowest can be predicted. It is preferable to design the predicted value so as to satisfy the specifications because the dent rigidity of the roof panel 2 can satisfy the specifications. In addition to the maximum value of the gap dimension, an average value of the gap dimension or other statistical values may be used.

なお、この隙間寸法は、図面、接着の仕様、経験則から容易に求めることができる。   Note that the gap dimension can be easily obtained from the drawings, adhesion specifications, and empirical rules.

〔デント剛性予測〕
上述したように、本実施形態では、ルーフパネル2のデント剛性を予測するための因子として、ルーフパネル2自体のデント剛性を決定する因子としてのルーフパネル2の板厚,曲率(縦曲率,横曲率),面積、および、成形天井4の影響を受ける因子としての接着面積,隙間寸法を用いている。本発明は、これらの値を所定の関係式に代入してデント剛性を予測するものであるが、本実施形態では、所定の関係式として、多変量解析により求められた関係式を用いる。
[Dent rigidity prediction]
As described above, in the present embodiment, as a factor for predicting the dent rigidity of the roof panel 2, the plate thickness and curvature (longitudinal curvature, horizontal curvature) of the roof panel 2 itself as factors determining the dent rigidity of the roof panel 2 itself. Curvature), area, and adhesion area and gap dimension as factors affected by the molded ceiling 4 are used. In the present invention, the dent stiffness is predicted by substituting these values into a predetermined relational expression. In this embodiment, a relational expression obtained by multivariate analysis is used as the predetermined relational expression.

したがって、複数台の実車から上記の因子を測定し、多変量解析により説明変数の係数を求めることにより、所定の関係式を求めることができる。具体的には、M台の実車を用意し、i(i=1,2・・・M)番目の車両Viのルーフパネル2の板厚Li,ルーフパネル2の前部2Fおよび後部2Rの縦曲率ρVFi,ρVRi,横曲率ρHFi,ρHRi、面積AFi,ARi,ルーフパネル2の前部2Fにおけるルーフパネル2と成形天井4との接着面積GFi,ルーフパネル2の後部2Rにおけるルーフパネル2と成形天井4との接着面積GRi,ルーフパネル2の前部2Fにおけるルーフパネル2と成形天井4との隙間寸法DFi,ルーフパネル2の後部2Rにおけるルーフパネル2と成形天井4との隙間寸法DRiおよび、ルーフパネル2の前部2Fのデント剛性としての許容積雪量HFi,ルーフパネル2の後部2Rのデント剛性としての許容積雪量HRiを求める。これにより、ルーフパネル2の前部2Fの許容積雪量と後部2Fの許容積雪量を表す以下の関係式がそれぞれM組求められる。
a1×Li+a2×ρVFi+a3×HFi+a4×AFi+a5×GFi+a6×DFi=HFi・・・(1)
b1×Li+b2×ρVRi+b3×HRi+b4×ARi+b5×GRi+b6×DRi=HRi・・・(2)
Therefore, a predetermined relational expression can be obtained by measuring the above factors from a plurality of actual vehicles and obtaining coefficients of explanatory variables by multivariate analysis. Specifically, M actual vehicles are prepared, and the thickness Li of the roof panel 2 of the i (i = 1, 2... M) -th vehicle Vi, the longitudinal part of the front part 2F and the rear part 2R of the roof panel 2 Curvature ρVFi, ρVRi, Lateral curvature ρHFi, ρHRi, Area AFi, ARi, Adhesive area GFi between roof panel 2 and molded ceiling 4 at front part 2F of roof panel 2, Roof panel 2 and molded ceiling at rear part 2R of roof panel 2 4, the gap dimension DFi between the roof panel 2 and the molded ceiling 4 at the front part 2F of the roof panel 2, the gap dimension DRi between the roof panel 2 and the molded ceiling 4 at the rear part 2R of the roof panel 2, and the roof The allowable snow cover amount HFi as the dent rigidity of the front portion 2F of the panel 2 and the allowable snow cover amount HRi as the dent rigidity of the rear portion 2R of the roof panel 2 are obtained. Thereby, M sets of the following relational expressions representing the allowable snow cover amount of the front portion 2F and the allowable snow cover amount of the rear portion 2F of the roof panel 2 are obtained.
a1 × Li + a2 × ρVFi + a3 × HFi + a4 × AFi + a5 × GFi + a6 × DFi = HFi (1)
b1 × Li + b2 × ρVRi + b3 × HRi + b4 × ARi + b5 × GRi + b6 × DRi = HRi (2)

このようにして求められたM組の関係式から多変量解析により係数a1からa6およびb1からb6を求める。   The coefficients a1 to a6 and b1 to b6 are obtained by multivariate analysis from the M sets of relational expressions thus obtained.

次に、設計段階の車両Vのデント剛性としての許容積雪量を予測する際には、車両VのCAD図面や仕様書等から、ルーフパネル2の板厚L,ルーフパネル2の前部2Fおよび後部2Rの縦曲率ρVF,ρVR,横曲率ρHF,ρHR、面積AF,AR,ルーフパネル2の前部2Fにおけるルーフパネル2と成形天井4との接着面積GF,ルーフパネル2の後部2Rにおけるルーフパネル2と成形天井4との接着面積GR,ルーフパネル2の前部2Fにおけるルーフパネル2と成形天井4との隙間寸法DF,ルーフパネル2の後部2Rにおけるルーフパネル2と成形天井4との隙間寸法DRを求める。これらの値を式(1)および(2)に代入すると、
a1×L+a2×ρVF+a3×HF+a4×AF+a5×GF+a6×DF=HF
b1×L+b2×ρVR+b3×HR+b4×AR+b5×GR+b6×DR=HR
となり、ここで得られたHFおよびHRが車両Vのルーフパネル2の前部2Fおよび後部2Rの許容積雪量となる。
Next, when predicting the allowable snow accumulation amount as the dent rigidity of the vehicle V at the design stage, the plate thickness L of the roof panel 2, the front portion 2F of the roof panel 2 and the Longitudinal curvature ρVF, ρVR, lateral curvature ρHF, ρHR, area AF, AR, adhesion area GF between the roof panel 2 and the molded ceiling 4 at the front part 2F of the roof panel 2, roof panel at the rear part 2R of the roof panel 2 2 and the molding ceiling 4 bonding area GR, the clearance dimension DF between the roof panel 2 and the molding ceiling 4 at the front part 2F of the roof panel 2, and the clearance dimension between the roof panel 2 and the molding ceiling 4 at the rear part 2R of the roof panel 2. Find DR. Substituting these values into equations (1) and (2),
a1 × L + a2 × ρVF + a3 × HF + a4 × AF + a5 × GF + a6 × DF = HF
b1 × L + b2 × ρVR + b3 × HR + b4 × AR + b5 × GR + b6 × DR = HR
Thus, HF and HR obtained here become the allowable snow cover amounts of the front portion 2F and the rear portion 2R of the roof panel 2 of the vehicle V.

なお、本実施形態では、ルーフパネル2への積雪に対するデント剛性を予測したため、実験者等が荷重を直感的に把握し易くなるよう、デント剛性として積雪量を用いたが、他の荷重に対するデント剛性を予測する際には、荷重に応じた量をデント剛性としても用いてもよいし、荷重そのものをデント剛性としても構わない。   In the present embodiment, since the dent stiffness against snow on the roof panel 2 is predicted, the snow amount is used as the dent stiffness so that the experimenter can easily grasp the load intuitively. When the rigidity is predicted, an amount corresponding to the load may be used as the dent rigidity, or the load itself may be used as the dent rigidity.

このようにして算出されたデント剛性が仕様を満たさない場合には、設計にフィードバックされる。設計の変更が行われた場合には、上述と同様に再度デント剛性の予測が行われる。これにより、設計段階においてデント剛性を予測することができるため、設計された車両Vのデント剛性が不足していた場合でも、設計変更から再度のデント剛性の予測までの期間を短縮することができる。また、試作車を製造することなくデント剛性を予測することができるため、コストの増加を抑制することができる。   When the dent rigidity calculated in this way does not satisfy the specification, it is fed back to the design. When the design is changed, the dent rigidity is predicted again as described above. As a result, since the dent rigidity can be predicted at the design stage, even if the dent rigidity of the designed vehicle V is insufficient, the period from the design change to the prediction of the dent rigidity again can be shortened. . In addition, since the dent rigidity can be predicted without manufacturing a prototype vehicle, an increase in cost can be suppressed.

〔別実施形態〕
上述の実施形態では、ルーフパネル2と成形天井4とは接着剤により接着されており、ルーフパネル2と成形天井4との取り付け状態を表す因子として接着面積とルーフパネル2と成形天井4との隙間寸法を用いたが、取り付け状態を表す因子として他の値を用いても構わない。特に、ルーフパネル2と成形天井4とが他の方法により結合されているような場合には、その結合状態を的確に表す値を取り付け状態を表す因子とすることが望ましい。
[Another embodiment]
In the above-described embodiment, the roof panel 2 and the molded ceiling 4 are bonded by an adhesive, and the bonding area, the roof panel 2 and the molded ceiling 4 are used as factors indicating the attachment state of the roof panel 2 and the molded ceiling 4. Although the gap dimension is used, other values may be used as factors representing the attachment state. In particular, when the roof panel 2 and the molded ceiling 4 are coupled by another method, it is desirable that a value that accurately represents the coupling state be a factor that represents the mounting state.

本発明は、成形天井が取り付けられた車両のルーフパネルのデント剛性の予測に用いることができる。   The present invention can be used to predict the dent rigidity of a vehicle roof panel to which a molded ceiling is attached.

L1、L2、L3:計測線
PVF1〜PVF5:計測点
PVR1〜PVR5:計測点
PHF1〜PHF5:計測点
PHR1〜PHR5:計測点
ρVF1〜ρVF5:縦方向曲率
ρVR1〜ρVR5:縦方向曲率
ρHF1〜ρHF5:横方向曲率
ρHR1〜ρHR5:横方向曲率
ρVF、ρVR:縦方向曲率
ρHF、ρHR:横方向曲率
SF、SR:仮想面
AF、AR:面積
V:車両
1:ルーフ
2:ルーフパネル
2F:前部
2R:後部
4:成形天井
L1, L2, L3: measuring lines PVF1 to PVF5: measuring points PVR1 to PVR5: measuring points PHF1 to PHF5: measuring points PHR1 to PHR5: measuring points ρVF1 to ρVF5: longitudinal curvatures ρVR1 to ρVR5: longitudinal curvatures ρHF1 to ρHF5: Lateral curvature ρHR1 to ρHR5: Lateral curvature ρVF, ρVR: Longitudinal curvature ρHF, ρHR: Lateral curvature SF, SR: Virtual plane AF, AR: Area V: Vehicle 1: Roof 2: Roof panel 2F: Front 2R : Rear part 4: Molded ceiling

Claims (2)

成形天井が取り付けられた車両のルーフパネルに対して略一様な荷重を加えた際の当該ルーフパネルの耐荷重量としてのデント剛性を予測するデント剛性予測方法であって、
前記成形天井が取り付けられていない状態における前記ルーフパネルのデント剛性を決定付ける因子と前記成形天井と前記ルーフパネルとの取り付け状態を表す因子とに基づき、所定の関係式により前記成形天井が取り付けられた前記ルーフパネルのデント剛性を予測するデント剛性予測方法。
A dent stiffness prediction method for predicting a dent stiffness as a load-bearing amount of a roof panel when a substantially uniform load is applied to a roof panel of a vehicle to which a molded ceiling is attached,
Based on a factor that determines the dent rigidity of the roof panel in a state in which the molded ceiling is not attached and a factor that represents an attachment state of the molded ceiling and the roof panel, the molded ceiling is attached according to a predetermined relational expression. A dent stiffness prediction method for predicting the dent stiffness of the roof panel.
前記成形天井と前記ルーフパネルとは接着により取り付けられており、
前記成形天井が取り付けられていない前記ルーフパネルのデント剛性を決定付ける因子は、前記ルーフパネルの板厚と、前記ルーフパネルの面積と、前記ルーフパネルの曲率と、であり、
前記成形天井と前記ルーフパネルとの取り付け状態を表す因子は、当該成形天井と当該ルーフパネルとの接着面積と、当該成形天井と当該ルーフパネルとの間の隙間寸法である請求項1記載のデント剛性予測方法。
The molded ceiling and the roof panel are attached by adhesion,
Factors that determine the dent rigidity of the roof panel to which the molded ceiling is not attached are the thickness of the roof panel, the area of the roof panel, and the curvature of the roof panel,
2. The dent according to claim 1, wherein the factor representing the attachment state of the molded ceiling and the roof panel is a bonding area between the molded ceiling and the roof panel and a gap dimension between the molded ceiling and the roof panel. Stiffness prediction method.
JP2010017996A 2010-01-29 2010-01-29 Dent stiffness prediction method Expired - Fee Related JP5302910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017996A JP5302910B2 (en) 2010-01-29 2010-01-29 Dent stiffness prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017996A JP5302910B2 (en) 2010-01-29 2010-01-29 Dent stiffness prediction method

Publications (2)

Publication Number Publication Date
JP2011158271A true JP2011158271A (en) 2011-08-18
JP5302910B2 JP5302910B2 (en) 2013-10-02

Family

ID=44590354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017996A Expired - Fee Related JP5302910B2 (en) 2010-01-29 2010-01-29 Dent stiffness prediction method

Country Status (1)

Country Link
JP (1) JP5302910B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630376A (en) * 2013-11-22 2014-03-12 上海华龙测试仪器股份有限公司 Vehicle transom window compression testing machine
WO2014050083A1 (en) * 2012-09-26 2014-04-03 Jfeスチール株式会社 Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method
JP2014065411A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
JP2014065410A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
CN106525407A (en) * 2016-12-12 2017-03-22 中车株洲电力机车有限公司 Cab curved surface static strength test loading tool, manufacturing method thereof and testing device
JP2020046180A (en) * 2018-09-14 2020-03-26 Jfeスチール株式会社 Simple test method for snowfall strength of automobile
WO2021151715A1 (en) * 2020-01-28 2021-08-05 Volkswagen Aktiengesellschaft Vehicle roof comprising at least one roof element and a moulded headliner located at a distance from the roof element, and method for increasing the resistance of the vehicle roof to denting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225181A (en) * 1994-02-14 1995-08-22 Kawasaki Steel Corp Method and apparatus for measurement of dent property of metal material
JP2000249636A (en) * 1999-02-26 2000-09-14 Nippon Steel Corp Method for predicting and evaluating dentability and method for selecting metal plate for press forming
JP2001079866A (en) * 1999-09-02 2001-03-27 Hyundai Motor Co Ltd Production of thermosetting resin for car fender
JP2007033067A (en) * 2005-07-22 2007-02-08 Daihatsu Motor Co Ltd Method of estimating dent rigidity
JP2008185347A (en) * 2007-01-26 2008-08-14 Kanto Auto Works Ltd Hood dent performance evaluation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225181A (en) * 1994-02-14 1995-08-22 Kawasaki Steel Corp Method and apparatus for measurement of dent property of metal material
JP2000249636A (en) * 1999-02-26 2000-09-14 Nippon Steel Corp Method for predicting and evaluating dentability and method for selecting metal plate for press forming
JP2001079866A (en) * 1999-09-02 2001-03-27 Hyundai Motor Co Ltd Production of thermosetting resin for car fender
JP2007033067A (en) * 2005-07-22 2007-02-08 Daihatsu Motor Co Ltd Method of estimating dent rigidity
JP2008185347A (en) * 2007-01-26 2008-08-14 Kanto Auto Works Ltd Hood dent performance evaluation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050083A1 (en) * 2012-09-26 2014-04-03 Jfeスチール株式会社 Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method
JP2014065411A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
JP2014065410A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Panel component evaluation method, panel component evaluation device, and method of manufacturing automobile panel component
CN104685338A (en) * 2012-09-26 2015-06-03 杰富意钢铁株式会社 Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method
CN104685338B (en) * 2012-09-26 2017-03-08 杰富意钢铁株式会社 The manufacture method of board member evaluation method, board member evaluating apparatus and automobile sheetsteel part
CN103630376A (en) * 2013-11-22 2014-03-12 上海华龙测试仪器股份有限公司 Vehicle transom window compression testing machine
CN106525407A (en) * 2016-12-12 2017-03-22 中车株洲电力机车有限公司 Cab curved surface static strength test loading tool, manufacturing method thereof and testing device
JP2020046180A (en) * 2018-09-14 2020-03-26 Jfeスチール株式会社 Simple test method for snowfall strength of automobile
WO2021151715A1 (en) * 2020-01-28 2021-08-05 Volkswagen Aktiengesellschaft Vehicle roof comprising at least one roof element and a moulded headliner located at a distance from the roof element, and method for increasing the resistance of the vehicle roof to denting

Also Published As

Publication number Publication date
JP5302910B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5302910B2 (en) Dent stiffness prediction method
CN103619616A (en) Mounting structure
EP3689716A1 (en) Automotive frame part
CN106413935A (en) Method for manufacturing press-molded article, and press-molded article
US11235645B2 (en) Stiffening structure and stiffening method for automotive door panel part
EP3015345A1 (en) Structure for lower part of vehicle body
JP2023068057A (en) Automobile hood
EP3498576B1 (en) Vehicle body floor structure
JP6504130B2 (en) Method of manufacturing press-formed product
WO2012133867A1 (en) Press forming analysis method
EP2983057B1 (en) Vehicle pedal arm
JP5302909B2 (en) Dent stiffness prediction method
US9365082B2 (en) Attachment structure
CN107264639B (en) Engine cover for vehicle
CN106030694A (en) Transportation-equipment component and panel member
JP3786171B2 (en) Method for arranging reinforcing material for panel structure
CN105246741A (en) Mounting structure for vehicular resin component
JP6685585B2 (en) Outdoor unit stand for air conditioning
CN106257087A (en) A kind of monoblock type is empty, real to the reinforcement of rubber nodal point
JP2016074260A (en) Junction structure of vehicle body frame and joint component
CN103487109A (en) Device for detecting sand amount position in sand box of rail transport vehicle
JP5776505B2 (en) Attitude angle calculation device, attitude angle calculation method, and program
CN104648302B (en) Instrument board, the manufacturing method with the automobile of the instrument board and the instrument board
JP6791294B2 (en) Vehicle roof structure and its design method
KR200470429Y1 (en) Balance weight for wheel of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees