JP2009133788A - Strength prediction evaluation method, device, program and recording medium - Google Patents

Strength prediction evaluation method, device, program and recording medium Download PDF

Info

Publication number
JP2009133788A
JP2009133788A JP2007311654A JP2007311654A JP2009133788A JP 2009133788 A JP2009133788 A JP 2009133788A JP 2007311654 A JP2007311654 A JP 2007311654A JP 2007311654 A JP2007311654 A JP 2007311654A JP 2009133788 A JP2009133788 A JP 2009133788A
Authority
JP
Japan
Prior art keywords
strength
steel
prediction evaluation
bake hardening
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007311654A
Other languages
Japanese (ja)
Other versions
JP4995052B2 (en
Inventor
Shigeru Yonemura
繁 米村
Akihiro Uenishi
朗弘 上西
Noriyuki Suzuki
規之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007311654A priority Critical patent/JP4995052B2/en
Publication of JP2009133788A publication Critical patent/JP2009133788A/en
Application granted granted Critical
Publication of JP4995052B2 publication Critical patent/JP4995052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

<P>PROBLEM TO BE SOLVED: To quickly and precisely evaluate at an early design stage having no trial component in consideration of an influence, after baking hardening of a steel material, to predict and readily and accurately evaluate the practical strength of a steel product, to shorten the development period of the steel product, to reduce cost, and to provide the steel product that has high reliability. <P>SOLUTION: A strength prediction evaluation device has a constitution, having a material parameter estimation part 1 for estimating a material parameter of the steel material, after being baking-hardened, relative to a product (a component or a final product) manufactured by using the steel material; and a strength prediction part 2 for predicting and evaluating the practical strength of the steel product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,鉄鋼材料を用いて製造される部品又は最終製品の実用強度を予測する強度予測評価方法及び装置、並びにプログラム及び記録媒体に関する。   The present invention relates to a strength prediction evaluation method and apparatus, a program, and a recording medium for predicting a practical strength of a part or a final product manufactured using a steel material.

従来より、例えば自動車車体の開発には有限要素法(FEM)による性能予測評価が用いられている。従来、一般に用いられている強度シミュレーション用ソフトでは素材の板厚と加工硬化特性を入力する。このうち、加工硬化特性には、引張試験により得られた真応力σeq−真歪みεeq曲線へのフィッティングによりパラメータK,ε0,nを同定したSwiftの式が多く用いられる。
σeq=K(ε0+εeqn
Conventionally, for example, performance prediction evaluation by a finite element method (FEM) has been used for development of an automobile body. Conventionally, generally used strength simulation software inputs the material thickness and work hardening characteristics. Of these, the Swift equation in which the parameters K, ε 0 , and n are identified by fitting to the true stress σ eq −true strain ε eq curve obtained by a tensile test is often used for work hardening characteristics.
σ eq = K (ε 0 + ε eq ) n

あるいは、FEMソフトウェアによっては、真応力−真歪み曲線を近似する折れ線を入力するものもある。このように入力した材料特性を用いた強度シミュレーションを行い、実際の製品使用時に所定の強度要件を満足するような材料が選定され、製品形状や構造などが最適化される。   Alternatively, some FEM software inputs a polygonal line that approximates a true stress-true strain curve. A strength simulation using the material characteristics input in this way is performed, and a material that satisfies a predetermined strength requirement during actual product use is selected, and the product shape, structure, and the like are optimized.

Nakanishi et al. SAE980953 (1998) 31-37)Nakanishi et al. SAE980953 (1998) 31-37) 上野ほか、自動車技術会 217 (1997) 259-262)Ueno et al., Automotive Engineering Society 217 (1997) 259-262) 麻ほか、平12春塑加講論 (2000) 17-18)Masa et al., Heisei 12 Spring Plasticity Lecture (2000) 17-18)

従来の強度解析では部材の材料データとして素材の板厚や機械的特性値を用いるが、現実にはプレス成形工程や塗装工程を経ているため鋼板に加工硬化や板厚変化、焼付け硬化(BH: Bake Hardening;塗装焼付け温度での時効処理で鋼中の炭素などを拡散させ、前工程の冷間加工で導入された可動転位を固着することにより得られる強度上昇)が生じ、単一の部材でも部位によって材料特性や板厚が異なっている。また、これらの製造履歴を利用して部品としての強度を高める焼付け硬化型鋼板(BH鋼板)も利用されている。   In the conventional strength analysis, the material thickness and mechanical property values are used as material data of the member, but in reality, since it has undergone the press forming process and painting process, work hardening, thickness change, and bake hardening (BH: Bake Hardening: Strengthening obtained by diffusing carbon in steel by aging treatment at paint baking temperature and fixing movable dislocations introduced by cold working in the previous process) The material properties and plate thickness differ depending on the part. Also, bake-hardened steel sheets (BH steel sheets) that use these manufacturing histories to increase the strength as parts are also used.

これまでに、加工履歴の重要性は指摘されており、部材の加工履歴を考慮した強度予測方法として、(1)板厚減少率から加工硬化量を推定し、強度シミュレーションの入力条件に反映させる方法(非特許文献1を参照)、(2)ビッカース硬度分布から成形時の加工硬化量と板厚変化を推定し、強度シミュレーションに反映させる方法(非特許文献2を参照)、(3)成形シミュレーション後の要素情報を強度解析の要素に引き継いで解析する方法(非特許文献3を参照)が提案されている。このうち、(2)は部材に塗装焼付け処理を施したうえで硬度測定することで焼付け硬化の影響も考慮できる。   Up to now, the importance of machining history has been pointed out, and as a strength prediction method considering the machining history of members, (1) the work hardening amount is estimated from the sheet thickness reduction rate and reflected in the input conditions of the strength simulation. Method (refer to Non-Patent Document 1), (2) Method of estimating work hardening amount and thickness change during molding from Vickers hardness distribution and reflecting it in strength simulation (refer to Non-Patent Document 2), (3) Molding There has been proposed a method (see Non-Patent Document 3) in which element information after simulation is taken over by an element of strength analysis. Among these, (2) can also consider the influence of bake hardening by measuring hardness after performing a coating baking process on a member.

しかしながら、(1),(2),(3)の方法ではいずれも、試作部品がない設計初期段階での評価には適しておらず、鉄鋼製品の開発期間の短縮やコスト削減の余地を残しているという問題がある。   However, none of the methods (1), (2), and (3) is suitable for evaluation at the initial design stage where there are no prototype parts, leaving room for shortening the development period of steel products and reducing costs. There is a problem that.

本発明は、上記の課題に鑑みてなされたものであり、鉄鋼材料の焼付け硬化後の影響を考慮し、試作部品がない設計初期段階での迅速且つ的確な評価を可能とし、鉄鋼製品の実用強度を容易且つ正確に予測評価して、鉄鋼製品の開発期間の短縮やコスト削減を実現するとともに信頼性の高い鉄鋼製品を供給することができる強度予測評価方法及び装置、並びにプログラム及び記録媒体を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and allows for quick and accurate evaluation at the initial stage of design in which there is no prototype part in consideration of the effects after bake hardening of steel materials. A strength prediction evaluation method and apparatus, a program, and a recording medium capable of predicting and evaluating strength easily and accurately, reducing the development period of steel products and reducing costs, and supplying reliable steel products The purpose is to provide.

本発明者らは、鋭意検討の結果、以下に示す発明の諸様態に想到した。
(1)鉄鋼材料を用いて製造される製品の実用強度を予測評価する強度予測評価方法であって、焼付け硬化した後の前記鉄鋼材料の材料パラメータを推定する第1のステップと、成形シミュレーションにより得られた素材の要素ごとの少なくとも板厚及び歪みテンソルと、前記第1のステップで推定された前記材料パラメータとを用いて強度シミュレーションを行い、前記鉄鋼製品の実用強度を予測評価する第2のステップとを含むことを特徴とする強度予測評価方法。
(2)前記第1のステップにおいて、前記素材の応力−歪み曲線に対して工業規格により指定された方法で測定された焼付け硬化量を一律に足し加えてなる新たな応力−歪み曲線に基づいて、前記材料パラメータを同定することを特徴とする(1)に記載の強度予測評価方法。
(3)前記第1のステップにおいて、前記素材の降伏強さ、引張強さ及び均一伸びの真歪み値と、工業規格により指定された方法で測定された焼付け硬化量とを用いて、前記材料パラメータを同定することを特徴とする(1)に記載の強度予測評価方法。
(4)前記第1のステップにおいて、前記素材の降伏強さ及び引張強さを用いて前記焼付け硬化量を推定することを特徴とする(2)又は(3)に記載の強度予測評価方法。
(5)鉄鋼材料を用いて製造される製品の実用強度を予測評価する強度予測評価装置であって、焼付け硬化した後の前記鉄鋼材料の材料パラメータを推定する第1の手段と、成形シミュレーションにより得られた素材の要素ごとの少なくとも板厚及び歪みテンソルと、前記第1の手段により推定された前記材料パラメータとを用いて強度シミュレーションを行い、前記鉄鋼製品の実用強度を予測評価する第2の手段とを含むことを特徴とする強度予測評価装置。
(6)前記第1の手段は、前記素材の応力−歪み曲線に対して工業規格により指定された方法で測定された焼付け硬化量を一律に足し加えてなる新たな応力−歪み曲線に基づいて、前記材料パラメータを同定することを特徴とする(5)に記載の強度予測評価装置。
(7)前記第1の手段は、前記素材の降伏強さ、引張強さ及び均一伸びの真歪み値と、工業規格により指定された方法で測定された焼付け硬化量とを用いて、前記材料パラメータを同定することを特徴とする(5)に記載の強度予測評価装置。
(8)前記第1の手段は、前記素材の降伏強さ及び引張強さを用いて前記焼付け硬化量を推定することを特徴とする(6)又は(7)に記載の強度予測評価装置。
(9)コンピュータに、(1)〜(4)のいずれか1項に記載の強度予測評価方法の前記第1のステップ及び前記第2のステップを実行させるためのプログラム。
(10)(9)に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
As a result of intensive studies, the present inventors have conceived various aspects of the invention described below.
(1) A strength prediction evaluation method for predicting and evaluating the practical strength of a product manufactured using a steel material, the first step of estimating the material parameters of the steel material after bake hardening, and a forming simulation A second simulation for predicting and evaluating the practical strength of the steel product by performing a strength simulation using at least the plate thickness and strain tensor for each element of the obtained material and the material parameters estimated in the first step. An intensity prediction evaluation method comprising: steps.
(2) In the first step, based on a new stress-strain curve obtained by uniformly adding the bake hardening amount measured by the method specified by the industry standard to the stress-strain curve of the material. The strength prediction evaluation method according to (1), wherein the material parameter is identified.
(3) In the first step, using the yield strength, tensile strength, and true strain value of uniform elongation of the material, and the bake hardening amount measured by a method specified by an industry standard, the material (1) The strength prediction evaluation method according to (1), wherein a parameter is identified.
(4) The strength prediction evaluation method according to (2) or (3), wherein, in the first step, the bake hardening amount is estimated using a yield strength and a tensile strength of the material.
(5) A strength prediction and evaluation apparatus for predicting and evaluating the practical strength of a product manufactured using a steel material, the first means for estimating the material parameter of the steel material after bake hardening, and a molding simulation A second simulation for predicting and evaluating the practical strength of the steel product by performing a strength simulation using at least the plate thickness and strain tensor for each element of the obtained material and the material parameter estimated by the first means. Means for evaluating and evaluating the strength.
(6) The first means is based on a new stress-strain curve obtained by uniformly adding an amount of bake hardening measured by a method specified by an industry standard to the stress-strain curve of the material. The strength prediction evaluation apparatus according to (5), wherein the material parameter is identified.
(7) The first means uses the yield strength, tensile strength, and true strain value of uniform elongation of the material, and the amount of bake hardening measured by a method specified by an industry standard. The intensity prediction evaluation apparatus according to (5), wherein the parameter is identified.
(8) The strength prediction evaluation apparatus according to (6) or (7), wherein the first means estimates the bake hardening amount using a yield strength and a tensile strength of the material.
(9) A program for causing a computer to execute the first step and the second step of the intensity prediction evaluation method according to any one of (1) to (4).
(10) A computer-readable recording medium on which the program according to (9) is recorded.

本発明によれば、鉄鋼材料の焼付け硬化後の影響を考慮し、試作部品がない設計初期段階での迅速且つ的確な評価を可能とし、鉄鋼製品の実用強度を容易且つ正確に予測評価して、鉄鋼製品の開発期間の短縮やコスト削減を実現するとともに信頼性の高い鉄鋼製品を供給することができる。   According to the present invention, it is possible to perform a quick and accurate evaluation at the initial stage of design in which there is no prototype part in consideration of the effects after bake hardening of steel materials, and to easily and accurately predict and evaluate the practical strength of steel products. In addition to shortening the development period and cost of steel products, it is possible to supply highly reliable steel products.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

(本実施形態による強度予測評価)
図1は、本実施形態による強度予測評価装置の概要を示すブロック図である。図2は、本実施形態による強度予測評価方法を有する自動車の鉄鋼材料の設計方法をステップ順に示すフロー図である。
本実施形態による強度予測評価装置は、鉄鋼材料を用いて製造される製品(部品又は最終製品)について、焼付け硬化した後における鉄鋼材料の材料パラメータを推定する材料パラメータ推定部1と、鉄鋼製品の実用強度を予測評価する強度予測部2とを有して構成されている。
(Strength prediction evaluation according to this embodiment)
FIG. 1 is a block diagram showing an overview of the strength prediction evaluation apparatus according to the present embodiment. FIG. 2 is a flowchart showing a method for designing a steel material of an automobile having the strength prediction evaluation method according to the present embodiment in order of steps.
The strength prediction evaluation apparatus according to the present embodiment includes a material parameter estimation unit 1 that estimates a material parameter of a steel material after bake hardening for a product (part or final product) manufactured using the steel material, and a steel product An intensity predicting unit 2 that predicts and evaluates a practical intensity is included.

パラメータ推定部1は、焼付け硬化した後における鉄鋼材料の機械的性質に基づく材料パラメータを、例えば後述する手法により同定するものである。
強度予測部2は、成形シミュレーション(成形解析)により得られた要素(ここではFEM解析に用いられる有限要素)ごとの板厚及び歪みテンソル等の諸因子(ここでは、各節点の座標、各要素の節点番号、各要素の板厚、歪みテンソル、及び応力テンソル等)を強度シミュレーションの要素に引き継ぎ、パラメータ推定部1により推定された材料パラメータを用いて、当該強度シミュレーションを行い、鉄鋼製品の実用強度を予測評価(衝突解析)する。強度シミュレーションには、例えば動的陽解法FEMを用いる。
The parameter estimation part 1 identifies the material parameter based on the mechanical property of the steel material after bake hardening, for example by the method mentioned later.
The strength prediction unit 2 includes various factors (here, the coordinates of each node, each element, etc.) for each element (here, a finite element used for FEM analysis) obtained by a molding simulation (molding analysis). The node number, the plate thickness of each element, the strain tensor, the stress tensor, etc.) are inherited to the elements of the strength simulation, and the strength simulation is performed using the material parameters estimated by the parameter estimation unit 1 to Strength is predicted and evaluated (collision analysis). For the intensity simulation, for example, a dynamic explicit method FEM is used.

以下、上記の強度予測評価装置を用いた、自動車の鉄鋼材料の設計方法について説明する。
初めに、自動車の形状及び構造を決定する(ステップS1)。
続いて、自動車の部品ごとの鉄鋼材料及び板厚を選定する(ステップS2)。
続いて、所定のCADを用いて(ステップS3)、上記の各部品の形状を特定し(ステップS4)、所定の金型CADを用いて金型を設計する(ステップS5)。ステップS5で設計された金型のデータは、ステップS4で特定された各部品の形状のデータと共に、ステップS6へ供される。
Hereinafter, the design method of the steel material of a motor vehicle using said strength prediction evaluation apparatus is demonstrated.
First, the shape and structure of the automobile are determined (step S1).
Subsequently, a steel material and a plate thickness for each part of the automobile are selected (step S2).
Subsequently, the shape of each component is specified using a predetermined CAD (step S3) (step S4), and the mold is designed using the predetermined mold CAD (step S5). The data of the mold designed in step S5 is supplied to step S6 together with the shape data of each part specified in step S4.

ステップS6では、以下のように成形シミュレーションが実行され、諸因子(各節点の座標、各要素の節点番号、各要素の板厚、歪みテンソル、及び応力テンソル等)を決定する(ステップS7)。
ここでは、ハット断面(60mm×60mm)で長さ900mmの部材の3点曲げを評価する。材料としては、例えば1.4mm厚の440MPa級固溶体強化型ハイテン(降伏強さσy:302MPa、引張強さσu:461MPa、伸びet:40%、焼付け硬化量ΔσBH:60MPa)をプレス成形解析に供する。
In step S6, a forming simulation is executed as follows, and various factors (such as the coordinates of each node, the node number of each element, the plate thickness of each element, the strain tensor, and the stress tensor) are determined (step S7).
Here, three-point bending of a member having a hat cross section (60 mm × 60 mm) and a length of 900 mm is evaluated. As a material, for example, a 440 MPa class solid solution reinforced high tensile steel (yield strength σ y : 302 MPa, tensile strength σ u : 461 MPa, elongation e t : 40%, bake hardening Δσ BH : 60 MPa) is pressed as a material. Used for molding analysis.

素材の機械的性質に基づく材料データを用いて、例えばプレス成形解析を金型下死点まで行い、諸因子(各節点の座標、各要素の節点番号、各要素の板厚、歪みテンソル、及び応力テンソル等)を得る。
具体的には、例えば動的陽解法FEMにより、上記のハット形状部の絞り曲げ成形の解析を行って、上記の諸因子を得る。成形解析後の板厚減少率分布を図3に示す。この成形解析では、絞り曲げ成形のために材料流入がしわ押さえにより制限され、縦壁部に張力が働くことで板厚減少が生じている。また、ダイ肩部を通過するときに生じる曲げ・曲げ戻しも加わり、縦壁部表層では歪みが高い。
次いで、例えばフランジ部で平板と30mm間隔の点溶接処理(2節点間の相対変位を固定)を施した衝突解析用有限要素モデルを作成する。
Using material data based on the mechanical properties of the material, for example, press molding analysis is performed up to the bottom dead center of the mold, and various factors (coordinates of each node, node numbers of each element, plate thickness of each element, strain tensor, and Stress tensor).
Specifically, for example, the above-described factors are obtained by analyzing the drawing and bending of the hat-shaped portion by dynamic explicit FEM. The thickness reduction rate distribution after the forming analysis is shown in FIG. In this forming analysis, the material inflow is restricted by wrinkle pressing for drawing bending forming, and the thickness is reduced by the tension acting on the vertical wall portion. In addition, bending and unbending that occur when passing through the shoulder portion of the die are also added, and the strain on the surface layer of the vertical wall portion is high.
Next, for example, a finite element model for collision analysis in which spot welding processing (fixed relative displacement between two nodes) is performed with a flat plate at a flange portion at intervals of 30 mm is created.

続いて、パラメータ推定部1により、ステップS2で選定された部品ごとの鉄鋼材料及び板厚に基づいて、焼付け硬化した後における鉄鋼材料の機械的性質に基づく材料パラメータを同定する(ステップS8)。
具体的には、例えば、塑性異方性は素材の材料特性と同様であると仮定し、塗装焼付け後の加工硬化曲線は、素材の応力−歪み曲線に工業規格で定義された方法で測定した焼付け硬化量を一律に加算してなる新たな応力−歪み曲線を用いる。この新たな応力−歪み曲線の一例を図4に示す。
Subsequently, the parameter estimation unit 1 identifies material parameters based on the mechanical properties of the steel material after bake hardening based on the steel material and plate thickness for each part selected in step S2 (step S8).
Specifically, for example, the plastic anisotropy is assumed to be the same as the material properties of the material, and the work hardening curve after paint baking was measured by the method defined in the industry standard for the stress-strain curve of the material. A new stress-strain curve obtained by uniformly adding the bake hardening amount is used. An example of this new stress-strain curve is shown in FIG.

続いて、強度予測部2により、ステップS2で得られた衝突解析用有限要素モデルに、プレス成形解析で得られた諸因子を強度シミュレーションの初期条件として反映させるとともに、ステップS3で同定された焼付け硬化後の材料パラメータを用いて、例えば動的陽解法FEMにより強度シミュレーションを行い、鉄鋼製品の実用強度を予測評価(衝突解析)する(ステップS9)。衝突解析の条件を図5に示す。   Subsequently, the strength predicting unit 2 reflects the factors obtained by the press forming analysis as the initial conditions of the strength simulation in the collision analysis finite element model obtained in step S2, and the baking identified in step S3. Using the material parameters after curing, strength simulation is performed by, for example, dynamic explicit FEM, and the practical strength of the steel product is predicted and evaluated (collision analysis) (step S9). The conditions for collision analysis are shown in FIG.

続いて、ステップS9の強度シミュレーションに基づき、衝突時の各部品の吸収エネルギー、当該自動車の客室側への変形量、加速度等が見積もられる(ステップS10)。
続いて、ステップS10の見積もりが、所期に規定された仕様を満たすか否かが判定される(ステップS11)。仕様を満たすと判断された場合には設計を終了し、仕様を満たさないと判断された場合には、材料、形状、構造の変更を要するため、再びステップS2から実行する。
Subsequently, based on the intensity simulation in step S9, the absorbed energy of each component at the time of the collision, the deformation amount of the automobile toward the passenger room, the acceleration, and the like are estimated (step S10).
Subsequently, it is determined whether or not the estimate in step S10 satisfies the specification specified in the intended state (step S11). If it is determined that the specification is satisfied, the design is terminated. If it is determined that the specification is not satisfied, the material, shape, and structure need to be changed, and the process is executed again from step S2.

ここで、本実施形態による衝突解析の結果について、素材のままの材料データを用いた衝突解析との比較に基づいて説明する。
図6は、衝突から10ms経過時までの変位と反力との関係を示す特性図である。本実施形態による衝突解析によれば、比較例の衝突解析に比べてピーク荷重が36%高めに予測されており、本実施形態の有効性が確認された。
Here, the result of the collision analysis according to the present embodiment will be described based on a comparison with the collision analysis using the raw material data.
FIG. 6 is a characteristic diagram showing the relationship between the displacement and the reaction force until 10 ms elapses after the collision. According to the collision analysis according to the present embodiment, the peak load is predicted to be 36% higher than that of the collision analysis of the comparative example, confirming the effectiveness of the present embodiment.

(焼付け硬化後における材料パラメータの同定の具体例)
ここで、上記のステップ3における、焼付け硬化後の材料パラメータの同定について、具体例を挙げて説明する。
(Specific example of identification of material parameters after bake hardening)
Here, the identification of the material parameters after the bake hardening in step 3 will be described with a specific example.

焼付け硬化量ΔσBHは、一般に、引張り予歪みを与えた引張試験片に対する同方向の引張り応力の焼付け処理による上昇量と定義されている(JIS-G3135)。具体的には、外板パネルの成形時に導入される歪みを圧延方向への2%単軸引張試験で模擬する。次に、自動車の塗装焼付け工程での熱サイクルに対応する170℃で20分間の焼付け処理をこの予歪み材に与える。更に、予歪み方向と同一方向に、再度、引張試験を行い、焼付け処理による降伏応力の上昇量をBH量と定義している。 The bake hardening amount Δσ BH is generally defined as the amount of increase in tensile stress in the same direction applied to a tensile test piece subjected to tensile prestrain (JIS-G3135). Specifically, the strain introduced at the time of forming the outer panel is simulated by a 2% uniaxial tensile test in the rolling direction. Next, the pre-strained material is subjected to a baking process at 170 ° C. for 20 minutes corresponding to the thermal cycle in the paint baking process of the automobile. Furthermore, a tensile test is performed again in the same direction as the pre-strain direction, and the amount of increase in yield stress due to the baking process is defined as the BH amount.

通常、一般に用いられている強度シミュレーション用ソフトでは素材の板厚と加工硬化特性を入力する。このうち、加工硬化特性には単軸引張試験により得られた真応力σeq−真歪みεeq曲線へのフィッティングによりパラメータK,ε0,nを同定したSwiftの式が多く用いられる。
σeq=K(ε0+εeqn
Normally, the strength and work-hardening characteristics of the material are input in commonly used strength simulation software. Of these, Swift's equation in which parameters K, ε 0 , and n are identified by fitting to a true stress σ eq −true strain ε eq curve obtained by a uniaxial tensile test is often used for work hardening characteristics.
σ eq = K (ε 0 + ε eq ) n

パラメータは、応力−歪み曲線を多数の点に離散化し、それらに最小2乗近似して同定される。従って、焼付け硬化後の材料パラメータを推定する場合、素材の応力−歪み曲線に対して工業規格により指定された方法で測定された焼付け硬化量ΔσBHを一律足し加えた新たな応力−歪み曲線に基づいて材料パラメータを同定すれば良い。 The parameters are identified by discretizing the stress-strain curve into a number of points and approximating them to a least squares. Therefore, when estimating the material parameters after bake hardening, a new stress-strain curve is obtained by adding the bake hardening amount Δσ BH measured by the method specified by the industry standard to the stress-strain curve of the material. The material parameters may be identified on the basis of them.

パラメータ同定方法の具体的手順を以下の(1)〜(4)に示す。
(1)素材の公称応力−公称歪み曲線に対して、焼付け硬化量ΔσBHを一律足し加えた焼付け硬化後の公称応力−公称歪み曲線を算出する。
(2)公称応力−公称歪みのデータから弾性歪みを差し引いた公称塑性歪み変換する。
(3)公称塑性歪みを真塑性歪みに、公称応力を真応力に変換する。
(4)K,ε0,nに適当な初期値を与え、最小2乗法で誤差が最小になるよう近似則にフィッティングする。
Specific procedures of the parameter identification method are shown in the following (1) to (4).
(1) Calculate the nominal stress-nominal strain curve after bake-hardening by adding the bake-hardening amount Δσ BH to the nominal stress-nominal strain curve of the material.
(2) Nominal stress-nominal plastic strain conversion obtained by subtracting elastic strain from nominal strain data.
(3) Convert nominal plastic strain to true plastic strain and nominal stress to true stress.
(4) Appropriate initial values are given to K, ε 0 , n, and fitting to an approximation rule so that the error is minimized by the least square method.

図7に、上記手順でパラメータ同定した焼付け硬化後の応力−歪み曲線を示す。
ところで、これまでに示した焼付け硬化後の材料パラメータ同定方法には素材の応力−歪み曲線の実験データが必要である。しかしながら、試作部品がない設計初期段階では必ずしも強度評価に供する応力−歪み曲線の実験データを準備できるとは限らない。それ故、比較的容易に入手可能な(あるいは設計者が想定した)素材の降伏強さσy、引張強さσu、均一伸びの真歪み値εuと推定した焼付け硬化量ΔσBHからSwiftのパラメータK,ε0,nの同定が望まれる。
FIG. 7 shows a stress-strain curve after bake hardening whose parameters are identified by the above procedure.
By the way, the material parameter identification method after bake hardening shown so far requires experimental data of the stress-strain curve of the material. However, it is not always possible to prepare experimental data of stress-strain curves used for strength evaluation at the initial design stage where there are no prototype parts. Therefore, Swift is obtained from the amount of bake hardening Δσ BH estimated as the yield strength σ y , tensile strength σ u , and the true strain value ε u of the material that is relatively easily available (or assumed by the designer). It is desired to identify the parameters K, ε 0 , and n.

本発明者らは、拡散くびれに対する塑性不安定条件式の利用、焼付け処理により降伏強さがσy+ΔσBHに上昇すること、均一伸びと引張強さの関係からパラメータK,ε0,nは次式で与えられることを見出した。
K=σu(1+εu)/nn
ε0={(σy+ΔσBH)/K}1/n
n=εu
The present inventors use the plastic instability conditional expression for the diffusion neck, the yield strength increases to σ y + Δσ BH by the baking process, and the parameters K, ε 0 , n are determined from the relationship between the uniform elongation and the tensile strength. I found out that it is given by
K = σ u (1 + ε u ) / n n
ε 0 = {(σ y + Δσ BH ) / K} 1 / n
n = ε u

更に本発明者らは、340MPa級〜1180MPa級の種々の高強度鋼板(フェライト単相の焼付け硬化型鋼板やアルミキルド鋼をベースとした固溶体強化鋼、析出強化鋼、Dual PhaseやTRIP鋼などの複合組織鋼)を対象にBH量を測定し、素材の降伏強さσy、引張強さσuと焼付け硬化量ΔσBHとの間に強い相関があることを見出し、焼付け硬化量ΔσBHを推定する方法に想到した。それによると、焼付け硬化量ΔσBHは次式で近似することができる。
ΔσBH=1.34σy 1.75σu -1
Furthermore, the present inventors have various high strength steel sheets of 340 MPa class to 1180 MPa class (solid solution strengthened steel based on single phase ferrite hardened steel and aluminum killed steel, precipitation strengthened steel, composites such as dual phase and TRIP steel). BH content is measured for (structural steel), and it is found that there is a strong correlation between the yield strength σ y and tensile strength σ u of the material and the bake hardening amount Δσ BH, and the bake hardening amount Δσ BH is estimated. I came up with a way to According to this, the bake hardening amount Δσ BH can be approximated by the following equation.
Δσ BH = 1.34σ y 1.75 σ u -1

これにより、実測したBH量を妥当な精度で推定することができる。実測したBH量と推定したBH量との関係を図8に示す。
この推定式を用いることにより、前述した方法で引張試験をすることなく簡便に焼付け硬化後の材料パラメータを求めることができる。
Thereby, the actually measured BH amount can be estimated with reasonable accuracy. FIG. 8 shows the relationship between the measured BH amount and the estimated BH amount.
By using this estimation formula, the material parameters after bake-hardening can be easily obtained without carrying out a tensile test by the method described above.

以上説明したように、本実施形態によれば、鉄鋼材料の焼付け硬化後の影響を考慮し、試作部品がない設計初期段階での迅速且つ的確な評価を可能とし、鉄鋼製品の実用強度を容易且つ正確に予測評価して、鉄鋼製品、例えば車体の開発期間の短縮やコスト削減を実現するとともに信頼性の高い鉄鋼製品を供給することができる。   As described above, according to the present embodiment, it is possible to perform a quick and accurate evaluation at the initial stage of design in which there is no prototype part in consideration of the effect after the bake hardening of the steel material, and the practical strength of the steel product is facilitated. Moreover, it is possible to accurately predict and evaluate the steel product, for example, to shorten the development period of the vehicle body and to reduce the cost and to supply a highly reliable steel product.

(その他の実施形態)
上述した本実施形態による強度予測評価装置を構成する各構成要素(図1のパラメータ推定部1及び強度予測部2等)の機能は、コンピュータのRAMやROMなどに記憶されたプログラムが動作することによって実現できる。同様に、強度予測評価方法の各ステップ(図2のステップS6〜S10等)は、コンピュータのRAMやROMなどに記憶されたプログラムが動作することによって実現できる。このプログラム及び当該プログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明に含まれる。
(Other embodiments)
The function of each component (such as the parameter estimation unit 1 and the intensity prediction unit 2 in FIG. 1) that constitutes the above-described intensity prediction evaluation apparatus according to the present embodiment is that a program stored in a RAM or ROM of a computer operates. Can be realized. Similarly, each step (steps S6 to S10 in FIG. 2) of the intensity prediction evaluation method can be realized by operating a program stored in a RAM or ROM of a computer. This program and a computer-readable storage medium storing the program are included in the present invention.

具体的に、前記プログラムは、例えばCD−ROMのような記録媒体に記録し、或いは各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記録媒体としては、CD−ROM以外に、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、前記プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワークシステムにおける通信媒体を用いることができる。ここで、コンピュータネットワークとは、LAN、インターネットの等のWAN、無線通信ネットワーク等であり、通信媒体とは、光ファイバ等の有線回線や無線回線等である。   Specifically, the program is recorded on a recording medium such as a CD-ROM or provided to a computer via various transmission media. As a recording medium for recording the program, besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used. On the other hand, as the program transmission medium, a communication medium in a computer network system for propagating and supplying program information as a carrier wave can be used. Here, the computer network is a WAN such as a LAN or the Internet, a wireless communication network, or the like, and the communication medium is a wired line such as an optical fiber or a wireless line.

また、本発明に含まれるプログラムとしては、供給されたプログラムをコンピュータが実行することにより上述の実施形態の機能が実現されるようなもののみではない。例えば、そのプログラムがコンピュータにおいて稼働しているOS(オペレーティングシステム)或いは他のアプリケーションソフト等と共同して上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。また、供給されたプログラムの処理の全て或いは一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。   Further, the program included in the present invention is not limited to the one in which the functions of the above-described embodiments are realized by the computer executing the supplied program. For example, such a program is also included in the present invention when the function of the above-described embodiment is realized in cooperation with an OS (operating system) or other application software running on the computer. Further, when all or part of the processing of the supplied program is performed by the function expansion board or function expansion unit of the computer and the functions of the above-described embodiment are realized, the program is also included in the present invention.

例えば、図9は、パーソナルユーザ端末装置の内部構成を示す模式図である。この図9において、1200はCPU1201を備えたパーソナルコンピュータ(PC)である。PC1200は、ROM1202またはハードディスク(HD)1211に記憶された、又はフレキシブルディスクドライブ(FD)1212より供給されるデバイス制御ソフトウェアを実行する。このPC1200は、システムバス1204に接続される各デバイスを総括的に制御する。   For example, FIG. 9 is a schematic diagram illustrating an internal configuration of a personal user terminal device. In FIG. 9, reference numeral 1200 denotes a personal computer (PC) having a CPU 1201. The PC 1200 executes device control software stored in the ROM 1202 or the hard disk (HD) 1211 or supplied from the flexible disk drive (FD) 1212. The PC 1200 generally controls each device connected to the system bus 1204.

PC1200のCPU1201、ROM1202またはハードディスク(HD)1211に記憶されたプログラムにより、本実施形態の図2におけるステップS6〜S10の手順等が実現される。   By the program stored in the CPU 1201, the ROM 1202, or the hard disk (HD) 1211 of the PC 1200, the procedure of steps S6 to S10 in FIG.

1203はRAMであり、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209や不図示のデバイス等からの指示入力を制御する。   Reference numeral 1203 denotes a RAM which functions as a main memory, work area, and the like for the CPU 1201. A keyboard controller (KBC) 1205 controls instruction input from a keyboard (KB) 1209, a device (not shown), or the like.

1206はCRTコントローラ(CRTC)であり、CRTディスプレイ(CRT)1210の表示を制御する。1207はディスクコントローラ(DKC)である。DKC1207は、ブートプログラム、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1211、及びフレキシブルディスク(FD)1212とのアクセスを制御する。ここで、ブートプログラムとは、起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラムである。   Reference numeral 1206 denotes a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210. Reference numeral 1207 denotes a disk controller (DKC). The DKC 1207 controls access to a hard disk (HD) 1211 and a flexible disk (FD) 1212 that store a boot program, a plurality of applications, an editing file, a user file, a network management program, and the like. Here, the boot program is a startup program: a program for starting execution (operation) of hardware and software of a personal computer.

1208はネットワーク・インターフェースカード(NIC)で、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、あるいは他のPCと双方向のデータのやり取りを行う。   Reference numeral 1208 denotes a network interface card (NIC) that exchanges data bidirectionally with a network printer, another network device, or another PC via the LAN 1220.

本実施形態による強度予測評価装置の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the intensity | strength prediction evaluation apparatus by this embodiment. 本実施形態による強度予測評価方法を有する自動車の鉄鋼材料の設計方法をステップ順に示すフロー図である。It is a flowchart which shows the design method of the steel material of the motor vehicle which has the intensity | strength prediction evaluation method by this embodiment in order of a step. 成形シミュレーションによるハット形状の絞り曲げ成形の解析結果を示す模式図である。It is a schematic diagram which shows the analysis result of hat-shaped draw-bending forming by forming simulation. 新たな応力−歪み曲線の一例を示す特性図である。It is a characteristic view which shows an example of a new stress-strain curve. 強度評価シミュレーションの検証対象である3点曲げの概要を示す模式図であるIt is a schematic diagram which shows the outline | summary of the three-point bending which is a verification object of strength evaluation simulation. 強度評価シミュレーションから得られた加工履歴と焼付け硬化の影響を考慮した部材変形反力と変位の関係を示す特性図であるFIG. 6 is a characteristic diagram showing the relationship between the deformation reaction force and displacement in consideration of the processing history obtained from the strength evaluation simulation and the influence of bake hardening. 焼付け硬化後の応力−歪み曲線の関係を示す特性図であるIt is a characteristic view which shows the relationship of the stress-strain curve after baking hardening. 実測したBH量と推定したBH量との関係を示す特性図であるIt is a characteristic view which shows the relationship between the measured BH amount and the estimated BH amount. パーソナルユーザ端末装置の内部構成を示す模式図であるIt is a schematic diagram which shows the internal structure of a personal user terminal device.

符号の説明Explanation of symbols

1 パラメータ推定部
2 強度予測部
1 Parameter estimation unit 2 Strength prediction unit

Claims (10)

鉄鋼材料を用いて製造される製品の実用強度を予測評価する強度予測評価方法であって、
焼付け硬化した後の前記鉄鋼材料の材料パラメータを推定する第1のステップと、
成形シミュレーションにより得られた素材の要素ごとの少なくとも板厚及び歪みテンソルと、前記第1のステップで推定された前記材料パラメータとを用いて強度シミュレーションを行い、前記鉄鋼製品の実用強度を予測評価する第2のステップと
を含むことを特徴とする強度予測評価方法。
A strength prediction evaluation method for predicting and evaluating the practical strength of a product manufactured using steel materials,
A first step of estimating material parameters of the steel material after bake hardening;
Strength simulation is performed using at least the plate thickness and strain tensor for each element of the material obtained by the forming simulation and the material parameters estimated in the first step, and the practical strength of the steel product is predicted and evaluated. A strength prediction evaluation method comprising: a second step.
前記第1のステップにおいて、前記素材の応力−歪み曲線に対して工業規格により指定された方法で測定された焼付け硬化量を一律に足し加えてなる新たな応力−歪み曲線に基づいて、前記材料パラメータを同定することを特徴とする請求項1に記載の強度予測評価方法。   In the first step, the material is based on a new stress-strain curve obtained by uniformly adding an amount of bake hardening measured by a method specified by an industry standard to the stress-strain curve of the material. The method according to claim 1, wherein the parameter is identified. 前記第1のステップにおいて、前記素材の降伏強さ、引張強さ及び均一伸びの真歪み値と、工業規格により指定された方法で測定された焼付け硬化量とを用いて、前記材料パラメータを同定することを特徴とする請求項1に記載の強度予測評価方法。   In the first step, the material parameters are identified using the yield strength, tensile strength, and true strain value of uniform elongation of the material and the bake hardening amount measured by a method specified by an industry standard. The strength prediction evaluation method according to claim 1, wherein: 前記第1のステップにおいて、前記素材の降伏強さ及び引張強さを用いて前記焼付け硬化量を推定することを特徴とする請求項2又は3に記載の強度予測評価方法。   The strength prediction evaluation method according to claim 2 or 3, wherein, in the first step, the bake hardening amount is estimated using a yield strength and a tensile strength of the material. 鉄鋼材料を用いて製造される製品の実用強度を予測評価する強度予測評価装置であって、
焼付け硬化した後の前記鉄鋼材料の材料パラメータを推定する第1の手段と、
成形シミュレーションにより得られた素材の要素ごとの少なくとも板厚及び歪みテンソルと、前記第1の手段により推定された前記材料パラメータとを用いて強度シミュレーションを行い、前記鉄鋼製品の実用強度を予測評価する第2の手段と
を含むことを特徴とする強度予測評価装置。
A strength prediction and evaluation device that predicts and evaluates the practical strength of products manufactured using steel materials,
A first means for estimating material parameters of the steel material after bake hardening;
Strength simulation is performed using at least the plate thickness and strain tensor for each element of the material obtained by the forming simulation and the material parameter estimated by the first means, and the practical strength of the steel product is predicted and evaluated. A strength prediction evaluation apparatus comprising: a second means.
前記第1の手段は、前記素材の応力−歪み曲線に対して工業規格により指定された方法で測定された焼付け硬化量を一律に足し加えてなる新たな応力−歪み曲線に基づいて、前記材料パラメータを同定することを特徴とする請求項5に記載の強度予測評価装置。   The first means is based on a new stress-strain curve obtained by uniformly adding a bake hardening amount measured by a method specified by an industry standard to the stress-strain curve of the material. The intensity prediction evaluation apparatus according to claim 5, wherein a parameter is identified. 前記第1の手段は、前記素材の降伏強さ、引張強さ及び均一伸びの真歪み値と、工業規格により指定された方法で測定された焼付け硬化量とを用いて、前記材料パラメータを同定することを特徴とする請求項5に記載の強度予測評価装置。   The first means identifies the material parameters using the yield strength, tensile strength, and true strain value of uniform elongation of the material and the bake hardening amount measured by a method specified by an industry standard. The intensity | strength prediction evaluation apparatus of Claim 5 characterized by the above-mentioned. 前記第1の手段は、前記素材の降伏強さ及び引張強さを用いて前記焼付け硬化量を推定することを特徴とする請求項6又は7に記載の強度予測評価装置。   The strength prediction evaluation apparatus according to claim 6 or 7, wherein the first means estimates the bake hardening amount using a yield strength and a tensile strength of the material. コンピュータに、請求項1〜4のいずれか1項に記載の強度予測評価方法の前記第1のステップ及び前記第2のステップを実行させるためのプログラム。   The program for making a computer perform the said 1st step and said 2nd step of the intensity | strength prediction evaluation method of any one of Claims 1-4. 請求項9に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the program according to claim 9 is recorded.
JP2007311654A 2007-11-30 2007-11-30 Strength prediction evaluation method and apparatus, program, and recording medium Active JP4995052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007311654A JP4995052B2 (en) 2007-11-30 2007-11-30 Strength prediction evaluation method and apparatus, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007311654A JP4995052B2 (en) 2007-11-30 2007-11-30 Strength prediction evaluation method and apparatus, program, and recording medium

Publications (2)

Publication Number Publication Date
JP2009133788A true JP2009133788A (en) 2009-06-18
JP4995052B2 JP4995052B2 (en) 2012-08-08

Family

ID=40865793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311654A Active JP4995052B2 (en) 2007-11-30 2007-11-30 Strength prediction evaluation method and apparatus, program, and recording medium

Country Status (1)

Country Link
JP (1) JP4995052B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198305A (en) * 2010-03-24 2011-10-06 Jfe Steel Corp Strength prediction method and strength control method for hot press molded product
JP2014038032A (en) * 2012-08-16 2014-02-27 National Institute Of Advanced Industrial & Technology Microspectrographic simulation method
JP2014222160A (en) * 2013-05-13 2014-11-27 Jfeスチール株式会社 Method of estimating tensile characteristic of steel plate after subjected to bending working, in direction orthogonal to working direction
JP6264425B1 (en) * 2016-10-26 2018-01-24 Jfeスチール株式会社 Method for estimating the strength of baked products
KR101833138B1 (en) 2016-08-25 2018-02-28 포항공과대학교 산학협력단 Method for prediction of ultimate strength of initially deflected plate element by appling plate index concept
CN111060365A (en) * 2019-11-21 2020-04-24 华菱安赛乐米塔尔汽车板有限公司 Tensile sample system for detecting baking hardening value
JP7401769B2 (en) 2020-03-31 2023-12-20 日本製鉄株式会社 Structural property analysis method, structural property analysis device and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249636A (en) * 1999-02-26 2000-09-14 Nippon Steel Corp Method for predicting and evaluating dentability and method for selecting metal plate for press forming
JP2004101228A (en) * 2002-09-05 2004-04-02 Sumitomo Wiring Syst Ltd Work hardening data acquiring method
JP2004325213A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Characteristic analysis method of structure including press formed metal component, characteristic analysis program, and storage medium for recording program
JP2006205740A (en) * 2006-04-19 2006-08-10 Hitachi Ltd Design support equipment and method for resin mold component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249636A (en) * 1999-02-26 2000-09-14 Nippon Steel Corp Method for predicting and evaluating dentability and method for selecting metal plate for press forming
JP2004101228A (en) * 2002-09-05 2004-04-02 Sumitomo Wiring Syst Ltd Work hardening data acquiring method
JP2004325213A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Characteristic analysis method of structure including press formed metal component, characteristic analysis program, and storage medium for recording program
JP2006205740A (en) * 2006-04-19 2006-08-10 Hitachi Ltd Design support equipment and method for resin mold component

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198305A (en) * 2010-03-24 2011-10-06 Jfe Steel Corp Strength prediction method and strength control method for hot press molded product
JP2014038032A (en) * 2012-08-16 2014-02-27 National Institute Of Advanced Industrial & Technology Microspectrographic simulation method
JP2014222160A (en) * 2013-05-13 2014-11-27 Jfeスチール株式会社 Method of estimating tensile characteristic of steel plate after subjected to bending working, in direction orthogonal to working direction
KR101833138B1 (en) 2016-08-25 2018-02-28 포항공과대학교 산학협력단 Method for prediction of ultimate strength of initially deflected plate element by appling plate index concept
KR20190066628A (en) * 2016-10-26 2019-06-13 제이에프이 스틸 가부시키가이샤 Method for estimating the strength of a baked product
WO2018078996A1 (en) * 2016-10-26 2018-05-03 Jfeスチール株式会社 Method for estimating strength of baked molded product
JP6264425B1 (en) * 2016-10-26 2018-01-24 Jfeスチール株式会社 Method for estimating the strength of baked products
CN109891209A (en) * 2016-10-26 2019-06-14 杰富意钢铁株式会社 The intensity estimating method of sintering processes molded product
KR102143835B1 (en) 2016-10-26 2020-08-12 제이에프이 스틸 가부시키가이샤 Method of estimating strength of baking-treated forming part
CN109891209B (en) * 2016-10-26 2021-06-22 杰富意钢铁株式会社 Method for estimating strength of sintered molded article
CN111060365A (en) * 2019-11-21 2020-04-24 华菱安赛乐米塔尔汽车板有限公司 Tensile sample system for detecting baking hardening value
CN111060365B (en) * 2019-11-21 2022-08-30 华菱安赛乐米塔尔汽车板有限公司 Tensile sample system for detecting baking hardening value
JP7401769B2 (en) 2020-03-31 2023-12-20 日本製鉄株式会社 Structural property analysis method, structural property analysis device and computer program

Also Published As

Publication number Publication date
JP4995052B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4995052B2 (en) Strength prediction evaluation method and apparatus, program, and recording medium
JP5445381B2 (en) Method and apparatus for predicting bending fracture of material, program, and recording medium
JP6229718B2 (en) Method for determining bending fracture of metal plate, program, and storage medium
Wagoner et al. Advanced issues in springback
KR101065502B1 (en) Breaking prediction method
JP4621217B2 (en) Fracture prediction method and apparatus, program, and recording medium
KR101227295B1 (en) Method of assessing fractures, fracture assessment device, program and computer readable recording medium
JP2011245554A (en) Sheet metal forming failure prediction using numerical simulation
Hu et al. Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology
JP4880043B2 (en) Break prediction method, break prediction system, program, and recording medium
KR101650590B1 (en) Method for predicting development of curved plates
KR102030213B1 (en) System and method for prediction of snap-through buckling of formed steel sheet panels
JP7110976B2 (en) Formability evaluation method, program and recording medium
JP7243816B2 (en) Bending angle prediction method, bending angle prediction device, program and recording medium
Toros Parameters determination of Yoshida Uemori model through optimization process of cyclic tension-compression test and V-bending springback
JP2000249636A (en) Method for predicting and evaluating dentability and method for selecting metal plate for press forming
JP6287665B2 (en) Method and apparatus for predicting ductile brittle fracture characteristics of thin steel plate members, and program and recording medium therefor
Ingarao et al. Optimization methods for complex sheet metal stamping computer aided engineering
JP3814226B2 (en) Material data identification method, strength prediction evaluation system, recording medium, and program
JP7206902B2 (en) Formability evaluation method, program and recording medium
JP4109495B2 (en) Material data identification method, formability prediction evaluation system, program, and recording medium
JP2000312933A (en) Springback volume prediction method
JP2019090657A (en) Method for predicting dent resistance of panel component
CN116050131A (en) Threshold beam outer plate fold deformation simulation analysis method and device based on coating baking process
JP2023124405A (en) Fracture prediction method, fracture prediction device, and fracture prediction program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4995052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350