JP2000248393A - Electrolytic ozone generating element - Google Patents

Electrolytic ozone generating element

Info

Publication number
JP2000248393A
JP2000248393A JP11053554A JP5355499A JP2000248393A JP 2000248393 A JP2000248393 A JP 2000248393A JP 11053554 A JP11053554 A JP 11053554A JP 5355499 A JP5355499 A JP 5355499A JP 2000248393 A JP2000248393 A JP 2000248393A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
anode
electrolyte membrane
acidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11053554A
Other languages
Japanese (ja)
Inventor
Hiromasa Matsuoka
宏昌 松岡
Kenro Mitsuta
憲朗 光田
Akira Ikeda
彰 池田
Hisatoshi Fukumoto
久敏 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11053554A priority Critical patent/JP2000248393A/en
Publication of JP2000248393A publication Critical patent/JP2000248393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the corrosion reaction at an anode and to improve the life thereof by disposing a thin film of a solid polymer electrolyte having the acidity weaker than the acidity of a solid polymer electrolyte film between the anode and the electrolyte film. SOLUTION: The film 20 of the solid polymer electrolyte having the weak acidity is formed as the extremely thin layer on the surface layer of the solid polymer electrolyte film 1 and is interposed between an anode catalyst layer 4 and the solid polymer electrolyte film 1 to prevent the contact of both. More preferably the solid polymer electrolyte film 1 is a sulfonic acid type and the film 20 is carboxylic acid type. When the generation of ozone is ceased by stopping the impression of voltage, the potential of the anode falls and the lead tends to elute from the anode catalyst layer 4 containing lead oxide. The acidity of the film 20 in contact with the lead dioxide is, however, weak and there is no possibility that the anode potential enters a region of Pb2+ if the atmosphere is the air atmosphere. Namely, the anode is stably maintained as the lead dioxide even if voltage is not impressed at the time of stoppage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜を挟んで、陽極と陰極を対峙させ、直流電圧を印加し
て陽極からオゾンを発生させる電解式オゾン発生素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic ozone generating element in which an anode and a cathode are opposed to each other with a solid polymer electrolyte membrane interposed therebetween and a DC voltage is applied to generate ozone from the anode.

【0002】[0002]

【従来の技術】従来の電解式オゾン発生素子としては水
供給型が一般的である。しかし、水の代わりに空気を供
給するタイプである空気供給型の電解式オゾン発生素子
の実用化も検討されている。
2. Description of the Related Art As a conventional electrolytic ozone generating element, a water supply type is generally used. However, practical use of an air supply type electrolytic ozone generating element that supplies air instead of water is also being studied.

【0003】図5は、特開平5−255879号公報に
記載されているような、従来の固体高分子電解質膜を用
いた空気供給型の電解式オゾン発生素子の動作原理図で
あり、図において、1は固体高分子膜、2は陽極、3は
陰極、4は二酸化鉛、5はチタン製エキスパンドメタ
ル、6は陰極触媒層、7はカーボンペーパ、8は外部回
路、9は外部電源である。チタン製エキスパンドメタル
5には、白金メッキが施され、β型の二酸化鉛が触媒層
として電着される。固体高分子電解質膜1には、商品名
ナフィオン(デュポン社)が、また電解式オゾン発生素
子の陰極3には、カーボンペーパ7に、白金を担持した
カーボンを付加して陰極触媒層6を形成したものが用い
られる。β型の二酸化鉛(黒色)の他に、α型の二酸化
鉛(茶色)も用いられている。
FIG. 5 is a diagram showing the operating principle of a conventional air-supply type electrolytic ozone generating device using a solid polymer electrolyte membrane, as described in Japanese Patent Application Laid-Open No. 5-255879. 1, 1 is a solid polymer film, 2 is an anode, 3 is a cathode, 4 is lead dioxide, 5 is an expanded metal made of titanium, 6 is a cathode catalyst layer, 7 is carbon paper, 8 is an external circuit, and 9 is an external power supply. . The expanded metal 5 made of titanium is plated with platinum, and β-type lead dioxide is electrodeposited as a catalyst layer. The solid polymer electrolyte membrane 1 is made of Nafion (DuPont), and the cathode 3 of the electrolytic ozone generating element is made of carbon paper 7 with carbon carrying platinum to form a cathode catalyst layer 6. Is used. In addition to β-type lead dioxide (black), α-type lead dioxide (brown) is also used.

【0004】[0004]

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0005】上記のような従来の空気供給型の電解式オ
ゾン発生素子では、3.5V程度の直流電圧が印加さ
れ、陽極側でオゾンや酸素が発生し、陰極側で水が生
じ、超酸である固体高分子膜によって徐々に二酸化鉛が
溶出し、溶出した二酸化鉛が固体高分子膜に取り込まれ
て固体高分子電解質膜のイオン伝導抵抗を増大させた
り、陰極で一酸化鉛の形態で析出し、陰極反応を阻害す
るなどの問題点があった。
In the conventional air supply type electrolytic ozone generating element as described above, a DC voltage of about 3.5 V is applied, ozone and oxygen are generated on the anode side, water is generated on the cathode side, and superacid is generated. Lead dioxide is gradually eluted by the solid polymer membrane, and the eluted lead dioxide is taken up by the solid polymer membrane to increase the ionic conduction resistance of the solid polymer electrolyte membrane, or the lead oxide in the form of lead monoxide at the cathode There were problems such as precipitation and inhibition of the cathode reaction.

【0006】本発明は、前記のような問題点を解消する
ためになされたもので、電解式オゾン発生素子における
陽極での腐食反応を抑え、寿命を改善することを目的と
するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to suppress a corrosion reaction at an anode in an electrolytic ozone generating element and improve the life.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
固体高分子電解質膜、この固体高分子電解質膜を挟んで
対峙させた陰極及び陽極、この陽極と上記固体高分子電
解質膜との間に配した、上記固体高分子電解質膜よりも
酸性度の弱い固体高分子電解質の薄い皮膜を有する電解
式オゾン発生素子である。
The invention according to claim 1 is
A solid polymer electrolyte membrane, a cathode and an anode facing each other with the solid polymer electrolyte membrane interposed therebetween, disposed between the anode and the solid polymer electrolyte membrane, and having a lower acidity than the solid polymer electrolyte membrane. This is an electrolytic ozone generating element having a thin film of a solid polymer electrolyte.

【0008】請求項2に係る発明は、固体高分子電解質
膜、この固体高分子電解質膜を挟んで対峙させた陰極触
媒層を有する陰極及び陽極触媒層を有する陽極、この陽
極の陽極触媒層中に含まれ、上記固体高分子電解質膜よ
りも酸性度の弱い固体高分子電解質を備えた電解式オゾ
ン発生素子である。
According to a second aspect of the present invention, there is provided a solid polymer electrolyte membrane, a cathode having a cathode catalyst layer opposed to the solid polymer electrolyte membrane, and an anode having an anode catalyst layer. And an electrolytic ozone generating element provided with a solid polymer electrolyte having a lower acidity than the solid polymer electrolyte membrane.

【0009】請求項3に係る発明は、請求項1または2
記載の電解式オゾン発生素子において、固体高分子電解
質膜はスルフォン酸膜であり、固体高分子電解質膜より
も酸性度の弱い固体高分子電解質はカルボン酸であるも
のである。
The invention according to claim 3 is the invention according to claim 1 or 2
In the electrolytic ozone generating element described above, the solid polymer electrolyte membrane is a sulfonic acid membrane, and the solid polymer electrolyte having a lower acidity than the solid polymer electrolyte membrane is a carboxylic acid.

【0010】[0010]

【発明の実施の形態】以下、図1〜図4に基づいて、こ
の発明の電解式オゾン発生素子の構成とその作用を説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction and operation of an electrolytic ozone generating element according to the present invention will be described below with reference to FIGS.

【0011】図1はこの発明の一実施の形態による電解
式オゾン発生素子の構成を示す断面図である。図におい
て、1は固体高分子膜、2は陽極、3は陰極、4は二酸
化鉛、5はチタン製エキスパンドメタル、6は陰極触媒
層、7はカーボンペーパ、8は外部回路、9は外部電源
であり、図5に示した従来の電解式オゾン発生素子と異
なっているのは、固体高分子電解質膜1よりも酸性度の
弱い固体高分子電解質の薄い皮膜20を設けている点で
ある。
FIG. 1 is a sectional view showing the structure of an electrolytic ozone generating element according to an embodiment of the present invention. In the figure, 1 is a solid polymer film, 2 is an anode, 3 is a cathode, 4 is lead dioxide, 5 is an expanded metal made of titanium, 6 is a cathode catalyst layer, 7 is carbon paper, 8 is an external circuit, and 9 is an external power supply. The difference from the conventional electrolytic ozone generating element shown in FIG. 5 is that a thin film 20 of a solid polymer electrolyte having a lower acidity than the solid polymer electrolyte membrane 1 is provided.

【0012】陽極2のチタン製エキスパンドメタル5
は、チタン製の厚さ50μmの薄板に切れ目を入れて引
き延ばしたエキスパンドメタルにわずかに白金メッキし
たものである。陽極2の触媒層4は、チタン製エキスパ
ンドメタル5にβ型の二酸化鉛を電解メッキしたもので
ある。陰極3のカーボンぺーパ7には、厚さ0.3mm
のカーボン繊維でできたカーボンペーパにポリテトラフ
ルオロエチレン(PTFE)の微粒子を付着させ、35
0℃で熱処理することで撥水処理したものを用いてい
る。陰極3の陰極触媒層6は、カーボン粉末に白金微粒
子を担持した触媒をバインダでカーボンぺーパ7に固着
させたもので、厚さは約20μmである。バインダには
デュポン社のスルフォン酸膜を液化したものを用いた。
固体高分子電解質膜1としては、デュポン社のスルフォ
ン酸膜(厚さ約100μm)を用い、この固体高分子電
解質膜1に薄いカルボン酸膜を形成した複合膜を作製
し、この複合膜のカルボン酸膜側をサンドブラストによ
って研磨してカルボン酸膜の厚さを約5μm程度まで薄
くし、これを沸騰した希塩酸中で1昼夜煮て、固体高分
子電解質膜1をプロトン化した。このカルボン酸膜を形
成した固体高分子電解質膜1上に、カルボン酸膜の方を
陽極2側にして陽極2と陰極3を重ね合わせ、160℃
でホットプレスしてオゾン発生素子を作製した。
Titanium expanded metal 5 for anode 2
Is a thin plate of titanium having a thickness of 50 μm, which is cut and elongated and expanded platinum is slightly plated with platinum. The catalyst layer 4 of the anode 2 is obtained by electroplating β-type lead dioxide on an expanded metal 5 made of titanium. The carbon paper 7 of the cathode 3 has a thickness of 0.3 mm.
Fine particles of polytetrafluoroethylene (PTFE) are attached to carbon paper made of
A material subjected to a water-repellent treatment by heat treatment at 0 ° C is used. The cathode catalyst layer 6 of the cathode 3 has a catalyst in which platinum particles are supported on carbon powder fixed to a carbon paper 7 with a binder, and has a thickness of about 20 μm. The binder used was a liquefied sulfonic acid film manufactured by DuPont.
As the solid polymer electrolyte membrane 1, a sulfonic acid membrane (thickness: about 100 μm) manufactured by DuPont was used, and a composite membrane having a thin carboxylic acid film formed on the solid polymer electrolyte membrane 1 was prepared. The acid film side was polished by sandblasting to reduce the thickness of the carboxylic acid film to about 5 μm, and this was boiled in boiling dilute hydrochloric acid for 24 hours to protonate the solid polymer electrolyte membrane 1. On the solid polymer electrolyte membrane 1 on which the carboxylic acid film is formed, the anode 2 and the cathode 3 are overlapped with the carboxylic acid film facing the anode 2 and
And hot pressed to produce an ozone generating element.

【0013】図2は、図1の酸性度の弱い固体高分子電
解質の薄い皮膜20の近傍の様子を拡大して模式的に示
したものである。酸性度の弱い固体高分子電解質の薄い
皮膜20は、固体高分子電解質膜1の表層にごく薄い層
として形成されており、二酸化鉛の層4と固体高分子電
解質膜1の間に介在して、両者の接触を防止している。
FIG. 2 schematically shows an enlarged view of the vicinity of the thin film 20 of the solid polymer electrolyte having weak acidity in FIG. The thin film 20 of the solid polymer electrolyte having weak acidity is formed as a very thin layer on the surface layer of the polymer electrolyte membrane 1, and is interposed between the lead dioxide layer 4 and the polymer electrolyte membrane 1. , To prevent contact between them.

【0014】図3は、この実施の形態におけるオゾン発
生素子の寿命性能22と、従来のオゾン発生素子の寿命
性能21とを4000時間余りにわたって比較したもの
で、初期のオゾン濃度は、この実施の形態よりも従来の
方が高いが、従来のオゾン発生素子が、停止のたびに二
酸化鉛の溶出が起こって、性能が大きく低下するのに対
して、この実施の形態では、停止の影響が見られず寿命
性能は大きく改善されているのが分かる。
FIG. 3 shows a comparison between the life performance 22 of the ozone generating element in this embodiment and the life performance 21 of the conventional ozone generating element for more than 4000 hours. Although the conventional ozone generating element is higher than the conventional one, the performance of the conventional ozone generating element is greatly reduced due to the elution of lead dioxide every time the element is stopped, whereas the effect of the stop is not observed in this embodiment. It can be seen that the life performance was greatly improved.

【0015】この実施の形態の方が初期の性能が低いの
は、イオン伝導抵抗が大きいためで、イオン伝導抵抗が
大きいのは、固体高分子電解質膜1よりもイオン伝導抵
抗の高い酸性度の弱い固体高分子電解質皮膜が、二酸化
鉛の層4と固体高分子電解質膜1の間に介在しているた
めである。寿命試験の後、分解して鉛の分布を調べた
所、実施の形態1では、二酸化鉛の溶出が少ないことが
確かめられた。
The reason for the lower initial performance of this embodiment is that the ionic conduction resistance is higher. The reason for the higher ionic conduction resistance is that the ionic conduction resistance is higher than that of the solid polymer electrolyte membrane 1. This is because a weak solid polymer electrolyte membrane is interposed between the lead dioxide layer 4 and the solid polymer electrolyte membrane 1. After the life test, the lead was decomposed and the distribution of lead was examined. In the first embodiment, it was confirmed that the elution of lead dioxide was small.

【0016】次に作用について説明する。図4は、図1
および図2の電解式オゾン発生素子の作用を示す電位−
pH図である。図4の縦軸は、電位であるが、RHE
(可逆水素電極)を基準にしている。図の横軸はpHす
なわち酸性度で、右の方にいくほど酸性度が弱い。図に
は、0V付近の水素発生電位、1.2V付近の酸素発生
電位、1.5V付近のオゾン発生電位をそれぞれ点線で
示している。固体高分子電解質の酸性度は、正確には把
握されていないが、一般にスルフォン酸膜では、酸性度
が強くてイオン伝導抵抗が低く、カルボン酸膜では、酸
性度が弱くてイオン伝導抵抗が大きい。図4には、代表
的なスルフォン酸膜の酸性度23とカルボン酸膜の酸性
度24を一点鎖線で示した。なお、酸性度はイオン交換
容量によっても変化する。一方、鉛の平衡状態は、電位
およびpHによって決定され、オゾン発生素子の陽極の
電位は、オゾンを発生している状態では、PbO2の状
態にある。しかし、電圧の印加を停止してオゾンの発生
をやめると、陽極の電位が下がって、Pb2+が安定な領
域に入り、鉛の溶出が起こる。従来例で、停止の度に性
能が低下したのはこのためであり、従来のオゾン発生素
子では、停止時の鉛の溶出を防止するために、停止時も
1.5V程度の電圧を印加しておく必要があった。しか
し、この実施の形態では、二酸化鉛が接しているカルボ
ン酸膜の酸性度が弱く、空気雰囲気であれば、陽極電位
がPb2+の領域に入る恐れがない。すなわち、停止時に
電圧を印加しなくても、陽極が二酸化鉛として安定に維
持される。
Next, the operation will be described. FIG.
And potential indicating the action of the electrolytic ozone generating element of FIG.
It is a pH diagram. The vertical axis in FIG. 4 indicates the potential, but RHE
(Reversible hydrogen electrode). The horizontal axis of the figure is the pH, that is, the acidity, and the acidity is weaker toward the right. In the drawing, dotted lines indicate a hydrogen generation potential near 0 V, an oxygen generation potential near 1.2 V, and an ozone generation potential near 1.5 V, respectively. The acidity of solid polymer electrolytes is not precisely understood, but in general, sulfonic acid membranes have high acidity and low ionic conduction resistance, and carboxylic acid membranes have low acidity and high ionic conduction resistance . In FIG. 4, the acidity 23 of a typical sulfonic acid film and the acidity 24 of a carboxylic acid film are shown by dashed lines. Note that the acidity also changes depending on the ion exchange capacity. On the other hand, the equilibrium state of lead is determined by the potential and the pH, and the potential of the anode of the ozone generating element is in the state of PbO 2 when ozone is being generated. However, when the application of the voltage is stopped and the generation of ozone is stopped, the potential of the anode decreases, Pb 2+ enters a stable region, and lead elution occurs. For this reason, in the conventional example, the performance was lowered every time the operation was stopped. In the conventional ozone generation element, a voltage of about 1.5 V was applied even during the stop to prevent the elution of lead during the stop. Had to be kept. However, in this embodiment, the acidity of the carboxylic acid film in contact with the lead dioxide is weak, and there is no possibility that the anode potential enters the Pb 2+ region in an air atmosphere. That is, the anode is stably maintained as lead dioxide even when no voltage is applied during the stop.

【0017】酸性度の弱い固体高分子電解質膜のみを用
いた場合には、イオン伝導抵抗が高すぎて、素子を構成
することはできない。しかし、この実施の形態の場合
は、固体高分子電解質膜の大部分が酸性度の強い膜で構
成されているので、抵抗の増大は最小限に留められる。
When only a solid polymer electrolyte membrane having a weak acidity is used, the ionic conduction resistance is too high, so that an element cannot be formed. However, in the case of this embodiment, since most of the solid polymer electrolyte membrane is constituted by a membrane having a high acidity, an increase in resistance is minimized.

【0018】なお、この実施の形態では、スルフォン酸
タイプの固体高分子電解質膜1の表面に固体高分子電解
質膜1よりも酸性度の弱いカルボン酸タイプの固体高分
子電解質の薄い皮膜を形成した場合を示したが、スルフ
ォン酸タイプであっても、例えばスルフォン基の数が少
ない、あるいはプロトン化が小さく交換容量が小さいも
のであれば、酸性度が弱くなるので、カルボン酸膜の代
わりに使用することができ、同様の効果が得られる。
In this embodiment, a thin film of a carboxylic acid type solid polymer electrolyte having a lower acidity than that of the solid polymer electrolyte membrane 1 is formed on the surface of the sulfonic acid type solid polymer electrolyte membrane 1. Although the case was shown, even if the sulfonic acid type is used, for example, if the number of sulfonic groups is small or the protonation is small and the exchange capacity is small, the acidity becomes weak, so it is used instead of the carboxylic acid membrane. And a similar effect can be obtained.

【0019】また、この実施の形態では、固体高分子電
解質膜1の表面に固体高分子電解質膜1よりも酸性度の
弱い固体高分子電解質の薄い皮膜を形成した場合を示し
たが、酸性度の弱い固体高分子電解質の薄い皮膜は、陽
極触媒層の内部に形成してもよい。その場合、例えば、
酸性度の弱い固体高分子電解質を溶媒に溶かして溶液化
し、触媒層内部に含浸しても良いし、触媒と共に混ぜ
て、電極基材や固体高分子電解質膜1の上に形成しても
良い。本発明の本質は、イオン伝導抵抗の増大をできる
だけ抑えながら、厳しい環境にさらされる陽極触媒層に
接する電解質の酸性度を弱めて、溶出を防止することに
あり、物理的に、酸性度の低い電解質が陽極の触媒と固
体高分子電解質膜1の間に介在していれば、その目的を
達成することができる。
Further, in this embodiment, the case where a thin film of the solid polymer electrolyte having a lower acidity than the solid polymer electrolyte membrane 1 is formed on the surface of the solid polymer electrolyte membrane 1 has been described. The thin film of the weak solid polymer electrolyte may be formed inside the anode catalyst layer. In that case, for example,
A solid polymer electrolyte having weak acidity may be dissolved in a solvent to form a solution and impregnated inside the catalyst layer, or may be mixed with a catalyst and formed on the electrode substrate or the solid polymer electrolyte membrane 1. . The essence of the present invention is to reduce the acidity of the electrolyte in contact with the anode catalyst layer exposed to the harsh environment while minimizing the increase in ionic conduction resistance, to prevent elution, and physically, the acidity is low. If the electrolyte is interposed between the anode catalyst and the solid polymer electrolyte membrane 1, the object can be achieved.

【0020】なお、陽極触媒層内部に酸性度の低い電解
質を含浸した場合には、より薄い皮膜を形成することが
可能になり、イオン伝導抵抗の増大を抑えることができ
る。
When an electrolyte having low acidity is impregnated inside the anode catalyst layer, a thinner film can be formed, and an increase in ion conduction resistance can be suppressed.

【0021】[0021]

【発明の効果】請求項1及び3に係る発明によれば、固
体高分子電解質膜を挟んで、陽極と陰極を対峙させた電
解式オゾン発生素子において、上記陽極と上記固体高分
子電解質膜との間に上記固体高分子電解質膜よりも酸性
度の弱い固体高分子電解質の薄い皮膜を配したので、電
圧の印加を停止した場合の二酸化鉛の溶出が抑制され、
休止時における外部電圧の印加が不要となり、寿命が改
善される。
According to the first and third aspects of the present invention, there is provided an electrolytic ozone generating element in which an anode and a cathode are opposed to each other with a solid polymer electrolyte membrane interposed therebetween. Since a thin film of the solid polymer electrolyte having a lower acidity than the solid polymer electrolyte membrane is arranged, the elution of lead dioxide when the application of the voltage is stopped is suppressed,
It is not necessary to apply an external voltage at the time of rest, and the life is improved.

【0022】請求項2及び3に係る発明によれば、固体
高分子電解質膜を挟んで、陰極触媒層を有する陰極及び
陽極触媒層を有する陽極を対峙させた対峙させた電解式
オゾン発生素子において、上記陽極の陽極触媒層中に、
上記固体高分子電解質膜よりも酸性度の弱い固体高分子
電解質を含むので、電圧の印加を停止した場合の二酸化
鉛の溶出が抑制され、休止時における外部電圧の印加が
不要となり、寿命が改善される。
According to the second and third aspects of the invention, there is provided an electrolytic ozone generating element in which a cathode having a cathode catalyst layer and an anode having an anode catalyst layer are opposed to each other with a solid polymer electrolyte membrane interposed therebetween. In the anode catalyst layer of the anode,
Since it contains a solid polymer electrolyte whose acidity is weaker than that of the solid polymer electrolyte membrane, elution of lead dioxide when the application of voltage is stopped is suppressed, and the application of an external voltage at rest is not required, and the life is improved. Is done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明における一実施の形態の電解式オゾ
ン発生素子を示す断面模式図である。
FIG. 1 is a schematic sectional view showing an electrolytic ozone generating element according to an embodiment of the present invention.

【図2】 この発明における一実施の形態の電解式オゾ
ン発生素子の陽極近傍の断面模式図である。
FIG. 2 is a schematic cross-sectional view near an anode of an electrolytic ozone generating element according to an embodiment of the present invention.

【図3】 この発明における一実施の形態および従来の
電解式オゾン発生素子の寿命性能を示す図である。
FIG. 3 is a view showing the life performance of an embodiment of the present invention and a conventional electrolytic ozone generating element.

【図4】 鉛の電位−pH図と固体高分子電解質の酸性
度を示す図である。
FIG. 4 is a diagram showing a potential-pH diagram of lead and an acidity of a solid polymer electrolyte.

【図5】 従来の電解式オゾン発生素子の動作原理を示
す断面摸式図である。
FIG. 5 is a schematic sectional view showing the operation principle of a conventional electrolytic ozone generating element.

【符号の説明】[Explanation of symbols]

1 固体高分子膜、2 陽極、3 陰極、4 陽極触媒
層(二酸化鉛)、5チタン製エキスパンドメタル、6
陰極触媒層、7 カーボンペーパ、8 外部回路、9
外部電源、20 酸性度の弱い固体高分子電解質の薄い
皮膜、21従来のオゾン発生素子の寿命性能、22 実
施の形態1のオゾン発生素子の寿命性能、24 スルフ
ォン酸膜の酸性度、23 カルボン酸膜の酸性度、25
PbO2の安定な領域、26 Pb2+イオンの安定な
領域
1 solid polymer membrane, 2 anode, 3 cathode, 4 anode catalyst layer (lead dioxide), 5 expanded titanium metal, 6
Cathode catalyst layer, 7 carbon paper, 8 external circuit, 9
External power supply, 20 Thin film of solid polymer electrolyte with low acidity, 21 Lifetime performance of conventional ozone generating element, 22 Lifetime performance of ozone generating element of Embodiment 1, 24 Acidity of sulfonic acid film, 23 Carboxylic acid Membrane acidity, 25
PbO 2 stable region, 26 Pb 2+ ion stable region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福本 久敏 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 4K021 AA01 AB15 DB13 DB18 DB19 DB21 DB22 DB31 DB33 DB53 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hisatoshi Fukumoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4K021 AA01 AB15 DB13 DB18 DB19 DB21 DB22 DB31 DB33 DB53

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜、この固体高分子電
解質膜を挟んで対峙させた陰極及び陽極、この陽極と上
記固体高分子電解質膜との間に配した、上記固体高分子
電解質膜よりも酸性度の弱い固体高分子電解質の薄い皮
膜を有することを特徴とする電解式オゾン発生素子。
1. A solid polymer electrolyte membrane, a cathode and an anode facing each other with the solid polymer electrolyte membrane interposed therebetween, and the solid polymer electrolyte membrane disposed between the anode and the solid polymer electrolyte membrane. An electrolytic ozone generating element characterized by having a thin film of a solid polymer electrolyte having low acidity.
【請求項2】 固体高分子電解質膜、この固体高分子電
解質膜を挟んで対峙させた陰極触媒層を有する陰極及び
陽極触媒層を有する陽極、この陽極の陽極触媒層中に含
まれ、上記固体高分子電解質膜よりも酸性度の弱い固体
高分子電解質を備えたことを特徴とする電解式オゾン発
生素子。
2. A solid polymer electrolyte membrane, a cathode having a cathode catalyst layer opposed to the solid polymer electrolyte membrane and an anode having an anode catalyst layer, and the solid contained in the anode catalyst layer of the anode. An electrolytic ozone generating element comprising a solid polymer electrolyte having a lower acidity than a polymer electrolyte membrane.
【請求項3】 固体高分子電解質膜はスルフォン酸膜で
あり、固体高分子電解質膜よりも酸性度の弱い固体高分
子電解質はカルボン酸であることを特徴とする請求項1
または2記載の電解式オゾン発生素子。
3. The solid polymer electrolyte membrane according to claim 1, wherein the solid polymer electrolyte membrane is a sulfonic acid membrane, and the solid polymer electrolyte having a lower acidity than the solid polymer electrolyte membrane is a carboxylic acid.
Or the electrolytic ozone generating element according to 2.
JP11053554A 1999-03-02 1999-03-02 Electrolytic ozone generating element Pending JP2000248393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11053554A JP2000248393A (en) 1999-03-02 1999-03-02 Electrolytic ozone generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11053554A JP2000248393A (en) 1999-03-02 1999-03-02 Electrolytic ozone generating element

Publications (1)

Publication Number Publication Date
JP2000248393A true JP2000248393A (en) 2000-09-12

Family

ID=12946034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11053554A Pending JP2000248393A (en) 1999-03-02 1999-03-02 Electrolytic ozone generating element

Country Status (1)

Country Link
JP (1) JP2000248393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus
JP4528840B2 (en) * 2008-02-29 2010-08-25 日科ミクロン株式会社 Ozone water generator

Similar Documents

Publication Publication Date Title
Damjanovic et al. Electrode kinetics of oxygen evolution and dissolution on Rh, Ir, and Pt‐Rh alloy electrodes
US4478917A (en) Fuel cell
US3912538A (en) Novel composite fuel cell electrode
US20050123816A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JP2001076740A (en) Polymer electrolyte fuel cell
US20090311577A1 (en) Corrosion-resistant material and manufacturing method of the same
JP2003272671A (en) Cell unit of solid polymer electrolyte fuel cell
JP4367062B2 (en) Fuel cell separator
GB2071157A (en) Catalytic electrode and combined catalytic electrode and electrolytic structure
Chang et al. Kinetics of oxygen reduction at RuO2-coated titanium electrode in alkaline solution
JPH11162478A (en) Separator for fuel cell
Matsumoto et al. New types of anodes for the oxygen evolution reaction in acidic solution
JP2009209379A (en) Water electrolysis apparatus
JP6859980B2 (en) Bipolar plate
JPH0488182A (en) Electrode structure for ozone production and its production
JPH1121687A (en) Solid polymer type water electrolytic cell
JP2000248393A (en) Electrolytic ozone generating element
JP5618485B2 (en) Electrochemical cell operation method
JP3454838B2 (en) Solid polymer electrolyte membrane fuel cell
JPH08164319A (en) Dehumidifying element
Chang et al. Kinetics of Oxygen Reduction at IrO2‐Coated Titanium Electrode in Alkaline Solution
JP2007128908A (en) Cell unit of solid polymer electrolyte fuel cell
JP3387046B2 (en) Fuel cell separator
WO2021226708A1 (en) Multilayered anode in liquid based electrolysis
JPH0417689A (en) Electrode for electrolyzing water and production thereof