JPH08164319A - Dehumidifying element - Google Patents

Dehumidifying element

Info

Publication number
JPH08164319A
JPH08164319A JP6307447A JP30744794A JPH08164319A JP H08164319 A JPH08164319 A JP H08164319A JP 6307447 A JP6307447 A JP 6307447A JP 30744794 A JP30744794 A JP 30744794A JP H08164319 A JPH08164319 A JP H08164319A
Authority
JP
Japan
Prior art keywords
anode
dehumidifying element
polymer electrolyte
solid polymer
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6307447A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Imaizumi
泉 三 之 今
Shiro Yamauchi
内 四 郎 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPT D D MELCO LAB KK
Optec Dai Ichi Denko Co Ltd
Mitsubishi Electric Corp
Original Assignee
OPT D D MELCO LAB KK
Optec Dai Ichi Denko Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPT D D MELCO LAB KK, Optec Dai Ichi Denko Co Ltd, Mitsubishi Electric Corp filed Critical OPT D D MELCO LAB KK
Priority to JP6307447A priority Critical patent/JPH08164319A/en
Publication of JPH08164319A publication Critical patent/JPH08164319A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Drying Of Gases (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To improve initial driving property of a dehumidifying element in which a solid high polymer electrolyte film is inserted between an anode and a cathode and also to prevent the solid high polymer electrolyte film from being damaged due to elution of metal ions from the anode of the dehumidifying element. CONSTITUTION: Hydrophilic oxide such as silica gel is deposited on a porous base material 11 forming an anode of a dehumidifying element, thereby hygroscopicity of the porous base material 11 is enhanced to prompt wetting of a solid high polymer electrolyte film 3. Further, elution of metal ions from fine holes formed in a coating film of the platinum plating is prevented by forming the porous base material 11 with a platinum-plated titanium fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質膜を
用いた除湿素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehumidifying element using a solid polymer electrolyte membrane.

【0002】[0002]

【従来の技術】この種の除湿素子は、図3に示すよう
に、水を電気分解して酸素を発生する陽極1と、水を発
生して酸素を消費する陰極2との間に、水素分離膜とな
る固体高分子電解質膜3が挟持された基本構造になって
いる(特開昭61−216714号公報)。なお、図
中、4は集電体、5は除湿室、6は陽極1と陰極2との
間に直流電圧を印加する外部電源、7は除湿素子全体を
陽極1側と陰極2側の両方から挟持する押え板、8およ
び9はその押え板7を締め止めるボルトおよびナットで
ある。
2. Description of the Related Art As shown in FIG. 3, a dehumidifying element of this type has a structure in which a hydrogen is provided between an anode 1 which electrolyzes water to generate oxygen and a cathode 2 which generates water to consume oxygen. It has a basic structure in which a solid polymer electrolyte membrane 3 serving as a separation membrane is sandwiched (Japanese Patent Laid-Open No. 61-216714). In the figure, 4 is a current collector, 5 is a dehumidifying chamber, 6 is an external power source for applying a DC voltage between the anode 1 and the cathode 2, and 7 is the entire dehumidifying element on both the anode 1 side and the cathode 2 side. The holding plates, 8 and 9 which are clamped from are bolts and nuts for fastening the holding plate 7.

【0003】陽極1と陰極2は、固体高分子電解質膜3
の表面に一部を食い込ませた多孔質基材で成り、その多
孔質基材は、触媒層となる白金をめっきしたステンレス
繊維で成形されている。この両極間に外部電源6から直
流電圧を印加すると、陽極1では、水が電気分解されて
次式(1)の反応が起こり、除湿室5内の湿度が低下す
る。 2H2 O → O2 +4H+ +4e- ・・・・・・(1) そして、このとき発生するプロトン(H+ )が、陽極1
側から固体高分子電解質膜3を通じて陰極2側に移行
し、また、電子(e- )が、外部電源6の回路を通じて
陰極2に達するので、陰極2では、次式(2)の反応が
起こり、酸素を消費して水が発生する。 O2 +4H+ +4e- → 2H2 O ・・・・・・(2) また、陽極1側からは、プロトン(H+ )と共に平均3
分子程度の水が陰極2側へ移行するので、除湿室5の湿
度効果が更に高められる。
Anode 1 and cathode 2 are solid polymer electrolyte membrane 3
The surface of the substrate is made of a porous base material that is partly invaded, and the porous base material is formed of platinum-plated stainless fiber serving as a catalyst layer. When a DC voltage is applied from the external power source 6 between the two electrodes, water is electrolyzed in the anode 1 to cause the reaction of the following formula (1), and the humidity in the dehumidifying chamber 5 decreases. 2H 2 O → O 2 + 4H + + 4e - ······ (1) Then, the protons (H +) generated at this time, the anode 1
Side to the cathode 2 side through the solid polymer electrolyte membrane 3, and electrons (e ) reach the cathode 2 through the circuit of the external power source 6, so that the reaction of the following formula (2) occurs at the cathode 2. , Consume oxygen to generate water. O 2 + 4H + + 4e → 2H 2 O (2) Further, from the anode 1 side, an average of 3 together with protons (H + ) is obtained.
Since water of a molecular level moves to the cathode 2 side, the humidity effect of the dehumidifying chamber 5 is further enhanced.

【0004】[0004]

【発明が解決しようとする課題】ところで、固体高分子
電解質膜3としては、撥水性のパーフルオロカーボン基
と親水性のスルホン基が結合したナフィオン(Nafion)
−117 (デュポン社の登録商標)などを用いているが、
その素材は吸湿性が充分でない。このため、除湿素子を
駆動させる初期段階において、固体高分子電解質膜3の
表面が湿潤するまで充分な動作を示さず、水の電気分解
による除湿動作が円滑に進行しないので、初期駆動特性
にバラツキを生ずるという欠点があった。また、陽極1
のステンレス繊維にめっきする白金めっきは、膜厚が数
μm以下であり、そのめっき工程において微小な孔が生
ずることは避けられないから、陽極1と陰極2との間に
直流電圧が印加されると、陽極1のステンレス繊維から
クロムやニッケル,鉄などの金属イオンが溶出して固体
高分子電解質膜3を損傷するおそれがあった。そこで本
発明は、除湿素子の初期駆動特性を改善すると共に、陽
極からの金属イオンの溶出による固体高分子電解質膜の
損傷を確実に防止することを技術的課題としている。
By the way, as the solid polymer electrolyte membrane 3, Nafion in which a water-repellent perfluorocarbon group and a hydrophilic sulfone group are bonded is used.
-117 (registered trademark of DuPont) is used,
The material is not hygroscopic. Therefore, in the initial stage of driving the dehumidifying element, sufficient operation is not exhibited until the surface of the solid polymer electrolyte membrane 3 becomes wet, and the dehumidifying operation due to electrolysis of water does not proceed smoothly, so that the initial driving characteristics vary. There was a drawback that it caused. Also, the anode 1
The platinum plating for plating the stainless steel fiber has a film thickness of several μm or less, and it is unavoidable that minute holes are generated in the plating process. Therefore, a DC voltage is applied between the anode 1 and the cathode 2. Then, metal ions such as chromium, nickel and iron may be eluted from the stainless fiber of the anode 1 to damage the solid polymer electrolyte membrane 3. Therefore, it is a technical object of the present invention to improve the initial drive characteristics of the dehumidifying element and surely prevent damage to the solid polymer electrolyte membrane due to elution of metal ions from the anode.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、水を電気分解して酸素を発生する陽極
と、水を発生して酸素を消費する陰極との間に、水素分
離膜となる固体高分子電解質膜が挟持された除湿素子に
おいて、その初期駆動特性を改善するために、陽極を形
成する多孔質基材にシリカゲルやゼオライトあるいは活
性アルミナなどの親水性酸化物を担持させるか、又は固
体高分子電解質膜の陽極側の表面に親水性酸化物を塗着
させることを特徴としている。また、陽極からの金属イ
オンの溶出による固体高分子電解質膜の損傷を防止する
ために、陽極の多孔質基材を白金めっきしたチタン繊維
で形成している。
In order to solve the above-mentioned problems, the present invention relates to an anode that electrolyzes water to generate oxygen and a cathode that generates water to consume oxygen. In a dehumidifying element in which a solid polymer electrolyte membrane serving as a hydrogen separation membrane is sandwiched, in order to improve its initial driving characteristics, a hydrophilic oxide such as silica gel, zeolite or activated alumina is added to a porous base material forming an anode. It is characterized in that it is supported or a hydrophilic oxide is applied to the surface of the solid polymer electrolyte membrane on the anode side. Further, in order to prevent damage to the solid polymer electrolyte membrane due to elution of metal ions from the anode, the porous base material of the anode is formed of platinum-plated titanium fiber.

【0006】[0006]

【作用】本発明によれば、陽極を形成する多孔質基材に
担持された親水性酸化物、又は固体高分子電解質膜の陽
極側表面に塗着された親水性酸化物によって、陽極への
吸湿性が高められ、その吸湿効果により固体高分子電解
質膜が充分に湿潤して、除湿素子の初期駆動時において
も水の電気分解による除湿動作が円滑に行われ、初期駆
動特性が著しく安定する。。また、陽極の多孔質基材を
白金めっきしたチタン繊維で形成すれば、チタンは強固
で緻密な酸化皮膜を形成し、ステンレスよりも耐蝕性が
優れているから、白金めっきの皮膜に生じた微小孔から
金属イオンが溶出して固体高分子電解質膜を損傷するお
それもなくなる。
According to the present invention, the hydrophilic oxide supported on the porous base material forming the anode or the hydrophilic oxide coated on the surface of the solid polymer electrolyte membrane on the anode side is applied to the anode. The hygroscopicity is enhanced, the solid polymer electrolyte membrane is sufficiently moistened by the hygroscopic effect, the dehumidifying operation by the electrolysis of water is smoothly performed even during the initial driving of the dehumidifying element, and the initial driving characteristics are remarkably stable. . . In addition, if the porous base material of the anode is made of platinum-plated titanium fiber, titanium forms a strong and dense oxide film and has better corrosion resistance than stainless steel. There is also no risk of metal ions being eluted from the pores and damaging the solid polymer electrolyte membrane.

【0007】[0007]

【実施例】以下、本発明の実施例を図面によって具体的
に説明する。図1は本発明の第一実施例を示す図、図2
はその第二実施例を示す図である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the present invention, FIG.
FIG. 6 is a diagram showing a second embodiment thereof.

【0008】図1に示す第一実施例の除湿素子は、陽極
1の多孔質基材11が白金めっきしたステンレス繊維又
はチタン繊維で形成されると共に、その多孔質基材11
に親水性酸化物が担持されている。親水性酸化物として
は、吸湿性の優れたシリカゲルやアルミノシリケートの
含水金属塩であるゼオライト、活性アルミナ、ムライ
ト、ジルコニア、あるいはマグネシアなどの微粉末が用
いられ、その微粉末をステンレス繊維やチタン繊維に白
金めっきする電気めっき浴に分散させて、白金めっきの
皮膜中に共析させる。すなわち、陽極1の多孔質基材1
1を形成するステンレス繊維やチタン繊維に白金めっき
する電気めっき浴に親水性酸化物の微粒子を分散させ
て、白金めっきの皮膜中にその微粒子の分散相を含む複
合皮膜を形成する分散めっき法により、図1に点描で示
すように、陽極1の多孔質基材11全体にわたって親水
性酸化物を担持させる。なお、陰極2の多孔質基材1
1’も、陽極1の多孔質基材11と同様に白金めっきし
たステンレス繊維又はチタン繊維で形成され、それら多
孔質基材11および11’間に固体高分子電解質膜3が
挟持されている。
In the dehumidifying element of the first embodiment shown in FIG. 1, the porous base material 11 of the anode 1 is made of platinum-plated stainless fiber or titanium fiber, and the porous base material 11 is used.
A hydrophilic oxide is supported on. As the hydrophilic oxide, fine powder such as silica gel or hydrous metal salt of aluminosilicate having excellent hygroscopicity, activated alumina, mullite, zirconia, or magnesia is used, and the fine powder is stainless fiber or titanium fiber. It is dispersed in an electroplating bath for platinum plating, and co-deposited in the platinum plating film. That is, the porous substrate 1 of the anode 1
1. A dispersion plating method in which fine particles of a hydrophilic oxide are dispersed in an electroplating bath for platinizing stainless steel fibers or titanium fibers forming 1 to form a composite film containing a dispersed phase of the fine particles in a platinum plating film. As shown by dotted lines in FIG. 1, a hydrophilic oxide is supported on the entire porous base material 11 of the anode 1. In addition, the porous substrate 1 of the cathode 2
Similarly to the porous substrate 11 of the anode 1, 1'is also formed of platinum-plated stainless fiber or titanium fiber, and the solid polymer electrolyte membrane 3 is sandwiched between these porous substrates 11 and 11 '.

【0009】以上が、除湿素子の基本的な構成であり、
次に、除湿性能評価のために試作した除湿素子の具体的
な構成例とその性能評価について説明する。陽極1の多
孔質基材11と陰極2の多孔質基材11’は、いずれも
白金めっきしたチタン繊維で厚さ 0.2mmに形成した。な
お、白金めっきの厚さは13μmである。また、陽極1
に担持させる親水性酸化物としては、粒径3〜5μmの
KA型ゼオライト微粉末を用い、それを白金めっきの電
気めっき浴中にめっき浴1リットル当たり100〜20
0g添加して、多孔質基材11を形成するチタン繊維の
表面に容積比で白金9部:KA型ゼオライト微粉末1部
の分散めっき皮膜を形成した。
The above is the basic structure of the dehumidifying element,
Next, a specific configuration example of a dehumidifying element prototyped for dehumidifying performance evaluation and its performance evaluation will be described. Both the porous base material 11 of the anode 1 and the porous base material 11 'of the cathode 2 were formed of platinum-plated titanium fibers to a thickness of 0.2 mm. The platinum plating has a thickness of 13 μm. Also, the anode 1
As the hydrophilic oxide to be supported on, KA-type zeolite fine powder having a particle size of 3 to 5 μm is used, which is added to an electroplating bath for platinum plating in an amount of 100 to 20 per liter of the plating bath.
0 g was added to form a dispersed plating film of 9 parts of platinum: 1 part of KA type zeolite fine powder in a volume ratio on the surface of the titanium fiber forming the porous substrate 11.

【0010】固体高分子電解質膜3としては、従来と同
様にナフィオン−117を用い、それを多孔質基材11
および11’間に挟んで190℃、50Kgf /cm2 の成
形圧力でホットプレスして、その電解質膜3の両面に夫
々多孔質基材11と多孔質基材11が食い込んだ食い込
み部12および12’を形成した。なお、多孔質基材1
1および11’と固体高分子電解質膜3の面積はいずれ
も100mm×100mmに選定し、固体高分子電解質
膜3の厚さは180μm、食い込み部12および12’
の深さは夫々170μmにした。
As the solid polymer electrolyte membrane 3, Nafion-117 is used as in the conventional case, and it is used as the porous substrate 11
And 11 'and hot pressed at a molding pressure of 50 Kgf / cm 2 at 190 ° C. to form a porous base material 11 on both sides of the electrolyte membrane 3 and bite parts 12 and 12 invaded by the porous base material 11, respectively. 'Formed. In addition, the porous substrate 1
The areas of 1 and 11 'and the solid polymer electrolyte membrane 3 are both selected to be 100 mm x 100 mm, the thickness of the solid polymer electrolyte membrane 3 is 180 µm, and the bite portions 12 and 12'
The depth of each was 170 μm.

【0011】上記仕様の除湿素子を20例用意し、夫々
を内容積40リットルの容器の一部に取り付けて、外部
電源6により3Vの直流電圧を印加した性能試験によれ
ば、室温30℃で容器内相対湿度80%の初期駆動状態
から、5時間後にはその相対湿度が30%以下に低下
し、従来のものと全く遜色ない除湿性能が得られた。ま
た、前記除湿素子に直流電圧3Vを印加したまま室温で
1年間放置した後、改めて室温30℃で容器内相対湿度
80%に加湿し、その除湿性能を評価したところ、5時
間後の容器内相対湿度は30%以下に低下しており、従
来のものとは違って経年変化による性能劣化は全く認め
られなかった。これは、チタン繊維で形成した陽極1か
ら固体高分子電解質膜3に損傷を与える金属イオンが溶
出しないからであり、実際に電子線マイクロアナライザ
を用いて固体高分子電解質膜3の断面を検査しても、金
属イオンによる損傷は全く認められなかった。
According to a performance test in which 20 dehumidifying elements having the above-mentioned specifications were prepared, each of which was attached to a part of a container having an internal volume of 40 liters, and a DC voltage of 3 V was applied by an external power source 6, at room temperature of 30 ° C. After 5 hours from the initial driving state where the relative humidity in the container was 80%, the relative humidity decreased to 30% or less after 5 hours, and dehumidification performance comparable to the conventional one was obtained. Also, after leaving the dehumidifying element at room temperature for 1 year while applying a DC voltage of 3 V, it was humidified again to a relative humidity of 80% in the container at room temperature of 30 ° C., and its dehumidification performance was evaluated. The relative humidity was reduced to 30% or less, and unlike the conventional one, no performance deterioration due to aging was observed. This is because the metal ions that damage the solid polymer electrolyte membrane 3 do not elute from the anode 1 formed of titanium fiber, and the cross section of the solid polymer electrolyte membrane 3 is actually inspected using an electron beam microanalyzer. However, no damage due to metal ions was observed.

【0012】更に、前記除湿素子は、20例すべてが、
初期駆動状態においても正常な除湿性能を示し、従来の
ような初期駆動特性のバラツキが全く認められなかっ
た。これは、陽極1に担持された親水性酸化物のゼオラ
イトによって陽極1の吸湿性が高められ、除湿素子の駆
動初期においても固体高分子電解質3が充分な動作特性
を発揮し得るほど湿潤していることによる。なお、陽極
1の白金めっきの皮膜中に親水性酸化物の微粒子を分散
させる方法は、分散めっき以外にも、所定の容積比の白
金と親水性酸化物の混合粉末の溶射や、スパッタリング
などがある。
Furthermore, the dehumidifying element is
Normal dehumidification performance was exhibited even in the initial drive state, and no variation in the initial drive characteristics as in the conventional case was observed. This is because the hydrophilic oxide zeolite carried on the anode 1 enhances the hygroscopicity of the anode 1, and the solid polymer electrolyte 3 is wet enough to exhibit sufficient operating characteristics even in the initial driving stage of the dehumidifying element. It depends. The method of dispersing fine particles of the hydrophilic oxide in the platinum-plated film of the anode 1 is not limited to the dispersion plating, but includes spraying a mixed powder of platinum and the hydrophilic oxide in a predetermined volume ratio, or sputtering. is there.

【0013】また、親水性酸化物は、陽極1を形成する
多孔質基材11に担持させる場合に限らず、図2の第二
実施例に示すように、その多孔質基材11を食い込ませ
る固体高分子電解質3の陽極1側表面に塗着しても良
い。すなわち、図2に示す除湿素子は、例えば市販のパ
ーフルオロカーボン・スルフォン酸溶液中に容積比で1
0〜20%の親水性粉末の粒子を分散させ、これを固体
高分子電解質3の陽極1側表面に塗布した後、白金めっ
きしたチタン繊維から成る陽極1の多孔質基材11を固
体高分子電解質3に食い込ませるようにホットプレスし
て、その食い込み部12が親水性酸化物で形成されてい
る。この除湿素子も、図1の除湿素子と同様に初期駆動
時において安定な除湿性能を示した。
Further, the hydrophilic oxide is not limited to being carried on the porous base material 11 forming the anode 1, but the porous base material 11 is eroded as shown in the second embodiment of FIG. It may be applied to the surface of the solid polymer electrolyte 3 on the side of the anode 1. That is, the dehumidifying element shown in FIG. 2 has, for example, a volume ratio of 1 in a commercially available perfluorocarbon / sulfonic acid solution.
Particles of 0 to 20% of hydrophilic powder are dispersed and applied to the surface of the solid polymer electrolyte 3 on the side of the anode 1, and then the porous substrate 11 of the anode 1 made of platinum-plated titanium fibers is used as a solid polymer. Hot pressing is performed so as to bite into the electrolyte 3, and the biting portion 12 is formed of a hydrophilic oxide. This dehumidifying element also showed stable dehumidifying performance at the time of initial driving similarly to the dehumidifying element of FIG.

【0014】[0014]

【発明の効果】本発明によれば、吸湿性の高い親水性酸
化物が、陽極を形成する多孔質基材に担持され、又は固
体高分子電解質膜の陽極側表面に塗着されることによっ
て、除湿素子の初期駆動時においても水の電気分解によ
る除湿動作が円滑に行われるので、初期駆動特性にバラ
ツキを生ずるという欠点が解消される。また、陽極の多
孔質基材を白金めっきしたチタン繊維で形成すれば、そ
の白金めっきの皮膜に生じた微小な孔から金属イオンが
溶出して固体高分子電解質膜を損傷するおそれもなくな
り、長期間にわたって安定した駆動特性が得られる。
According to the present invention, a highly hygroscopic hydrophilic oxide is supported on a porous base material forming an anode or is applied to the anode side surface of a solid polymer electrolyte membrane. Since the dehumidifying operation by the electrolysis of water is smoothly performed even at the time of the initial driving of the dehumidifying element, the disadvantage that the initial driving characteristics vary can be solved. Further, when the porous base material of the anode is formed of platinum-plated titanium fiber, there is no risk of metal ions being eluted from the minute pores formed in the platinum-plated film and damaging the solid polymer electrolyte membrane. Stable drive characteristics can be obtained over a period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示す除湿素子の断面図。FIG. 1 is a sectional view of a dehumidifying element showing a first embodiment of the present invention.

【図2】本発明の第二実施例を示す除湿素子の断面図。FIG. 2 is a sectional view of a dehumidifying element showing a second embodiment of the present invention.

【図3】従来の除湿素子を示す断面図。FIG. 3 is a cross-sectional view showing a conventional dehumidifying element.

【符号の説明】[Explanation of symbols]

1・・・陽極 2・・・陰極 3・・・固体高分子電解質膜 11・・・陽極を形成する多孔質基材 DESCRIPTION OF SYMBOLS 1 ... Anode 2 ... Cathode 3 ... Solid polymer electrolyte membrane 11 ... Porous base material which forms an anode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今 泉 三 之 東京都東久留米市八幡町一丁目2番9号 株式会社オプテックディディ・メルコ・ラ ボラトリー内 (72)発明者 山 内 四 郎 尼崎市塚口本町8−1−1 三菱電機株式 会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuyuki Imazumi 1-2-9 Hachiman-cho, Higashi-Kurume City, Tokyo Metropolitan Co., Ltd. (72) Inventor Shiro Yamauchi Amarozaki-shi 8-1-1 Tsukaguchihonmachi Mitsubishi Electric Corporation Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水を電気分解して酸素を発生する陽極
(1)と、水を発生して酸素を消費する陰極(2)との
間に、水素分離膜となる固体高分子電解質膜(3)が挟
持された除湿素子において、前記陽極(1)を形成する
多孔質基材(11)に親水性酸化物が担持されていること
を特徴とする除湿素子。
1. A solid polymer electrolyte membrane (hydrogen separation membrane) between a positive electrode (1) which electrolyzes water to generate oxygen and a negative electrode (2) which generates water to consume oxygen. In the dehumidifying element in which 3) is sandwiched, the porous substrate (11) forming the anode (1) carries a hydrophilic oxide, and the dehumidifying element is characterized.
【請求項2】 前記多孔質基材(11)にめっきする白金
めっきの皮膜中に、親水性酸化物の微粒子が分散して担
持されている請求項1記載の除湿素子。
2. The dehumidifying element according to claim 1, wherein fine particles of hydrophilic oxide are dispersed and carried in a platinum plating film to be plated on the porous substrate (11).
【請求項3】 前記多孔質基材(11)が、白金めっきし
たチタン繊維で形成されている請求項1又は2記載の除
湿素子。
3. The dehumidifying element according to claim 1, wherein the porous substrate (11) is formed of platinum-plated titanium fiber.
【請求項4】 水を電気分解して酸素を発生する陽極
(1)と、水を発生して酸素を消費する陰極(2)との
間に、水素分離膜となる固体高分子電解質膜(3)が挟
持された除湿素子において、前記固体高分子電解質膜
(3)の前記陽極(1)側表面に親水性酸化物が塗着さ
れていることを特徴とする除湿素子。
4. A solid polymer electrolyte membrane (hydrogen separation membrane) between a positive electrode (1) that electrolyzes water to generate oxygen and a negative electrode (2) that generates water and consumes oxygen. In the dehumidifying element in which 3) is sandwiched, a hydrophilic oxide is applied to the surface of the solid polymer electrolyte membrane (3) on the side of the anode (1), which is a dehumidifying element.
JP6307447A 1994-12-12 1994-12-12 Dehumidifying element Pending JPH08164319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307447A JPH08164319A (en) 1994-12-12 1994-12-12 Dehumidifying element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307447A JPH08164319A (en) 1994-12-12 1994-12-12 Dehumidifying element

Publications (1)

Publication Number Publication Date
JPH08164319A true JPH08164319A (en) 1996-06-25

Family

ID=17969178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307447A Pending JPH08164319A (en) 1994-12-12 1994-12-12 Dehumidifying element

Country Status (1)

Country Link
JP (1) JPH08164319A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120816A1 (en) * 2000-01-28 2001-08-01 Ebara Corporation Substrate container and method of dehumidifying substrate container
KR100356404B1 (en) * 2000-03-04 2002-10-19 Nmctek Co Ltd Method and apparatus for eliminating specified hazardous substance in water using electric field
EP1284154A2 (en) * 2001-08-16 2003-02-19 Mitsubishi Denki Kabushiki Kaisha Electrochemical element and electrochemical element apparatus
JP2009061375A (en) * 2007-09-05 2009-03-26 Casio Comput Co Ltd Gas-liquid separator, generating set, and electronics
JP2014095531A (en) * 2012-11-12 2014-05-22 Toshiba Corp Food storage
JP2015094026A (en) * 2013-11-14 2015-05-18 株式会社東芝 Oxygen reducing apparatus and refrigerator
CN106400047A (en) * 2016-09-29 2017-02-15 中国科学院大连化学物理研究所 Isothermal dehumidification oxygen-enriched electrochemical device and application
CN108151191A (en) * 2017-12-22 2018-06-12 许昌学院 Gaseous state hydrone trapping electrolysis unit, preparation method and the application in electrochemistry dehumidifying

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120816A1 (en) * 2000-01-28 2001-08-01 Ebara Corporation Substrate container and method of dehumidifying substrate container
US6547953B2 (en) 2000-01-28 2003-04-15 Ebara Corporation Substrate container and method of dehumidifying substrate container
KR100356404B1 (en) * 2000-03-04 2002-10-19 Nmctek Co Ltd Method and apparatus for eliminating specified hazardous substance in water using electric field
EP1284154A2 (en) * 2001-08-16 2003-02-19 Mitsubishi Denki Kabushiki Kaisha Electrochemical element and electrochemical element apparatus
JP2003059506A (en) * 2001-08-16 2003-02-28 Mitsubishi Electric Corp Electrochemical element and electrochemical element device
US7074515B2 (en) 2001-08-16 2006-07-11 Mitsubishi Denki Kabushiki Kaisha Electrochemical element and electrochemical element apparatus
EP1284154A3 (en) * 2001-08-16 2007-12-26 Mitsubishi Denki Kabushiki Kaisha Electrochemical element and electrochemical element apparatus
JP2009061375A (en) * 2007-09-05 2009-03-26 Casio Comput Co Ltd Gas-liquid separator, generating set, and electronics
JP2014095531A (en) * 2012-11-12 2014-05-22 Toshiba Corp Food storage
JP2015094026A (en) * 2013-11-14 2015-05-18 株式会社東芝 Oxygen reducing apparatus and refrigerator
CN106400047A (en) * 2016-09-29 2017-02-15 中国科学院大连化学物理研究所 Isothermal dehumidification oxygen-enriched electrochemical device and application
CN108151191A (en) * 2017-12-22 2018-06-12 许昌学院 Gaseous state hydrone trapping electrolysis unit, preparation method and the application in electrochemistry dehumidifying

Similar Documents

Publication Publication Date Title
US20050123816A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
US7977012B2 (en) Method of coating a surface of a fuel cell plate
CA2238189A1 (en) New polymer material for electrolytic membranes in fuel cells
JPWO2003026052A1 (en) Bipolar plate for fuel cell and manufacturing method thereof
CA2371129A1 (en) Process for producing a membrane electrode assembly, and membrane electrode assembly produced using this process, as well as associated fuel cell battery
AU2001272664A1 (en) Stainless steel substrate treatment
WO2007112563A1 (en) Air diffusion cathodes for fuel cells
EP1305836A1 (en) Stainless steel substrate treatment
US20030170526A1 (en) Substrate treatment
JP2002527875A (en) Bipolar plates for fuel cells
JP2001297777A (en) Macromolecular electrolyte fuel cell
JPS6258621B2 (en)
JP2001351642A (en) Separator for fuel cell
JPH08164319A (en) Dehumidifying element
JPH0488182A (en) Electrode structure for ozone production and its production
WO2007105486A1 (en) Fuel cell separator and method for manufacturing fuel cell separator
EP1511105A1 (en) End plates and current collector plates for fuel cells
EP0228602B1 (en) A method for making an improved solid polymer electrolyte electrode using a liquid or solvent
CA2288678C (en) Production of electrolyte units by electrolytic deposition of a catalyst
CN115287699A (en) Bipolar plate assembly and electrolytic tank
JP2955675B2 (en) Water electrolyzer using solid polymer electrolyte membrane
JP2004071321A (en) Metal separator for fuel cell and manufacturing method therefor
JP2000182640A (en) On-vehicle fuel cell
JPH0529005A (en) Electrode/electrolyte joined body, manufacture thereof and fuel cell using the same
JP3127991B2 (en) Method for producing electrode assembly of laminated ion exchange membrane having porous membrane on surface