JP2000248324A - CORROSION RESISTANT Ti ALLOY - Google Patents

CORROSION RESISTANT Ti ALLOY

Info

Publication number
JP2000248324A
JP2000248324A JP11365476A JP36547699A JP2000248324A JP 2000248324 A JP2000248324 A JP 2000248324A JP 11365476 A JP11365476 A JP 11365476A JP 36547699 A JP36547699 A JP 36547699A JP 2000248324 A JP2000248324 A JP 2000248324A
Authority
JP
Japan
Prior art keywords
alloy
corrosion
resistant
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11365476A
Other languages
Japanese (ja)
Other versions
JP3878376B2 (en
Inventor
Takashi Yashiki
貴司 屋敷
Hideto Oyama
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP36547699A priority Critical patent/JP3878376B2/en
Publication of JP2000248324A publication Critical patent/JP2000248324A/en
Application granted granted Critical
Publication of JP3878376B2 publication Critical patent/JP3878376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Ti alloy less expensive than the presently used Ti-0.15Pd alloy and having excellent corrosion resistance and also to provide a corrosion resistant Ti alloy having cold workability (press workability) equal or superior to that of the Ti-0.15Pd alloy and further a corrosion resistant Ti alloy excellent also in hydrogen absorption resistance. SOLUTION: The Ti alloy excellent in corrosion resistance can be obtained by providing a composition consisting of, by mass (the same applies to the following), 0.020-0.050% Pd, one or more platinum group elements other than Pd in an amount one-third (in mass ratio) the amount of Pd or more, and the balance permissible components and Ti. To obtain the corrosion resistant Ti alloy excellent in cold formability, it is desirable to provide a composition consisting of 0.020-0.050% Pd, 0.01-0.03% Ir and/or Pt, <=0.05% Fe, <=0.05% O, and the balance permissible elements and Ti. Further, in addition to cold formability and corrosion resistance, hydrogen absorption resistance can also be imparted by regulating the amount of Pd to <=0.030%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食Ti合金と、
この耐食Ti合金を用いてなる部材に関するものであ
る。
TECHNICAL FIELD The present invention relates to a corrosion-resistant Ti alloy,
The present invention relates to a member using the corrosion-resistant Ti alloy.

【0002】[0002]

【従来の技術】純Tiは、ステンレス鋼や銅合金に比較
して一般に耐食性に優れることが知られているが、高温
高濃度の非酸化性酸中では腐食を生じる。また高温高濃
度の塩化物水溶液中では隙間腐食が発生しうる。これら
の腐食を防止する方法として、合金化元素を添加した
り、腐食環境中へ酸化剤を添加したり、或いは表面処理
を施す等の方法が検討されている。中でも合金化元素の
添加は最も確実な方法であり、PdやRu等の白金族元
素が有効とされている。その理由は、PdやRuは水素
発生過電圧が小さいため、チタンの陽分極を速やかに促
進させることによるものである。すなわちチタンの表面
で、Ti+2H2O→TiO2+4H++4e-の酸化反応
が速やかに進行し、不動態酸化皮膜TiO2 が形成さ
れることにより耐食性が改善されるのである。具体的に
はTi−0.15Pd合金(ASTM Grade7,11 )等のT
i合金が開発され、石油精製や石油化学プラント等の分
野で使用されている。但し、上記Ti−0.15Pd合金
は、高価なPdを比較的多量に添加していることから材
料コストの上昇を招くという問題点を有している。更に
は、Ti合金中に含まれるPd量が多い場合には、酸洗
時に表面にPd酸化物(通称Pdブラック)が生成し、
酸洗が阻害されることから酸洗ラインに何度も通板する
必要があり、製造コストも高くなる。
2. Description of the Related Art Pure Ti is generally known to have better corrosion resistance than stainless steel and copper alloys, but causes corrosion in high-temperature, high-concentration non-oxidizing acids. In addition, crevice corrosion may occur in a high-temperature and high-concentration aqueous chloride solution. As a method for preventing such corrosion, a method of adding an alloying element, adding an oxidizing agent to a corrosive environment, or performing a surface treatment has been studied. Among them, the addition of alloying elements is the most reliable method, and platinum group elements such as Pd and Ru are considered to be effective. The reason for this is that Pd or Ru has a small hydrogen generation overpotential, and thus promptly promotes the positive polarization of titanium. That is, the oxidation reaction of Ti + 2H 2 O → TiO 2 + 4H + + 4e progresses rapidly on the surface of titanium, and a passive oxide film TiO 2 is formed to improve the corrosion resistance. Concretely, T-0.15Pd alloy (ASTM Grade 7,11)
i-alloys have been developed and used in fields such as petroleum refining and petrochemical plants. However, the Ti-0.15Pd alloy has a problem that the material cost is increased because a relatively large amount of expensive Pd is added. Furthermore, when the amount of Pd contained in the Ti alloy is large, Pd oxide (commonly called Pd black) is generated on the surface during pickling,
Since the pickling is hindered, it is necessary to pass through the pickling line many times, which increases the manufacturing cost.

【0003】そこで最近では、コスト増大につながるP
dやRuの添加を最小限に抑え、それによる耐食性の劣
化を補うために加工性を損なわない程度の鉄族元素を微
量添加したTi合金が開発されており、例えばTi−0.
05Pd−0.3 Co合金(ASTMGrade 30,31;特公平6−8
9423号)やTi−0.5 Ni−0.05Ru合金(ASTM G
rade 13,14,15;特公昭62−20269号)等が提案さ
れている。これらの合金は、PdやRuのような高価な
白金族元素の添加量を制限してコスト高を抑えつつ、白
金族元素の添加量低下により生じる耐食性劣化を、加工
性を大きく損なわない範囲で耐食性向上に寄与する添加
元素(Ni,Mo,Co等)を添加し補ったものであ
る。しかしながら、上記耐食性向上元素の添加により加
工性の低下は避けられず、プレート式熱交換器やソーダ
電解工業における電槽部材等の様に、耐食性が要求さ
れ、しかも張出し成形等の比較的厳しい冷間加工を受け
る部材に対しては、上記Ti合金の使用が困難であっ
た。従って、耐食性と同時に冷間加工性が要求される用
途には、コスト高とはなるものの、Ni,Mo,Co等
の様な加工性を損なう耐食性向上元素を添加していない
Ti−0.15Pd合金(ASTM Grade 11 )を使用せざるを
得ない状況にある。
Therefore, recently, P
In order to minimize the addition of d and Ru, and to compensate for the deterioration of corrosion resistance, a Ti alloy containing a small amount of an iron group element that does not impair workability has been developed.For example, Ti-0.
05Pd-0.3Co alloy (ASTMGrade 30,31;
No. 9423) and Ti-0.5Ni-0.05Ru alloy (ASTM G
rade 13, 14, 15; Japanese Patent Publication No. 62-20269). These alloys limit the amount of addition of expensive platinum group elements such as Pd and Ru to suppress the cost increase, and to the extent that corrosion resistance deterioration caused by a decrease in the amount of platinum group element added is not significantly impaired in workability. It is supplemented by adding an additive element (Ni, Mo, Co, etc.) that contributes to the improvement of corrosion resistance. However, the addition of the above-mentioned elements for improving corrosion resistance inevitably lowers the workability, and requires corrosion resistance, such as plate-type heat exchangers and battery case members in the soda electrolysis industry, and relatively severe cooling such as bulging. It was difficult to use the above-mentioned Ti alloy for members subjected to cold working. Therefore, for applications requiring cold workability as well as corrosion resistance, a Ti-0.15Pd alloy which does not add a corrosion resistance improving element such as Ni, Mo, Co, etc. which impairs the workability, although it is expensive. (ASTM Grade 11) has to be used.

【0004】ところでチタンは、火力及び原子力発電所
の復水器管や、尿素合成などの高温高圧化学プラントの
配管及び海水淡水化装置の伝熱管等として多用されてお
り、用途によっては使用時に水素を吸収し、水素脆化に
よる事故を誘発する恐れがある。特公平4−57735
号公報によれば、Ti−0.15Pd合金は、Pdを多量に
含むため、純チタンに比べると耐水素吸収性が十分では
ないことから、Pd量を0.03〜0.1%の範囲に調
整したTi合金[例えば、Ti−0.05Pd合金(ASTM G
r.16,17 )]が提案されている。ところが、実際の使用
においては、チタンの水素吸収は表面状態(粗度,仕上
げ法)や結晶粒径および使用環境が複雑に関係するた
め、Pd量を0.03〜0.1%に制御したTi合金を
用いたとしても水素吸収が発生することがあった。
[0004] Titanium is frequently used as a condenser pipe for thermal and nuclear power plants, a pipe for a high-temperature and high-pressure chemical plant such as urea synthesis, and a heat transfer pipe for a seawater desalination apparatus. And may cause accidents due to hydrogen embrittlement. Tokuhei 4-57735
According to the publication, since the Ti-0.15Pd alloy contains a large amount of Pd, the hydrogen absorption resistance is not sufficient as compared with pure titanium, so the Pd content is in the range of 0.03 to 0.1%. Adjusted Ti alloy [for example, Ti-0.05Pd alloy (ASTM G
r.16,17)] has been proposed. However, in actual use, since the hydrogen absorption of titanium is complicatedly related to the surface state (roughness, finishing method), crystal grain size and use environment, the Pd content is controlled to 0.03 to 0.1%. Even when a Ti alloy was used, hydrogen absorption sometimes occurred.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、現在汎用されているTi
−0.15Pd合金より低コストで優れた耐食性を発揮する
Ti合金を提供しようとするものであり、またTi−0.
15Pd合金と同等またはそれ以上の冷間加工性(プレス
性)を有する耐食Ti合金と、更には耐水素吸収性に優
れた耐食Ti合金を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been widely used at present.
An object of the present invention is to provide a Ti alloy exhibiting excellent corrosion resistance at a lower cost than a -0.15 Pd alloy.
An object of the present invention is to provide a corrosion-resistant Ti alloy having a cold workability (pressing property) equal to or higher than that of a 15Pd alloy and a corrosion-resistant Ti alloy excellent in hydrogen absorption resistance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決した本発
明に係る耐食Ti合金とは、Pdを0.020〜0.0
50%(質量%の意味、以下同じ)含有すると共に、P
d以外の白金族元素の1種以上を、Pdに対する質量比
で1/3以上含有し、残部が許容成分およびTiからな
ることを要旨とするものであり、Pd以外の白金族元素
としてはIr及び/又はPtが好ましい。また、Pd以
外の白金族元素の含有量は、0.01〜0.03%が望
ましく、Pdの含有量は0.030%以下であることが
望ましい。
The corrosion-resistant Ti alloy according to the present invention, which has solved the above problems, has a Pd of 0.020 to 0.0
50% (mean% by mass, the same applies hereinafter)
At least one platinum group element other than d is contained at a mass ratio of 1/3 or more to Pd, and the balance consists of an allowable component and Ti. The platinum group element other than Pd is Ir. And / or Pt is preferred. Further, the content of the platinum group element other than Pd is desirably 0.01 to 0.03%, and the content of Pd is desirably 0.030% or less.

【0007】冷間成形性に優れた耐食Ti合金を得るに
あたっては、Pdを0.020〜0.050%とし、I
r及び/又はPtを0.01〜0.03%含有させ、な
おかつFe含有量を0.05%以下、O含有量を0.0
5%以下として残部を許容成分およびTiとすることが
望ましく、この様な冷間成形性に優れた耐食Ti合金は
プレート式熱交換器用部材や電気分解槽構成部材に好適
である。更に本組成範囲において、Pd量を0.030
%以下にすることで、冷間成形性及び耐食性に加えて耐
水素吸収性も付与できる。
In order to obtain a corrosion-resistant Ti alloy excellent in cold formability, Pd is set to 0.020 to 0.050%, and
r and / or Pt are contained in an amount of 0.01 to 0.03%, the Fe content is 0.05% or less, and the O content is 0.0
It is desirable that the balance be 5% or less and the balance be an allowable component and Ti. Such a corrosion-resistant Ti alloy having excellent cold formability is suitable for a plate-type heat exchanger member or an electrolysis tank component. Further, in this composition range, the amount of Pd is set to 0.030.
% Or less, hydrogen absorption resistance can be imparted in addition to cold formability and corrosion resistance.

【0008】また、上記程の冷間成形性は要求されない
が耐水素吸収性には優れていることが必要な耐食Ti合
金を得るにあたっては、Pdを0.020〜0.030
%含有させると共に、Pd以外の白金族元素含有量を
0.01〜0.03%とし、なおかつFe含有量は0.
4%以下、O含有量は0.4%以下として残部を許容成
分およびTiとすることが好ましく、この様な耐水素吸
収性に優れた耐食Ti合金は、熱交換器用チューブやそ
の他の配管用チューブとして好適である。
Further, in order to obtain a corrosion-resistant Ti alloy which does not require the cold formability as described above but is required to have excellent hydrogen absorption resistance, Pd is set to 0.020 to 0.030.
%, The content of platinum group elements other than Pd is set to 0.01 to 0.03%, and the Fe content is set to 0.1%.
It is preferable that the O content is 0.4% or less and the O content is 0.4% or less, with the balance being an allowable component and Ti. Such a corrosion-resistant Ti alloy having excellent hydrogen absorption resistance is used for heat exchanger tubes and other piping. It is suitable as a tube.

【0009】尚、本発明において許容成分とは、一般的
な不可避不純物に加えて、本発明に係る耐食Ti合金の
特性に悪影響を与えない範囲で含有が許容される元素を
含むものであり、それぞれの元素の許容範囲内であれば
含まれていても差し支えない。不可避不純物としては、
Fe,O,N,H,C,Ni,Crなどが挙げられ、こ
れらの元素は原料である酸化チタンに含まれる微量成分
や、スポンジチタンの製造に使われるステンレス容器に
由来する元素である。
In the present invention, the term "allowable component" means, in addition to general unavoidable impurities, an element which is allowed to be contained within a range that does not adversely affect the properties of the corrosion-resistant Ti alloy according to the present invention. It may be included if it is within the allowable range of each element. As unavoidable impurities,
Examples include Fe, O, N, H, C, Ni, and Cr. These elements are trace components contained in titanium oxide as a raw material and elements derived from a stainless steel container used for manufacturing titanium sponge.

【0010】[0010]

【発明の実施の形態】本発明者らは、Ti合金の成分組
成を設計するにあたり、白金族元素の中でも最もTiの
耐食性改善能の高いPdの添加量を低コスト化との兼ね
合いから0.02〜0.05%に設定し、これにPd以
外の各種白金族元素を単独または複合して添加した種々
のTi合金を作製し、各Ti合金に関する耐食性及び冷
間加工性の評価を繰り返した。その結果、Pd以外の白
金族元素の一種以上をPdに対する質量比で1/3以上
となるように含有させた場合には、Pd以外の白金族元
素の合計量をPdに置き換えてPd単独で添加した場合
よりも、むしろ耐食性が向上することを見出し、本発明
に想到した。この効果は、現時点では明確に解明されて
いないが、これはPd以外の白金族元素がPdやTiと
化学的に結合し、結果的にPdよりも水素過電圧の低い
物質ができたことに起因するからであると考えられる。
また、Pdに対する他の白金族元素の割合(質量比)が
1/3以上となった場合に、耐食性が改善される理由に
ついても、現時点では明確になっていないが、この範囲
の場合に上記水素過電圧の低い物質が効率よく、より多
く生成するためと推測される。尚、Pdに対する他の白
金族元素の割合(質量比)は、高過ぎても成形性に悪影
響を与えると共に経済性を損なう要因となるので2以下
とすればよく、1以下でも十分である。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors, when designing the component composition of a Ti alloy, set the addition amount of Pd, which has the highest ability to improve the corrosion resistance of Ti among the platinum group elements, in view of the cost reduction. Various Ti alloys were set to be 02 to 0.05%, and various platinum group elements other than Pd were added singly or in combination, and the corrosion resistance and cold workability of each Ti alloy were repeatedly evaluated. . As a result, when one or more platinum group elements other than Pd are contained so that the mass ratio to Pd is 1/3 or more, the total amount of platinum group elements other than Pd is replaced with Pd, and Pd alone is used. The present inventors have found that the corrosion resistance is improved rather than the case where it is added, and arrived at the present invention. This effect has not been clearly elucidated at this time, but it is due to the fact that platinum group elements other than Pd chemically bond with Pd and Ti, resulting in a substance having a lower hydrogen overvoltage than Pd. It is thought that it is because.
The reason why the corrosion resistance is improved when the ratio (mass ratio) of the other platinum group element to Pd is 1/3 or more is not clear at present, but in the case of this range. It is presumed that a substance having a low hydrogen overvoltage is produced efficiently and more. The ratio (mass ratio) of the other platinum group element to Pd is not more than 2 because it is too high, which adversely affects the formability and impairs the economic efficiency.

【0011】本発明に係るTi合金において、Pdは十
分な耐食性改善効果を得る上で、0.020%以上が必
要である。一方、Pdの上限値は、多過ぎるとコスト高
になると共に、硝ふっ酸による酸洗時にPd酸化物を表
面に生成して酸洗を阻害するので、0.05%以下とす
ることが必要であり、また耐水素吸収性を向上させる上
では0.030%以下とすることが望ましい。
In the Ti alloy according to the present invention, Pd is required to be 0.020% or more in order to obtain a sufficient effect of improving corrosion resistance. On the other hand, if the upper limit of Pd is too large, the cost is high, and Pd oxide is generated on the surface during pickling with nitric hydrofluoric acid to inhibit pickling. In order to improve the hydrogen absorption resistance, the content is desirably 0.030% or less.

【0012】Pd以外の白金族元素としては、Ir,P
t,Ru,Re,Rh,Osがあるが、これらをTiに
添加した場合、個々の元素により程度の差はあるもの
の、添加量が多くなるほど組織が微細化し、冷間加工性
が悪くなる。したがって、耐食性を確保しつつ、良好な
成形性を得る為には耐食性に有効な元素を添加すること
が必要であるが、その際、組織の微細化にできるだけ寄
与しないような添加元素を選択することも必要である。
そこで本発明者らはTi−Pd合金に複合添加する各白
金族元素の結晶粒微細化能を調べた。その結果、Irの
微細化能が最も小さく、次いでPtの微細化能が小さい
ことが判明した。結晶粒の微細化能が最も大きいのはR
uであり、Re,Rh,OsはPtとRuの間であっ
た。Re,Os,Rhは高価な元素であるので、Pdを
含有するチタン合金にIrまたはPtを1種または2種
含有させることで、成形性と耐食性に優れたチタン合金
を得ることができる。この中でも特に好ましいのはTi
−Pd合金にIrを単独で添加する場合である。なお、
コスト面を度外視するならば、Ti−Pd合金にRe,
Rh,Osを1種または2種以上添加することも有効で
ある。
The platinum group elements other than Pd include Ir, P
There are t, Ru, Re, Rh, and Os, and when these are added to Ti, although the degree varies depending on the individual elements, as the addition amount increases, the structure becomes finer and the cold workability deteriorates. Therefore, while ensuring corrosion resistance, it is necessary to add an element effective for corrosion resistance in order to obtain good formability. At that time, select an additive element that does not contribute as much as possible to microstructural refinement. It is also necessary.
Then, the present inventors examined the crystal grain refining ability of each platinum group element added in a complex manner to the Ti-Pd alloy. As a result, it was found that the miniaturization ability of Ir was the smallest, followed by the miniaturization ability of Pt. The greatest ability to refine crystal grains is R
u, and Re, Rh, and Os were between Pt and Ru. Since Re, Os, and Rh are expensive elements, a titanium alloy excellent in formability and corrosion resistance can be obtained by adding one or two types of Ir or Pt to a titanium alloy containing Pd. Among them, particularly preferred is Ti
This is the case where Ir is solely added to the Pd alloy. In addition,
If the cost aspect is ignored, Re,
It is also effective to add one or more of Rh and Os.

【0013】尚、Ti合金中のFe及びO(酸素)は不
可避不純物であり、これらの含有量が増えると組織を微
細化させて強度上昇につながるため、成形性に著しく悪
影響を与える。従って、FeおよびOの含有量はいずれ
も0.10%以下にすることが望ましく、0.05%以
下にすればより望ましい。但し、成形性を考慮に入れな
くてよい用途には、0.4%までであれば含有させても
構わない。
[0013] Incidentally, Fe and O (oxygen) in the Ti alloy are unavoidable impurities, and when their content increases, the structure becomes finer and leads to an increase in strength, so that the formability is significantly adversely affected. Therefore, the contents of Fe and O are both desirably 0.10% or less, and more desirably 0.05% or less. However, in applications where moldability need not be taken into account, the content may be up to 0.4%.

【0014】更に、本発明においては、原料のスポンジ
チタンに含まれる不可避不純物に加えて、本発明に係る
耐食Ti合金の特性に悪影響を与えない範囲であれば、
その他の元素が含まれていても差し支えない。例えば、
N,H,C,Ni,Crなどが許容成分として挙げるこ
とができ、成形性の要求される用途では、およその値で
あるが、N:0.02%以下,H:0.01%以下,
C:0.02%以下,Ni:0.05%以下,Cr:
0.05%以下であれば含まれていてもよい。又、要求
される成形性の程度によっても異なるが、これらの元素
以外も概ねではあるが、総量で0.1%以下であれば、
含まれていても構わない。なお、成形性がさほど要求さ
れない用途で用いられる場合は、本発明に係る耐食Ti
合金の特性に悪影響を与えない範囲であれば上記上限値
を超える各種元素の含有があっても差し支えない。
Further, in the present invention, in addition to the inevitable impurities contained in the raw material sponge titanium, as long as the properties of the corrosion-resistant Ti alloy according to the present invention are not adversely affected,
Other elements may be included. For example,
N, H, C, Ni, Cr, and the like can be cited as allowable components. In applications requiring formability, these are approximate values, but N: 0.02% or less, H: 0.01% or less. ,
C: 0.02% or less, Ni: 0.05% or less, Cr:
If it is 0.05% or less, it may be contained. In addition, although it depends on the degree of formability required, other elements than these elements are generally included, but if the total amount is 0.1% or less,
It may be included. When used in applications where moldability is not so required, the corrosion-resistant Ti according to the present invention is used.
Various elements exceeding the upper limit may be contained as long as the properties of the alloy are not adversely affected.

【0015】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any design change based on the above and following gist will be described. Are included within the technical scope of

【0016】[0016]

【実施例】実施例1 JIS 1種(ASTM Gr.1相当)の純チタン板
(O:0.04%,Fe:0.03%)を溶解原料と
し、表1に示す各金属粉末の成分割合を変化させて含有
させ、真空アーク溶解炉において溶解し、鋳塊(約50
0g)を製造した。この後、以下の工程で評価用の板を
作製した。
Example 1 A pure titanium plate (O: 0.04%, Fe: 0.03%) of JIS Class 1 (equivalent to ASTM Gr.1) was used as a melting raw material, and the components of each metal powder shown in Table 1 were used. It is contained in varying proportions, melted in a vacuum arc melting furnace, and cast ingots (approximately 50
0 g). Thereafter, a plate for evaluation was prepared in the following steps.

【0017】調質焼鈍(1000℃、2時間加熱)→熱
延(850℃加熱、約20t×40w→約5t×40w)→
焼鈍(850℃,30分)→ショットブラスト→酸洗
(板厚約1mm落とす)→冷延(約4t×40w→約1.
t×40w)→ソルト浸漬(520℃、3分)→酸洗
(約1.2t×40w→約1.0t×40w) 全面腐食試験として、5%沸騰塩酸水溶液中で24時間
の浸漬試験を実施して腐食速度を算出した。結果は表1
に併記する。
Temper annealing (heating at 1000 ° C. for 2 hours) → hot rolling (heating at 850 ° C., about 20 t × 40 w → about 5 t × 40 w ) →
Annealing (850 ° C, 30 minutes) → shot blasting → pickling (dropping about 1 mm in thickness) → cold rolling (about 4 t × 40 w → about 1.
2 t × 40 w ) → salt immersion (520 ° C, 3 minutes) → pickling (about 1.2 t × 40 w → about 1.0 t × 40 w ) As a general corrosion test, in a 5% boiling hydrochloric acid aqueous solution A 24-hour immersion test was performed to calculate the corrosion rate. Table 1 shows the results
It is described together.

【0018】[0018]

【表1】 [Table 1]

【0019】No.1〜9はPd以外の白金族元素をP
dに対する質量比で1/3以上含有しているため、Pd
以外の白金族元素をPdに対する質量比で1/3以下し
か含有していないNo.11,13より腐食速度が小さ
く、またPdの単独添加であるNo.14,15よりも
腐食速度が小さい。No.10,12はPd以外の白金
族元素をPdに対する質量比で1/3以上含有している
もののPd量が0.020%を割っており耐食性に劣っ
ている。
No. 1 to 9 are platinum group elements other than Pd.
Pd is contained in a mass ratio of 1/3 or more to d.
No. 3 containing no more than 1/3 of the platinum group element other than Pd in mass ratio to Pd. Nos. 11 and 13 had a lower corrosion rate, and Pd was a single additive. Corrosion rate is smaller than 14 and 15. No. Nos. 10 and 12 contain platinum group elements other than Pd in a mass ratio to Pd of 1/3 or more, but have a Pd content of less than 0.020% and are inferior in corrosion resistance.

【0020】実施例2 JIS 1種(ASTM Gr.1相当)の純チタン板
(O:0.04%,Fe:0.03%)を溶解原料と
し、表2に示す各金属粉末の成分割合を変化させて含有
させ、真空アーク溶解炉において溶解し、鋳塊(約50
0g)を製造した。この後、以下の工程で評価用の板を
作製した。
Example 2 A pure titanium plate (O: 0.04%, Fe: 0.03%) of JIS Class 1 (equivalent to ASTM Gr.1) was used as a melting raw material, and the component ratio of each metal powder shown in Table 2 was used. And melted in a vacuum arc melting furnace to form an ingot (approximately 50
0 g). Thereafter, a plate for evaluation was prepared in the following steps.

【0021】調質焼鈍(1000℃、2時間加熱)→熱
延(850℃加熱、約20t×40w→約5t×40w)→
焼鈍(850℃,30分)→ショットブラスト→酸洗
(板厚約1mm落とす)→冷延(約4t×40w→約0.
t×40w)→ソルト浸漬(520℃、3分)→酸洗
(約0.7t×40w→約0.5t×40w)。
Temper annealing (heating at 1000 ° C. for 2 hours) → hot rolling (heating at 850 ° C., about 20 t × 40 w → about 5 t × 40 w ) →
Annealing (850 ° C, 30 minutes) → shot blasting → pickling (removing about 1 mm in thickness) → cold rolling (about 4 t × 40 w → about 0.
7 t × 40 w ) → salt immersion (520 ° C, 3 minutes) → pickling (about 0.7 t × 40 w → about 0.5 t × 40 w ).

【0022】耐食性を評価するにあたっては、2%沸騰
塩酸水溶液中で24時間の浸漬試験を実施して腐食速度
を算出し、以下の様に評価した。結果は表2に併記す
る。 ◎:腐食速度 0.1mm/year未満 ○:腐食速度 0.1mm/year以上0.5mm/year
未満 △:腐食速度 0.5mm/year以上1mm/year未満 ×:腐食速度 1mm/year以上。
In evaluating the corrosion resistance, the corrosion rate was calculated by performing an immersion test in a 2% boiling hydrochloric acid aqueous solution for 24 hours, and evaluated as follows. The results are shown in Table 2. ◎: Corrosion rate less than 0.1 mm / year :: Corrosion rate 0.1 mm / year or more and 0.5 mm / year
Less than Δ: Corrosion rate 0.5 mm / year or more and less than 1 mm / year ×: Corrosion rate 1 mm / year or more.

【0023】耐水素吸収性の評価は陰極チャージ法を用
いた。本試験では硫酸水溶液(0.05M,30℃)中
にPt電極1と短冊状の試験片2(10mm×50mm,厚さ1m
m)を50mmの間隔で配置し、定電流直流電源を用い
て両者の間に6時間、10mA/cm2の電流密度で通
電させることで、陰極側から発生する水素を試験片に吸
収させた。また本試験では、一度の試験で何枚かの試験
片を処理するため、図1に示す様に、複数個の電解用容
器3を直列につないだ。なお、試験片の表面状態が水素
吸収に及ぼす影響を統一するため、全ての試験片につい
て表面を#400湿式エメリー研磨した。試験前の水素
量と試験後の水素量から水素吸収量を算出し、以下の如
く評価した。尚、試験後の水素量の分析は、上記水素吸
収サンプルを大気中において400℃で1時間加熱し、
表面に形成された水素富化層をチタンの内部方向に均一
に拡散させた後、行った。 ◎:水素吸収量 50ppm未満 ○:水素吸収量 50ppm以上100ppm未満 △:水素吸収量 100ppm以上200ppm未満 ×:水素吸収量 200ppm以上。
For the evaluation of the hydrogen absorption resistance, a cathode charge method was used. In this test, a Pt electrode 1 and a strip-shaped test piece 2 (10 mm × 50 mm, 1 m thick) were placed in a sulfuric acid aqueous solution (0.05 M, 30 ° C.).
m) were arranged at an interval of 50 mm, and hydrogen was generated from the cathode side was absorbed by the test piece by applying a current of 10 mA / cm 2 between them for 6 hours using a constant current DC power supply. . In this test, a plurality of electrolysis containers 3 were connected in series as shown in FIG. 1 in order to process several test pieces in one test. In order to unify the influence of the surface state of the test pieces on hydrogen absorption, the surfaces of all the test pieces were subjected to # 400 wet emery polishing. The amount of hydrogen absorbed was calculated from the amount of hydrogen before the test and the amount of hydrogen after the test, and evaluated as follows. The analysis of the amount of hydrogen after the test was conducted by heating the above-mentioned hydrogen absorption sample at 400 ° C. for 1 hour in the air.
This was performed after the hydrogen-enriched layer formed on the surface was uniformly diffused in the inner direction of titanium. ◎: Hydrogen absorption less than 50 ppm :: Hydrogen absorption 50 ppm or more and less than 100 ppm Δ: Hydrogen absorption 100 ppm or more and less than 200 ppm ×: Hydrogen absorption 200 ppm or more.

【0024】また、プレス性試験は、0.5t×40w×
150lサイズの切り板を用い、図2に示す金型で波板
プレス加工を行い、割れの有無で成形性を評価した。
尚、プレス試験は常温でプレス用潤滑油を用いて行っ
た。
In addition, the pressability test was performed in the following manner: 0.5 t × 40 w ×
Using a 150 l size cut plate, corrugated plate pressing was performed with the mold shown in FIG. 2, and the moldability was evaluated based on the presence or absence of cracks.
The press test was performed at room temperature using a lubricating oil for press.

【0025】結果は表2に示す。The results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】No.1〜8は本発明例であり、耐食性及
び耐水素吸収性が優れており、結晶粒の微細化が生じて
おらず、プレス成形性にも優れていた。
No. Nos. 1 to 8 are examples of the present invention, which were excellent in corrosion resistance and hydrogen absorption resistance, did not have fine crystal grains, and were excellent in press moldability.

【0028】No.9〜11はO及びFeの含有量が多
く、またNo.12〜14はIr及び/またはPtの量
が多く、プレス成形性がNo.1〜8ほどには優れてい
ないが、耐食性及び耐水素吸収性に関しては優れた特性
を示した。No.15ではRuを含有させたが、耐食性
及びプレス成形性がNo.1〜8ほどには良くなかっ
た。No.16,17はIrまたはPdが少なく、耐食
性がNo.1〜8ほどには良くなかった。No.18は
Pd量が多く、耐水素吸収性がNo.1〜8ほど良好で
はなかった。No.19〜21は純チタンであり、耐食
性が十分ではない。
No. Nos. 9 to 11 have a large content of O and Fe. Nos. 12 to 14 have a large amount of Ir and / or Pt, and the press formability is no. Although not as excellent as 1 to 8, it exhibited excellent characteristics with respect to corrosion resistance and hydrogen absorption resistance. No. In No. 15, Ru was contained, but the corrosion resistance and press formability were no. Not as good as 1-8. No. Nos. 16 and 17 are low in Ir or Pd and have no corrosion resistance. Not as good as 1-8. No. No. 18 has a large amount of Pd, and the hydrogen absorption resistance is No. 18; Not as good as 1-8. No. 19 to 21 are pure titanium and have insufficient corrosion resistance.

【0029】[0029]

【発明の効果】本発明は以上の様に構成されているの
で、現在汎用されているTi−0.15Pd合金より低コス
トで優れた耐食性を発揮するTi合金が提供できること
となり、またTi−0.15Pd合金と同等またはそれ以上
の冷間加工性(プレス性)を有する耐食Ti合金と、更
には耐水素吸収性に優れた耐食Ti合金が提供できるこ
ととなった。
As described above, the present invention can provide a Ti alloy exhibiting excellent corrosion resistance at a lower cost than the Ti-0.15 Pd alloy generally used at present, and a Ti-0.15 Pd alloy can be provided. It has become possible to provide a corrosion-resistant Ti alloy having a cold workability (pressability) equal to or higher than that of an alloy, and a corrosion-resistant Ti alloy excellent in hydrogen absorption resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で行った陰極チャージ法の実験方法を示
す説明図である。
FIG. 1 is an explanatory diagram showing an experimental method of a cathode charging method performed in an example.

【図2】プレス成形性の実験方法を示す説明図である。FIG. 2 is an explanatory view showing an experimental method of press formability.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 Pdを0.020〜0.050質量%含
有すると共に、 Pd以外の白金族元素の1種以上を、Pdに対する質量
比で1/3以上含有し、 残部が許容成分およびTiからなることを特徴とする耐
食Ti合金。
Claims: 1. Pd is contained in an amount of 0.020 to 0.050 mass%, and at least one platinum group element other than Pd is contained in a mass ratio of not less than 1/3 to Pd, with the balance being an allowable component and Ti A corrosion-resistant Ti alloy comprising:
【請求項2】 Pd以外の白金族元素がIr及び/又は
Ptである請求項1に記載の耐食Ti合金。
2. The corrosion-resistant Ti alloy according to claim 1, wherein the platinum group element other than Pd is Ir and / or Pt.
【請求項3】 Pd以外の白金族元素の含有量が0.0
1〜0.03質量%である請求項1または2に記載の耐
食Ti合金。
3. The content of a platinum group element other than Pd is 0.0
The corrosion-resistant Ti alloy according to claim 1, wherein the content is 1 to 0.03 mass%.
【請求項4】 Pdの含有量が0.030質量%以下で
ある請求項1〜3のいずれかに記載の耐食Ti合金。
4. The corrosion-resistant Ti alloy according to claim 1, wherein the content of Pd is 0.030% by mass or less.
【請求項5】 Pdを0.020〜0.050質量%含
有すると共に、 Ir及び/又はPtを0.01〜0.03質量%含有
し、 なおかつFe含有量は0.05質量%以下、O含有量は
0.05質量%以下であり、 残部が許容成分およびTiからなることを特徴とする冷
間成形性に優れた耐食Ti合金。
5. A composition containing 0.020 to 0.050 mass% of Pd, 0.01 to 0.03 mass% of Ir and / or Pt, and 0.05 mass% or less of Fe content. A corrosion-resistant Ti alloy excellent in cold formability, characterized in that the O content is 0.05% by mass or less, and the balance consists of an allowable component and Ti.
【請求項6】 請求項5に記載の耐食Ti合金からなる
ことを特徴とするプレート式熱交換器用部材。
6. A member for a plate-type heat exchanger, comprising the corrosion-resistant Ti alloy according to claim 5.
【請求項7】 請求項5に記載の耐食Ti合金からなる
ことを特徴とする電気分解槽構成部材。
7. An electrolysis tank component comprising the corrosion-resistant Ti alloy according to claim 5.
【請求項8】 Pdを0.020〜0.030質量%含
有すると共に、 Pd以外の白金族元素を0.01〜0.03質量%含有
し、 なおかつFe含有量は0.4質量%以下、O含有量は
0.4質量%以下であり、 残部が許容成分およびTiからなることを特徴とする耐
水素吸収性に優れた耐食Ti合金。
8. An alloy containing 0.020 to 0.030% by mass of Pd, 0.01 to 0.03% by mass of a platinum group element other than Pd, and a Fe content of 0.4% by mass or less. , O content is 0.4% by mass or less, and the balance consists of an allowable component and Ti.
【請求項9】 請求項8に記載の耐食Ti合金からなる
ことを特徴とする熱交換器用チューブ。
9. A heat exchanger tube comprising the corrosion-resistant Ti alloy according to claim 8.
【請求項10】 請求項8に記載の耐食Ti合金からな
ることを特徴とする配管用チューブ。
10. A piping tube comprising the corrosion-resistant Ti alloy according to claim 8.
JP36547699A 1998-12-28 1999-12-22 Corrosion resistant Ti alloy Expired - Fee Related JP3878376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36547699A JP3878376B2 (en) 1998-12-28 1999-12-22 Corrosion resistant Ti alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37346798 1998-12-28
JP10-373467 1998-12-28
JP36547699A JP3878376B2 (en) 1998-12-28 1999-12-22 Corrosion resistant Ti alloy

Publications (2)

Publication Number Publication Date
JP2000248324A true JP2000248324A (en) 2000-09-12
JP3878376B2 JP3878376B2 (en) 2007-02-07

Family

ID=26581670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36547699A Expired - Fee Related JP3878376B2 (en) 1998-12-28 1999-12-22 Corrosion resistant Ti alloy

Country Status (1)

Country Link
JP (1) JP3878376B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013508A1 (en) * 2005-07-28 2007-02-01 Kabushiki Kaisha Kobe Seiko Sho Titanium electrode material
WO2007077645A1 (en) * 2005-12-28 2007-07-12 Sumitomo Metal Industries, Ltd. Titanium alloy for corrosion-resistant material
US8741217B2 (en) 2005-12-28 2014-06-03 Nippon Steel & Sumitomo Metal Corporation Titanium alloy for corrosion-resistant materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013508A1 (en) * 2005-07-28 2007-02-01 Kabushiki Kaisha Kobe Seiko Sho Titanium electrode material
US8137866B2 (en) 2005-07-28 2012-03-20 Kobe Steel, Ltd. Titanium material for fuel cell separator having low contact resistance
WO2007077645A1 (en) * 2005-12-28 2007-07-12 Sumitomo Metal Industries, Ltd. Titanium alloy for corrosion-resistant material
US8741217B2 (en) 2005-12-28 2014-06-03 Nippon Steel & Sumitomo Metal Corporation Titanium alloy for corrosion-resistant materials

Also Published As

Publication number Publication date
JP3878376B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
EP2980274B1 (en) Ferritic stainless steel sheet having excellent brazeability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for members of fuel supply systems, and member of fuel supply system
EP2246454B1 (en) Carburization-resistant metal material
EP2520677B1 (en) Heat-resistant titanium alloy material for exhaust system components with excellent oxidation resistance, manufacturing method of heat-resistant titanium alloy sheet with excellent oxidation resistance for exhaust system components, and exhaust system
JP5660253B2 (en) Titanium alloy with excellent corrosion resistance in environments containing bromine ions
WO2014087648A1 (en) Ferritic stainless steel sheet
CN102690997A (en) Ferritic stainless steel and method of manufacturing the same
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
EP1541701A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
US6334913B1 (en) Corrosion-resistant titanium alloy
JPH083670A (en) Nickel-base alloy excellent in workability and corrosion resistance
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
JP3878376B2 (en) Corrosion resistant Ti alloy
JPS6358214B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JP3797152B2 (en) Alloy excellent in corrosion resistance, member for semiconductor manufacturing apparatus using the same, and method for manufacturing the same
JP3230685B2 (en) Copper base alloy for heat exchanger
CN111902550B (en) Titanium alloy and method for producing same
JP2013001973A (en) Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them
JP3243479B2 (en) Copper base alloy for heat exchanger
GB1570026A (en) Iron-nickel-chromium alloys
JPH05311295A (en) Copper base alloy for heat exchanger and its manufacture
JPH05311294A (en) Copper base alloy for heat exchanger and its manufacture
Lütjering et al. Commercially pure (CP) titanium and alpha alloys
TWI757044B (en) Wostian iron series stainless steel
JPH05311292A (en) Copper base alloy for heat exchanger and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees