JP2000246408A - Manufacture of high sulfur steel material - Google Patents

Manufacture of high sulfur steel material

Info

Publication number
JP2000246408A
JP2000246408A JP11051873A JP5187399A JP2000246408A JP 2000246408 A JP2000246408 A JP 2000246408A JP 11051873 A JP11051873 A JP 11051873A JP 5187399 A JP5187399 A JP 5187399A JP 2000246408 A JP2000246408 A JP 2000246408A
Authority
JP
Japan
Prior art keywords
slab
steel
rolling
steel material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11051873A
Other languages
Japanese (ja)
Inventor
Tomonori Yamaguchi
口 智 則 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11051873A priority Critical patent/JP2000246408A/en
Publication of JP2000246408A publication Critical patent/JP2000246408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of crack on the surface of a steel slab having low hot woakability and to obtain a high quality steel material with a rolling into a product thereafter by rapidly cooling the cast slab surface which is obtd. by continuously casting a high sulfur steel to make fine of the crystal grain, heating in a heating furnace after forming the fine structure and bloom-rolling. SOLUTION: The molten high sulfur steel 2 containing >0.10 wt.% S and if necessary, 0.10-0.35% Pb and further, <0.05% P, is poured into a water- cooling mold 4 through a tundish 3 from a ladle 1 and a produced outer shell- solidified cast slab 5 is cooled in a spray zone 6, and after drawing out and straightening with pinch rolls 7, the solidified cast slab 8 is cut off into a prescribed length with a cutting device 9. The obtd. cast slab at about 680 deg.C is water-cooled and the surface is rapidly cooled at about 420 deg.C to make fine of the crystal grain on the surface. Successively, this cast slab is charged into the heating furnace and extracted at >=1230 deg.C and the bloom-rolling is executed. In this way, the generation of crack on the surface of the steel slab is prevented, and even in the case of generating the crack, the high sulfur steel material having low hot workability, in which the depth of crack is shallow, is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間加工性の低い
高S鋼鋼材を連続鋳造−加熱−分塊圧延により製造する
のに好適な高S鋼鋼材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high S steel material suitable for producing a high S steel material having low hot workability by continuous casting, heating and slab rolling.

【0002】[0002]

【従来の技術】熱間加工性の低い高S鋼鋼材を製造する
に際しては、高S含有鋼の溶鋼を定盤上に設置した大型
の鋳型内に注湯・凝固してインゴットとしたのち分塊圧
延して得る造塊法や、高S含有鋼の溶鋼を水冷鋳型内に
注湯して水冷鋳型の下部から連続的に引き抜いて鋳片と
したのち分塊圧延して得る連続鋳造法などが採用され
る。
2. Description of the Related Art When manufacturing a high S steel having low hot workability, molten steel of a high S content steel is poured and solidified into a large mold placed on a surface plate to form an ingot. Ingot casting method obtained by ingot rolling, continuous casting method in which molten steel of high S content steel is poured into a water-cooled mold, continuously drawn out from the lower part of the water-cooled mold to form slabs, and then slab-rolled Is adopted.

【0003】このうち、連続鋳造法は、造塊法に比べて
工程が簡略化されるので歩留りが向上すると共に省エネ
ルギ化をはかることができるという利点を有している。
[0003] Among them, the continuous casting method has an advantage that the process is simplified as compared with the ingot making method, so that the yield can be improved and energy can be saved.

【0004】図1はこの種の連続鋳造法の実施に用いる
連続鋳造設備の一例を示すものであって、レードル1内
に収容した溶鋼2をタンディッシュ3内に移し、タンデ
ィッシュ3内の溶鋼2を水冷鋳型4内に流下し、水冷鋳
型4の下部からの外殻凝固鋳片5をスプレー帯6にてス
プレー冷却したあとピンチロール7により引抜矯正して
凝固鋳片8とし、カッティング装置9でカッティングし
て所定長さの鋳片としたあと加熱炉内で加熱し、次いで
加熱した鋳片を分塊圧延することによって鋼片とするよ
うにしていた。
FIG. 1 shows an example of a continuous casting facility used for carrying out this type of continuous casting method, in which molten steel 2 contained in a ladle 1 is transferred into a tundish 3 and molten steel in the tundish 3 2 is flowed down into the water-cooled mold 4, the outer shell solidified slab 5 from the lower part of the water-cooled mold 4 is spray-cooled in a spray zone 6, and then drawn and corrected by a pinch roll 7 to form a solidified slab 8, and a cutting device 9 And then heated in a heating furnace, and then slab-rolled the heated slab to obtain a slab.

【0005】[0005]

【発明が解決しようとする課題】このような連続鋳造法
によって、熱間加工性の低い高S鋼鋼材を製造しようと
した場合に、分塊圧延後の鋼片表面に比較的深い割れを
発生することがあり、この割れはスカーフィングによっ
ても除去し切れないことがあるため、鋼片圧延したのち
の鋼材に残存疵とみられる疵が生じているものとなって
表面品質の低下をきたすことがありうるという問題点が
あった。
When a high S steel material having low hot workability is to be manufactured by such a continuous casting method, a relatively deep crack is generated on the surface of the slab after slab rolling. Since this crack may not be completely removed even by scarfing, the steel material after billet rolling may have flaws that appear to be residual flaws, resulting in a decrease in surface quality. There was a problem that could be.

【0006】[0006]

【発明の目的】本発明は、このような従来の問題点にか
んがみてなされたものであって、熱間加工性の低い高S
鋼鋼材を連続鋳造−加熱−分塊圧延により製造するよう
にしたときでも、分塊圧延後の鋼片表面に割れを生じな
いかその後のスカーフィングにより容易に除去できる程
度の割れに収めることができ、鋼片圧延後の鋼材に残存
疵が生じることのないようにして、表面品質のより一層
の向上を図ることができるようにすることを目的として
いる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has been made in consideration of the problems described above.
Even when a steel material is manufactured by continuous casting-heating-bulking rolling, it is possible to prevent cracks on the steel slab surface after lumping rolling or to keep the steel slabs in a crack that can be easily removed by subsequent scarfing. It is an object of the present invention to make it possible to prevent a residual flaw from occurring in a steel material after billet rolling and to further improve surface quality.

【0007】[0007]

【課題を解決するための手段】本発明に係わる高S鋼鋼
材の製造方法は、請求項1に記載しているように、熱間
加工性の低い高S鋼鋼材を連続鋳造−加熱−分塊圧延に
より製造するに際し、連続鋳造後加熱炉装入前に鋳片表
面を急冷することにより分塊圧延後の鋼片表面の割れを
防止するようにしたことを特徴としている。
According to a first aspect of the present invention, there is provided a method of manufacturing a high S steel material having a low hot workability by continuously casting, heating and separating a high S steel material. In the production by ingot rolling, the surface of the slab is quenched after continuous casting and before charging into a heating furnace, whereby cracks on the surface of the slab after slab rolling are prevented.

【0008】そして、本発明に係わる高S鋼鋼材の製造
方法の実施態様においては、請求項2に記載しているよ
うに、高S鋼はS含有量が0.10重量%超過のもので
あるようにしたことを特徴としている。
In the embodiment of the method for producing a high S steel material according to the present invention, as described in claim 2, the high S steel has an S content exceeding 0.10% by weight. The feature is that there is.

【0009】同じく、本発明に係わる高S鋼鋼材の製造
方法の実施態様においては、請求項3に記載しているよ
うに、高S鋼はS含有量が0.10重量%超過、Pb含
有量が0.10〜0.35重量%のものであるようにし
たことを特徴としている。
Similarly, in an embodiment of the method for producing a high-S steel according to the present invention, as described in claim 3, the high-S steel has an S content exceeding 0.10% by weight and a Pb content. The amount is 0.10 to 0.35% by weight.

【0010】同じく、本発明に係わる高S鋼鋼材の製造
方法の実施態様においては、請求項4に記載しているよ
うに、高S鋼はP含有量が0.05重量%未満のもので
あるようにしたことを特徴としている。
[0010] Similarly, in an embodiment of the method for producing a high-S steel material according to the present invention, as described in claim 4, the high-S steel has a P content of less than 0.05% by weight. The feature is that there is.

【0011】同じく、本発明に係わる高S鋼鋼材の製造
方法の実施態様においては、請求項5に記載しているよ
うに、加熱の際の加熱炉抽出温度を1230℃以上とす
るようにしたことを特徴としている。
[0011] Similarly, in an embodiment of the method for producing a high S steel material according to the present invention, as set forth in claim 5, the heating furnace extraction temperature at the time of heating is set to 1230 ° C or higher. It is characterized by:

【0012】[0012]

【発明の実施の形態】本発明による高S鋼鋼材の製造方
法は、上述した構成を有するものであり、熱間加工性の
低い高S鋼としては、例えば、S含有量が0.10重量
%超過のもの、場合によっては、0.20重量%超過な
いしは0.25重量%超過のものが用いられ、あるいは
また、Pb含有量が0.10〜0.35重量%程度のも
のが用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a high-S steel according to the present invention has the above-mentioned structure. As a high-S steel having a low hot workability, for example, the S content is 0.10% by weight. %, More than 0.20% by weight or more than 0.25% by weight depending on the case, or one having a Pb content of about 0.10 to 0.35% by weight. .

【0013】さらに具体的には、例えば、JIS G
4804に制定されたいおうおよびいおう複合快削鋼が
適用され、C:0.48重量%以下、Mn:0.30〜
1.65重量%、P:0.12重量%以下、場合によっ
ては0.05重量%未満、S:0.08〜0.40重量
%、場合によっては、Pb:0.10〜0.35重量%
ものが適用される。
More specifically, for example, JIS G
Soil and sulfur combined free-cutting steel specified in 4804 are applied, C: 0.48% by weight or less, Mn: 0.30 to 0.30% by weight.
1.65% by weight, P: 0.12% by weight or less, sometimes less than 0.05% by weight, S: 0.08 to 0.40% by weight, and in some cases, Pb: 0.10 to 0.35% weight%
Things apply.

【0014】そして、本発明では、連続鋳造後加熱炉挿
入前に鋳片表面を急冷することとしているが、この急冷
に際しては、浸漬による水冷やスプレーによる水冷やミ
ストによる水冷などが使用され、このような鋳片表面の
急冷を行うことによって、表面の結晶粒を微細化して組
織を微細なものにすることが可能であると共に、A3
態によるα組織の析出を抑制することが可能であり、組
織の微細化によって亀裂進展の抑制作用が十分に大きい
ものとなることから、分塊圧延後の鋼片表面に割れを生
じていたとしてもその割れは浅い(0.30mm以下程
度)ものとなり、スカーフィングによって容易にかつ十
分に除去可能な疵が残存する程度のこととなる。
In the present invention, the slab surface is rapidly cooled after the continuous casting and before the heating furnace is inserted. In this rapid cooling, water cooling by immersion, water cooling by spraying, water cooling by mist, and the like are used. by performing the rapid cooling of the slab surface, such as, with can be a tissue crystal grains of the surface is miniaturized ones fine, it is possible to suppress the precipitation of α tissues by a 3 transformation Since the effect of suppressing crack growth is sufficiently large due to the refinement of the structure, even if cracks are generated on the billet surface after slab rolling, the cracks are shallow (about 0.30 mm or less). This is the extent to which scars that can be easily and sufficiently removed by scarfing remain.

【0015】そして、スカーフィング後の鋳片を加熱炉
に装入し、加熱炉抽出温度を好ましくは1230℃以上
として加熱を行ったあと、加熱鋳片の分塊圧延を行い、
得られた鋼片に対し適宜の製品圧延を行って高S鋼鋼材
とする。この場合、加熱炉抽出温度が低いと、コーナー
割れが発生しやすい傾向となる。
Then, the cast slab after the scarfing is charged into a heating furnace, and heated at a heating furnace extraction temperature of preferably 1230 ° C. or higher, followed by slab rolling of the heated slab.
Appropriate product rolling is performed on the obtained slab to obtain a high S steel material. In this case, if the heating furnace extraction temperature is low, corner cracking tends to occur.

【0016】このようにして製造した高S鋼鋼材は、本
来的に熱間加工性が低いにもかかわず、鋼材表面に検査
異常を生じず外観不良率の低い高品質なものとなる。
The high-S steel material produced in this way has high quality with a low appearance defect rate without any abnormal inspection on the surface of the steel material despite its inherently low hot workability.

【0017】[0017]

【実施例】以下、本発明の実施例について説明するが、
本発明はこのような実施例のみに限定されないものであ
る。
Hereinafter, embodiments of the present invention will be described.
The present invention is not limited to only such an embodiment.

【0018】(実施例1)図1に示した連続鋳造設備に
おいて、溶鋼2として、C:0.07重量%、Si:
0.30重量%、Mn:0.90重量%、P:0.04
4重量%、S:0.312重量%、残部Feおよび不純
物からなるものを用いて連続鋳造することによって凝固
鋳片8を得たのち、フレームカッティング装置9により
切断し、切断した鋳片表面にスプレーノズルにより水を
かけて急冷した。
Example 1 In the continuous casting equipment shown in FIG. 1, as the molten steel 2, C: 0.07% by weight, Si:
0.30% by weight, Mn: 0.90% by weight, P: 0.04
4% by weight, S: 0.312% by weight, solid cast slab 8 was obtained by continuous casting using the balance of Fe and impurities, and then cut by a frame cutting device 9 to cut the slab surface. Water was quenched by spraying with a spray nozzle.

【0019】このときの鋳片の水冷前温度は680℃で
あり、冷却水温度は28℃であり、水冷時間は40秒で
あって、水冷後の鋳片温度は420℃であった。
At this time, the temperature of the slab before water cooling was 680 ° C., the cooling water temperature was 28 ° C., the water cooling time was 40 seconds, and the slab temperature after water cooling was 420 ° C.

【0020】ここで得た水冷後の鋳片の面部およびコー
ナー部を観察したところ、図2(面部)および図3(コ
ーナー部)に示すように、表面は結晶粒が細かくなって
いて組織が微細化していると共に、面部に一部ベイナイ
トの析出がみとめられ、コーナー部はベイナイトの析出
がほとんどみられないものとなっていた。
Observation of the surface and the corner of the water-cooled slab obtained here showed that the surface had fine crystal grains and a microstructure as shown in FIG. 2 (plane) and FIG. 3 (corner). In addition to the refinement, bainite precipitation was partially observed in the surface portion, and bainite precipitation was hardly observed in the corner portion.

【0021】ついで、水冷後の鋳片を炉入口温度が50
0℃である加熱炉に装入し、加熱炉抽出温度を1250
℃として抽出したのち分塊圧延を行い、分塊圧延して得
た鋼片の外観を調べたところ、鋼片表面に開口したコー
ナー割れは認められなかった。
Next, the slab after cooling with water is cooled to a furnace inlet temperature of 50%.
The mixture was charged into a heating furnace at 0 ° C., and the heating furnace extraction temperature was set at 1250.
After extracting at a temperature of ° C., slab rolling was performed, and the appearance of the slab obtained by slab rolling was examined. As a result, no corner cracks opened in the surface of the slab were found.

【0022】次いで、分塊圧延して得た鋼片に対しさら
に製品圧延を行うことによって得た高S鋼鋼材について
渦流検査を行ったところ、表面異常の発生は認められ
ず、外観不良率は0%であった。
Next, eddy current inspection was carried out on the high S steel material obtained by further rolling the slab obtained by slab rolling, and no abnormal surface was found. It was 0%.

【0023】これに対し、連続鋳造後加熱炉装入前に水
冷を行わなかった鋳片の面部およびコーナー部の観察で
は、図4(面部)および図5(コーナー部)に示すよう
に、表面の結晶粒は若干大きなものとなっており、ま
た、面部およびコーナー部がともにほんどα組織である
ものとなっていた。
On the other hand, in the observation of the surface portion and the corner portion of the slab which was not subjected to the water cooling before charging the heating furnace after the continuous casting, as shown in FIG. 4 (surface portion) and FIG. 5 (corner portion), Had slightly larger crystal grains, and both the face part and the corner part had almost an α structure.

【0024】次いで、水冷しない鋳片を炉入口温度が5
00℃である加熱炉に装入し、加熱炉抽出温度を120
0℃として抽出したのち分塊圧延を行い、分塊圧延して
得た鋼片の外観を調べたところ、鋼片表面に開口したコ
ーナー割れが認められた。
Next, the slab which is not water-cooled is cooled to a furnace inlet temperature of 5%.
The mixture was charged into a heating furnace at a temperature of
After extraction at 0 ° C., slab rolling was performed, and the appearance of the slab obtained by slab rolling was examined. As a result, corner cracks opened on the surface of the slab were observed.

【0025】次いで、分塊圧延して得た鋼片に対しさら
に製品圧延を行うことによって得た高S鋼鋼材について
渦流検査を行ったところ、表面異常の発生が認められ、
外観不良率は約18%であった。
Next, a vortex test was performed on the high S steel material obtained by further rolling the steel slab obtained by slab rolling, and the occurrence of surface abnormalities was recognized.
The appearance defect rate was about 18%.

【0026】(実施例2)図1に示した連続鋳造設備に
おいて、溶鋼2として、C:0.08重量%、Si:
0.30重量%、Mn:1.00重量%、P:0.04
4重量%、S:0.301重量%、Pb:0.152重
量%、残部Feおよび不純物からなるものを用いて連続
鋳造することによって凝固鋳片8を得たのち、フレーム
カッティング装置9により切断し、切断した鋳片表面に
スプレーノズルにより水をかけて急冷した。
Example 2 In the continuous casting facility shown in FIG. 1, as the molten steel 2, C: 0.08% by weight, Si:
0.30% by weight, Mn: 1.00% by weight, P: 0.04
Continuous casting using 4% by weight, S: 0.301% by weight, Pb: 0.152% by weight, balance Fe and impurities to obtain a solidified slab 8, and then cut by a frame cutting device 9 Then, the surface of the cut slab was rapidly cooled by spraying water with a spray nozzle.

【0027】このときの鋳片の水冷前温度は662℃で
あり、冷却水温度は28℃であり、水冷時間は40秒で
あって、水冷後の鋳片温度は430℃であった。
At this time, the temperature of the slab before water cooling was 662 ° C., the cooling water temperature was 28 ° C., the water cooling time was 40 seconds, and the slab temperature after water cooling was 430 ° C.

【0028】ここで得た水冷後の鋳片の面部およびコー
ナー部を観察したところ、図2(面部)および図3(コ
ーナー部)に示したと同様に、表面は結晶粒が細かくな
っていて組織が微細化していると共に、面部に一部ベイ
ナイトの析出がみとめられ、コーナー部はベイナイトの
析出がほとんどみられないものとなっていた。
Observation of the surface and the corner of the water-cooled cast slab obtained here showed that the crystal grain was fine on the surface and the structure was similar to that shown in FIG. 2 (the surface) and FIG. 3 (the corner). Was refined, and bainite precipitation was partially observed in the surface portion, and almost no bainite precipitation was observed in the corner portion.

【0029】ついで、水冷後の鋳片を炉入口温度が50
0℃である加熱炉に装入し、加熱炉抽出温度を1250
℃として抽出したのち分塊圧延を行い、分塊圧延して得
た鋼片の外観を調べたところ、鋼片表面に開口したコー
ナー割れは認められなかった。
Then, the slab after cooling with water is cooled to a furnace inlet temperature of 50%.
The mixture was charged into a heating furnace at 0 ° C., and the heating furnace extraction temperature was set at 1250.
After extracting at a temperature of ° C., slab rolling was performed, and the appearance of the slab obtained by slab rolling was examined. As a result, no corner cracks opened in the surface of the slab were found.

【0030】次いで、分塊圧延して得た鋼片に対しさら
に製品圧延を行うことによって得た高S鋼鋼材について
渦流検査を行ったところ、表面異常の発生は認められ
ず、外観不良率は0%であった。
Next, eddy current inspection was carried out on the high S steel material obtained by further rolling the steel slab obtained by slab rolling, and no abnormal surface was observed. It was 0%.

【0031】これに対し、連続鋳造後加熱炉装入前に水
冷を行わなかった鋳片の面部およびコーナー部の観察で
は、図4(面部)および図5(コーナー部)に示したと
同様に、表面の結晶粒は若干大きなものとなっており、
また、面部およびコーナー部がともにほんどα組織であ
るものとなっていた。
On the other hand, in the observation of the surface portion and the corner portion of the slab which was not subjected to the water cooling before charging the heating furnace after the continuous casting, as shown in FIG. 4 (surface portion) and FIG. 5 (corner portion), The crystal grains on the surface are slightly larger,
Further, both the face portion and the corner portion had almost an α structure.

【0032】次いで、水冷しない鋳片を炉入口温度が5
00℃である加熱炉に装入し、加熱炉抽出温度を128
0℃として抽出したのち分塊圧延を行い、分塊圧延して
得た鋼片の外観を調べたところ、鋼片表面に開口したコ
ーナー割れが認められた。
Next, the slab which is not water-cooled is cooled to a furnace inlet temperature of 5%.
The mixture was charged into a heating furnace at a temperature of 00 ° C., and the heating furnace extraction temperature was set to 128.
After extraction at 0 ° C., slab rolling was performed, and the appearance of the slab obtained by slab rolling was examined. As a result, corner cracks opened on the surface of the slab were observed.

【0033】次いで、分塊圧延して得た鋼片に対しさら
に製品圧延を行うことによって得た高S鋼鋼材について
渦流検査を行ったところ、表面異常の発生が認められ、
外観不良率は約20%程度であった。
Next, the slab obtained by slab rolling was subjected to eddy current inspection on a high S steel material obtained by further rolling the product, and surface abnormalities were found.
The appearance defect rate was about 20%.

【0034】[0034]

【発明の効果】本発明による高S鋼鋼材の製造方法で
は、請求項1に記載しているように、熱間加工性の低い
高S鋼鋼材を連続鋳造−加熱−分塊圧延により製造する
に際し、連続鋳造後加熱炉装入前に鋳片表面を急冷する
ことにより分塊圧延後の鋼片表面の割れを防止するよう
にしたから、表面における異常発生が少なく外観不良率
の低い高品質の高S鋼鋼材を製造することが可能である
という著しく優れた効果がもたらされる。
According to the method for producing a high S steel material according to the present invention, as described in claim 1, a high S steel material having low hot workability is produced by continuous casting-heating-bulking rolling. During the casting, the slab surface was quenched before charging the heating furnace after continuous casting to prevent cracks on the slab surface after slab rolling. Significantly high effect that it is possible to produce a high S steel material of

【0035】そして、請求項2に記載しているように、
高S鋼はS含有量が0.10重量%超過のものであるよ
うになすことによって、熱間加工性の低い高S鋼鋼材に
おいて表面品質のより一層優れたものにすることが可能
であるという著大なる効果がもたらされる。
And, as described in claim 2,
By ensuring that the high S steel has an S content of more than 0.10% by weight, it is possible to further improve the surface quality of the high S steel having a low hot workability. That is a great effect.

【0036】また、請求項3に記載しているように、高
S鋼はS含有量が0.10重量%超過、Pb含有量が
0.10〜0.35重量%のものであるようになすこと
によって、Sによる被削性向上作用に加えPbによる被
削性向上作用を得ることができるので、被削性にさらに
優れた表面品質の良好な高S鋼鋼材を製造することが可
能であるという著しく優れた効果がもたらされる。
In addition, as described in claim 3, the high S steel has an S content exceeding 0.10% by weight and a Pb content of 0.10 to 0.35% by weight. By doing so, it is possible to obtain a machinability improving effect due to Pb in addition to the machinability improving effect due to S, so that it is possible to produce a high-S steel material with excellent machinability and good surface quality. There is a remarkably excellent effect.

【0037】さらにまた、請求項4に記載しているよう
に、高S鋼はP含有量が0.05重量%未満のものであ
るようになすことによって、熱間加工性がより一層確保
された高S鋼鋼材を製造することが可能であるという著
大なる効果がもたらされる。
Furthermore, as described in claim 4, the high S steel has a P content of less than 0.05% by weight, so that the hot workability is further ensured. A remarkable effect that a high S steel material can be manufactured is provided.

【0038】さらにまた、請求項5に記載しているよう
に、加熱の際の加熱炉抽出温度を1230℃以上とする
ようになすことによって、表面品質のより一層優れた高
S鋼鋼材を製造することが可能であるという著大なる効
果がもたらされる。
Furthermore, as described in claim 5, by making the heating furnace extraction temperature at the time of heating to be 1230 ° C. or higher, a high-S steel material having more excellent surface quality can be manufactured. A significant effect of being able to do so.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造法の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a continuous casting method.

【図2】連続鋳造後加熱炉装入前に水冷を行った鋳片の
面部におけるミクロ組織を示す模写的説明図である。
FIG. 2 is a schematic explanatory view showing a microstructure in a surface portion of a slab subjected to water cooling after continuous casting and before charging a heating furnace.

【図3】連続鋳造後加熱炉装入前に水冷を行った鋳片の
コーナー部におけるミクロ組織を示す模写的説明図であ
る。
FIG. 3 is a schematic explanatory view showing a microstructure in a corner portion of a slab subjected to water cooling after charging into a heating furnace after continuous casting.

【図4】連続鋳造後加熱炉装入前に水冷を行なわない従
来の鋳片の面部におけるミクロ組織を示す模写的説明図
である。
FIG. 4 is a schematic explanatory view showing a microstructure in a surface portion of a conventional slab which is not subjected to water cooling before charging a heating furnace after continuous casting.

【図5】連続鋳造後加熱炉装入前に水冷を行なわない従
来の鋳片のコーナー部におけるミクロ組織を示す模写的
説明図である。
FIG. 5 is a schematic explanatory view showing a microstructure in a corner portion of a conventional slab where water cooling is not performed before charging a heating furnace after continuous casting.

【符号の説明】[Explanation of symbols]

1 レードル 2 溶鋼 3 タンディッシュ 4 水冷鋳型 5 外殻凝固鋳片 6 スプレー帯 7 ピンチロール 8 凝固鋳片 9 カッティング装置 Reference Signs List 1 ladle 2 molten steel 3 tundish 4 water-cooled mold 5 outer shell solidified slab 6 spray zone 7 pinch roll 8 solidified slab 9 cutting device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 9/00 101 C21D 9/00 101Y C22C 38/60 C22C 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21D 9/00 101 C21D 9/00 101Y C22C 38/60 C22C 38/60

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱間加工性の低い高S鋼鋼材を連続鋳造
−加熱−分塊圧延により製造するに際し、連続鋳造後加
熱炉装入前に鋳片表面を急冷することにより分塊圧延後
の鋼片表面の割れを防止することを特徴とする高S鋼鋼
材の製造方法。
1. When producing a high S steel material having low hot workability by continuous casting, heating and slab rolling, the slab surface is rapidly cooled after continuous casting and before charging in a heating furnace. A method for producing a high-S steel material characterized by preventing cracks on the surface of a billet.
【請求項2】 高S鋼はS含有量が0.10重量%超過
のものであることを特徴とする請求項1に記載の高S鋼
鋼材の製造方法。
2. The method for producing a high-S steel according to claim 1, wherein the high-S steel has an S content exceeding 0.10% by weight.
【請求項3】 高S鋼はS含有量が0.10重量%超
過、Pb含有量が0.10〜0.35重量%のものであ
ることを特徴とする請求項1または2に記載の高S鋼鋼
材の製造方法。
3. The high S steel according to claim 1, wherein the S content is more than 0.10% by weight and the Pb content is 0.10 to 0.35% by weight. Method for producing high S steel.
【請求項4】 高S鋼はP含有量が0.05重量%未満
のものであることを特徴とする請求項1ないし3のいず
れかに記載の高S鋼鋼材の製造方法。
4. The method for producing a high-S steel according to claim 1, wherein the high-S steel has a P content of less than 0.05% by weight.
【請求項5】 加熱の際の加熱炉抽出温度を1230℃
以上とすることを特徴とする請求項1ないし4のいずれ
かに記載の高S鋼鋼材の製造方法。
5. The heating furnace extraction temperature at the time of heating is 1230 ° C.
The method for producing a high-S steel material according to any one of claims 1 to 4, wherein:
JP11051873A 1999-02-26 1999-02-26 Manufacture of high sulfur steel material Pending JP2000246408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11051873A JP2000246408A (en) 1999-02-26 1999-02-26 Manufacture of high sulfur steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11051873A JP2000246408A (en) 1999-02-26 1999-02-26 Manufacture of high sulfur steel material

Publications (1)

Publication Number Publication Date
JP2000246408A true JP2000246408A (en) 2000-09-12

Family

ID=12899012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11051873A Pending JP2000246408A (en) 1999-02-26 1999-02-26 Manufacture of high sulfur steel material

Country Status (1)

Country Link
JP (1) JP2000246408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741560A (en) * 2015-04-03 2015-07-01 首钢总公司 Method of reducing cross cracks at niobium-containing steel angle part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741560A (en) * 2015-04-03 2015-07-01 首钢总公司 Method of reducing cross cracks at niobium-containing steel angle part

Similar Documents

Publication Publication Date Title
KR20230059827A (en) Wire rod for 5,000 MPa class diamond wire and its production method
US4715905A (en) Method of producting thin sheet of high Si-Fe alloy
JP2002086252A (en) Continous casting method
JP2007245232A (en) Method for preventing surface crack of continuously cast slab
JP2000246408A (en) Manufacture of high sulfur steel material
JPS63168260A (en) Hot working method for continuously cast billet
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
JP2006205241A (en) Continuous casting method for steel
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JPH0365001B2 (en)
JPH0112561B2 (en)
JP3671868B2 (en) Method for casting high Cr steel
JPH0372030A (en) Production of austenitic stainless steel strip excellent in ductility
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JP3067895B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JP3380032B2 (en) Method for producing high-strength steel wire with excellent drawability
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
KR20010009878A (en) A Method for Manufacturing Continuously Cast Strands from High Ni Containing Steel
JPH05279826A (en) Production of &#39;permalloy(r)&#39; excellent in impedance relative magnetic permeability
JPH06246414A (en) Continuous casting of high carbon steel
JPH07290101A (en) Method for preventing surface crack at time of hot edging/rolling continuously cast slab
JPH05329505A (en) Method for preventing surface crack of low-alloy steel
JPH11197797A (en) Method for continuously casting steel
JPS62156056A (en) Continuous casting method for low alloy steel