JP2000246318A - Method and device for controlling outside diameter of seamless pipe - Google Patents

Method and device for controlling outside diameter of seamless pipe

Info

Publication number
JP2000246318A
JP2000246318A JP11050570A JP5057099A JP2000246318A JP 2000246318 A JP2000246318 A JP 2000246318A JP 11050570 A JP11050570 A JP 11050570A JP 5057099 A JP5057099 A JP 5057099A JP 2000246318 A JP2000246318 A JP 2000246318A
Authority
JP
Japan
Prior art keywords
diameter
rolling mill
temperature distribution
hollow shell
seamless pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11050570A
Other languages
Japanese (ja)
Other versions
JP3351376B2 (en
Inventor
Masatomo Kishi
真友 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP05057099A priority Critical patent/JP3351376B2/en
Publication of JP2000246318A publication Critical patent/JP2000246318A/en
Application granted granted Critical
Publication of JP3351376B2 publication Critical patent/JP3351376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling the outside diameter of a seamless pipe, which can maintain predicted accuracy of heat shrinkage factor at high accuracy not depending on pipe wall thickness and rolling schedule of each process. SOLUTION: In this method to control the outside diameter of a seamless pipe when the seamless pipe is rolled with sizing machine, cooled, and finished to a specified diameter after processes where a heated round billet is drilled to make a hollow pipe and rolled, each temperature distribution on inlet/outlet sides of the processes and on the inlet side of the sizing machine are sequentially determined on the basis of the temperature (S6) of the heated round billet, carrying time (S12) through the processes, and deformation strain volume (S16) through the processes (S14, 18). On the basis of the temperature distribution on the inlet side of the sizing machine and the deformation strain volume due to the target diameter to be rolled with the sizing machine, the temperature distribution of the seamless pipe on the outlet side of the sizing machine is predicted, and the target diameter is set so as to achieve approximate agreement between the target diameter at the average temperature which is calculated from the finished diameter and the target diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、継目無管の製造時
において、その外径を制御する継目無管の外径制御方法
及び継目無管の外径制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seamless pipe outer diameter control method and apparatus for controlling the outer diameter of a seamless pipe at the time of manufacturing the same.

【0002】[0002]

【従来の技術】図7は、継目無管の製造方法の一例を説
明する為の説明図である。この継目無管の製造方法は、
加熱炉1において高温に加熱されたビレット2(丸鋼
片)を、穿孔機3においてプラグ芯金6及びプラグ芯金
6の先端に設けられたプラグ5により穿孔して、中空素
管4に加工する。この過程で、中空素管4内部では加工
熱が生じる為、穿孔前のビレット2の状態のときより
も、中空素管4の平均温度は上昇する。また、中空素管
4内面では、プラグ5との接触による伝達熱及びプラグ
芯金6への輻射熱により、温度降下が生じる。
2. Description of the Related Art FIG. 7 is an explanatory view for explaining an example of a method of manufacturing a seamless pipe. The manufacturing method of this seamless tube is
A billet 2 (round steel slab) heated to a high temperature in the heating furnace 1 is pierced with a plug core 6 and a plug 5 provided at the tip of the plug core 6 in a piercing machine 3 to form a hollow shell 4. I do. In this process, since the processing heat is generated inside the hollow shell 4, the average temperature of the hollow shell 4 is higher than in the state of the billet 2 before perforation. Further, on the inner surface of the hollow shell 4, a temperature drop occurs due to heat transfer due to contact with the plug 5 and radiant heat to the plug core 6.

【0003】次に、その加工した中空素管4をマンドレ
ルミル又はプラグミル等の延伸圧延機7迄搬送し、延伸
圧延機7により圧延する。この過程で、延伸圧延機7が
マンドレルミルである場合は、マンドレルバー8が中空
素管4内に挿入される為、中空素管4内面からマンドレ
ルバー8への輻射熱及び接触による伝達熱が生じる。ま
た、穿孔時と同様に、中空素管4内部には加工熱が生じ
る。
[0003] Next, the processed hollow shell 4 is transported to a stretching rolling mill 7 such as a mandrel mill or a plug mill, and is rolled by the stretching rolling mill 7. In this process, when the elongating mill 7 is a mandrel mill, the mandrel bar 8 is inserted into the hollow shell 4, so that radiant heat from the inner surface of the hollow shell 4 to the mandrel bar 8 and heat transfer due to contact are generated. . Further, as in the case of drilling, processing heat is generated inside the hollow shell 4.

【0004】次に、その圧延した中空素管4を、定径圧
延機9又はストレッチレデューサミルにより所要の熱間
外径を有する仕上げ管10に仕上げる。この過程でも、
仕上げ管10内部で加工熱が生じる。従って、仕上げ管
10の管表面温度と管内部平均温度との間には、圧延条
件及び圧延寸法に応じて温度差が生じる。最終製品に冷
却される迄の熱収縮率は、仕上げ管10の平均温度に依
存する為、従来は、定径圧延機9出側の管表面温度実績
及び表面温度予測値に基づいて目標熱間外径を設定する
ことにより、寸法精度を維持しており、その為に、定径
圧延機9出側には、表面温度計11と外径計12とが設
置されている。通常は、圧延した中空素管4を再加熱炉
(図示せず)において一定温度に均熱化するが、フルリ
トラクト式マンドレルミル等では、マンドレルミルと定
径圧延機9とをタンデム配置して、再加熱炉を省略する
こともある。
Next, the rolled hollow shell 4 is finished into a finished tube 10 having a required hot outer diameter by a constant diameter rolling mill 9 or a stretch reducer mill. During this process,
Processing heat is generated inside the finishing tube 10. Therefore, a temperature difference occurs between the surface temperature of the finished tube 10 and the average temperature inside the tube according to the rolling conditions and the rolling dimensions. Since the heat shrinkage rate before cooling to the final product depends on the average temperature of the finished tube 10, conventionally, the target hot shrinkage based on the tube surface temperature results on the exit side of the constant diameter rolling mill 9 and the predicted surface temperature value is used. By setting the outer diameter, dimensional accuracy is maintained. For this purpose, a surface thermometer 11 and an outer diameter gauge 12 are provided on the exit side of the constant diameter rolling mill 9. Normally, the rolled hollow shell 4 is soaked at a constant temperature in a reheating furnace (not shown). However, in a full retract type mandrel mill or the like, a mandrel mill and a constant diameter rolling mill 9 are arranged in tandem. In some cases, the reheating furnace may be omitted.

【0005】[0005]

【発明が解決しようとする課題】上述したように、最終
製品に冷却される迄の熱収縮率は、仕上げ管10の平均
温度に依存する為、最終工程において定径圧延する際の
管温度ばらつきが製品寸法に及ぼす影響は大きく、定径
圧延機9入側温度をフィードフォワードする手法、及び
長手方向温度分布に基づいた外径制御方法等が提案され
ている。例えば、特公昭61−28408号公報では、
再加熱炉出側又は延伸圧延機7出側における温度を測定
し、再加熱炉出側又は延伸圧延機7出側から定径圧延機
9迄の搬送時間実績に基づいて、定径圧延機9入出側の
管温度を予測し、定径圧延機9のロールギャップを設定
変更する外径制御方法が提案されている。この提案で
は、特に課題となる熱収縮率計算に関しては、定径圧延
機9出側の材料温度、管外径、管肉厚及び鋼種の関数と
して実験式を構成することが望ましいとしている。
As described above, since the heat shrinkage rate before cooling to the final product depends on the average temperature of the finished pipe 10, the pipe temperature variation at the time of constant diameter rolling in the final step. Has a large effect on the product dimensions, and a method of feeding forward the temperature on the inlet side of the constant-diameter rolling mill 9, a method of controlling the outer diameter based on the temperature distribution in the longitudinal direction, and the like have been proposed. For example, in Japanese Patent Publication No. 28408/1986,
The temperature at the exit side of the reheating furnace or the exit side of the elongation rolling mill 7 is measured, and based on the actual transfer time from the exit side of the reheating furnace or the exit side of the elongation rolling mill 7 to the constant diameter rolling mill 9, An outer diameter control method for estimating the inlet / outlet pipe temperature and changing the setting of the roll gap of the constant diameter rolling mill 9 has been proposed. In this proposal, it is desirable to construct an empirical formula as a function of the material temperature, the pipe outer diameter, the pipe wall thickness, and the steel type at the exit side of the constant-diameter rolling mill 9, particularly for the calculation of the heat shrinkage, which is a problem.

【0006】しかし、実際に熱収縮率の予測精度を向上
させるには、膨大な実験式を構成する必要があり、あら
ゆる鋼種及び寸法に対応する為には、膨大な工数及び時
間が必要となる。特に、管肉厚が厚くなると、管内部に
温度分布が生じる為、搬送時間実績から計算される温度
降下量から管内部平均温度の変化量を推定することは困
難であり、各肉厚毎に表面温度と熱収縮率の関係を表す
実験式を構成しなければならない。
However, in order to actually improve the accuracy of predicting the thermal shrinkage, it is necessary to construct a huge empirical formula, and a huge number of man-hours and time are required to cope with all kinds of steel types and dimensions. . In particular, when the wall thickness of the pipe becomes thick, a temperature distribution occurs inside the pipe, so it is difficult to estimate the amount of change in the average temperature inside the pipe from the temperature drop calculated from the actual transfer time. An empirical formula representing the relationship between the surface temperature and the heat shrinkage must be constructed.

【0007】また、定径圧延機9に到る迄の工程におい
て、穿孔機3、マンドレルミル等の圧延過程では、管内
部からプラグ及びマンドレルバーへ熱が移動する為、表
面温度からは推定出来ない内部温度分布が生じる。特
に、再加熱炉を省略して、マンドレルミルとサイザーミ
ルとをタンデム配置したフルリトラクト式マンドレルミ
ルでは、管の内外面の温度差が非常に大きくなる。上述
した特公昭61−28408号公報では、温度を実測又
は搬送時間実績に基づいた温度予測を実施しているにも
拘わらず、結局、熱収縮率の予測精度は、鋼種、外径及
び肉厚毎に必要な表面温度と熱収縮率の関係の実験式の
精度に依存している。
Further, in the rolling process of the piercing machine 3 and the mandrel mill in the process up to the constant diameter rolling mill 9, heat is transferred from the inside of the pipe to the plug and the mandrel bar. No internal temperature distribution occurs. In particular, in a full-retract type mandrel mill in which a reheating furnace is omitted and a mandrel mill and a sizer mill are arranged in tandem, the temperature difference between the inner and outer surfaces of the tube becomes very large. In Japanese Patent Publication No. Sho 61-28408, although the temperature is actually measured or the temperature is predicted based on the actual transfer time, the prediction accuracy of the heat shrinkage rate is determined by the steel type, the outer diameter and the wall thickness. It depends on the accuracy of the empirical formula for the relationship between the required surface temperature and the heat shrinkage for each case.

【0008】本発明は、上述したような事情に鑑みてな
されたものであり、加熱炉抽出から定径圧延機に到る迄
の圧延履歴に基づいて、定径圧延機出側の管内温度分布
を予測することにより、管肉厚及び各工程の圧延スケジ
ュールによらず、熱収縮率の予測精度を高精度に保持す
ることが出来る継目無管の外径制御方法及び継目無管の
外径制御装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and based on the rolling history from the extraction from the heating furnace to the constant-diameter rolling mill, the temperature distribution in the pipe on the exit side of the constant-diameter rolling mill. By controlling the outer diameter of the seamless pipe and the outer diameter of the seamless pipe, the prediction accuracy of the heat shrinkage can be maintained with high accuracy regardless of the pipe wall thickness and the rolling schedule of each process. It is intended to provide a device.

【0009】[0009]

【課題を解決するための手段】第1発明に係る継目無管
の外径制御方法は、加熱炉で加熱された丸ビレットを、
穿孔して中空素管となし圧延する各工程を経た後、定径
圧延機により圧延して冷却し所定の仕上げ径の継目無管
に仕上げるに際して、外径を制御する継目無管の外径制
御方法において、前記加熱炉で加熱された前記丸ビレッ
トの温度と、前記各工程に伴う搬送時間と、前記各工程
に伴う前記丸ビレット又は前記中空素管の変形ひずみ量
とに基づき、前記各工程の入出側及び前記定径圧延機の
入側における前記丸ビレット又は前記中空素管の各温度
分布を順次求め、前記定径圧延機の入側における温度分
布と、定径圧延機が圧延すべき目標径により与えられる
べき継目無管の変形ひずみ量とに基づき、定径圧延機出
側の前記継目無管の温度分布を予測し、該温度分布に基
づき定径圧延機出側の前記継目無管の平均温度を予測
し、前記仕上げ径から逆算した前記平均温度における算
出目標径と前記目標径とを略一致させるべく、前記目標
径を設定することを特徴とする。
According to a first aspect of the present invention, there is provided a method for controlling the outer diameter of a seamless pipe, comprising: forming a round billet heated by a heating furnace;
After passing through each process of piercing and forming a hollow shell and rolling, the outer diameter of the seamless pipe is controlled by controlling the outer diameter when rolling by a constant diameter rolling mill and cooling to finish it into a seamless pipe with a predetermined finishing diameter In the method, based on the temperature of the round billet heated in the heating furnace, the transport time associated with each step, and the deformation strain of the round billet or the hollow shell associated with each step, Each temperature distribution of the round billet or the hollow shell at the entrance and exit side of the constant diameter rolling mill and the entrance side of the constant diameter rolling mill are sequentially obtained, and the temperature distribution at the entrance side of the constant diameter rolling mill and the constant diameter rolling mill should be rolled. Based on the amount of deformation of the seamless pipe to be given by the target diameter, the temperature distribution of the seamless pipe on the exit side of the constant-diameter rolling mill is predicted, and based on the temperature distribution, the seamless pipe on the exit side of the constant-diameter rolling mill is estimated. Predict the average temperature of the pipe, To substantially match calculated target diameter at the back-calculated the average temperature between the said target diameter, and sets the target diameter.

【0010】第2発明に係る継目無管の外径制御方法
は、加熱炉で加熱された丸ビレットを、穿孔機により穿
孔して中空素管となし、圧延機により圧延した後、定径
圧延機により圧延して冷却し所定の仕上げ径の継目無管
に仕上げるに際して、外径を制御する継目無管の外径制
御方法において、前記加熱炉で加熱された前記丸ビレッ
トの温度と加熱炉から前記穿孔機迄の搬送時間とに基づ
き、穿孔機入側の前記丸ビレットの温度分布を求め、該
温度分布と穿孔機により前記丸ビレットから前記中空素
管へ変形したことによる変形ひずみ量とに基づき、穿孔
機出側の前記中空素管の温度分布を求め、該温度分布と
穿孔機から前記圧延機迄の搬送時間とに基づき、圧延機
入側の前記中空素管の温度分布を求め、該温度分布と圧
延機による前記中空素管の変形ひずみ量とに基づき、圧
延機出側の前記中空素管の温度分布を求め、該温度分布
と圧延機から前記定径圧延機迄の搬送時間とに基づき、
定径圧延機入側の前記中空素管の温度分布を求め、該温
度分布と定径圧延機が圧延すべき目標径により与えられ
るべき継目無管の変形ひずみ量とに基づき、定径圧延機
出側の前記継目無管の温度分布を予測し、該温度分布に
基づき定径圧延機出側の前記継目無管の平均温度を予測
し、前記仕上げ径から逆算した前記平均温度における算
出目標径と前記目標径とを略一致させるべく、前記目標
径を設定することを特徴とする。
A method of controlling the outer diameter of a seamless pipe according to a second invention is that a round billet heated in a heating furnace is pierced into a hollow shell by a piercing machine, and then rolled by a rolling mill. When rolling and cooling by a mill to finish a seamless pipe of a predetermined finish diameter, in a seamless pipe outer diameter control method of controlling the outer diameter, the temperature of the round billet heated in the heating furnace and the heating furnace Based on the transfer time up to the punch, the temperature distribution of the round billet on the side of the punch is determined, and the temperature distribution and the amount of deformation strain due to deformation from the round billet to the hollow shell by the punch are determined. Based on the temperature distribution of the hollow shell on the exit side of the drilling machine, based on the temperature distribution and the transport time from the drilling machine to the rolling mill, determine the temperature distribution of the hollow shell on the entrance side of the rolling mill, The temperature distribution and the hollow by the rolling mill Based on the deformation amount of strain the tube, determine the temperature distribution of the hollow shell on the delivery side of the rolling mill, based from the temperature distribution and the rolling mill on the transfer time until the constant 径圧 rolling mill,
The temperature distribution of the hollow shell on the inlet side of the constant diameter rolling mill is determined, and based on the temperature distribution and the deformation strain of the seamless pipe to be given by the target diameter to be rolled by the constant diameter rolling mill, Predict the temperature distribution of the seamless pipe on the exit side, predict the average temperature of the seamless pipe on the exit side of the constant diameter rolling mill based on the temperature distribution, and calculate the target diameter at the average temperature calculated backward from the finish diameter. The target diameter is set so that the target diameter substantially matches the target diameter.

【0011】第3発明に係る継目無管の外径制御装置
は、加熱炉で加熱された丸ビレットを、穿孔して中空素
管となし圧延する各工程を経た後、定径圧延機により圧
延して冷却し所定の仕上げ径の継目無管に仕上げるに際
して、外径を制御する継目無管の外径制御装置であっ
て、前記加熱炉で加熱された前記丸ビレットの温度と前
記各工程に伴う搬送時間と前記各工程に伴う前記丸ビレ
ット又は前記中空素管の変形ひずみ量とに基づき、前記
各工程の入出側及び前記定径圧延機の入側における前記
丸ビレット又は前記中空素管の各温度分布を順次求める
各手段と、該手段が求めた前記定径圧延機の入側におけ
る温度分布と定径圧延機が圧延すべき目標径により与え
られるべき継目無管の変形ひずみ量とに基づき、定径圧
延機出側の前記継目無管の温度分布を予測する手段と、
該手段が予測した温度分布に基づき定径圧延機出側の前
記継目無管の平均温度を予測する手段と、該手段が予測
した平均温度における、前記仕上げ径から逆算した算出
目標径と前記目標径とを略一致させるべく、前記目標径
を設定する手段とを備えることを特徴とする。
The outer diameter control apparatus for a seamless pipe according to the third invention is characterized in that a round billet heated in a heating furnace is perforated and rolled into a hollow shell, and then rolled by a constant diameter rolling mill. When cooling and finishing to a seamless pipe of a predetermined finishing diameter, a seamless pipe outer diameter control device for controlling the outer diameter, the temperature of the round billet heated in the heating furnace and the respective steps Based on the accompanying transport time and the deformation strain amount of the round billet or the hollow shell involved in each step, the round billet or the hollow shell on the entrance side of each step and the entrance side of the constant diameter rolling mill. Each means for sequentially determining each temperature distribution, and the temperature distribution at the entrance side of the constant diameter rolling mill determined by the means and the deformation strain of the seamless pipe to be given by the target diameter to be rolled by the constant diameter rolling mill Based on the above-mentioned seamless Means for predicting the temperature distribution,
Means for predicting the average temperature of the seamless pipe on the exit side of the constant-diameter rolling mill based on the temperature distribution predicted by the means, and a calculated target diameter and the target calculated back from the finishing diameter at the average temperature predicted by the means. Means for setting the target diameter so as to substantially match the diameter.

【0012】第1発明に係る継目無管の外径制御方法及
び第3発明に係る継目無管の外径制御装置では、加熱炉
で加熱された丸ビレットを、穿孔して中空素管となし圧
延する各工程を経た後、定径圧延機により圧延して冷却
し所定の仕上げ径の継目無管に仕上げるに際して、外径
を制御する。各温度分布を順次求める各手段は、加熱炉
で加熱された丸ビレットの温度と各工程に伴う搬送時間
と各工程に伴う丸ビレット又は中空素管の変形ひずみ量
とに基づき、各工程の入出側及び定径圧延機の入側にお
ける丸ビレット又は中空素管の各温度分布を順次求め
る。
In the seamless pipe outer diameter control method according to the first invention and the seamless pipe outer diameter control apparatus according to the third invention, a round billet heated in a heating furnace is perforated to form a hollow shell. After passing through each step of rolling, the outer diameter is controlled when rolling and cooling by a constant diameter rolling mill to finish a seamless pipe having a predetermined finishing diameter. Each means for sequentially determining each temperature distribution is based on the temperature of the round billet heated in the heating furnace, the transport time involved in each step, and the deformation strain of the round billet or hollow shell involved in each step, and Each temperature distribution of the round billet or the hollow shell at the entrance side of the side and the constant diameter rolling mill is sequentially obtained.

【0013】温度分布を予測する手段は、この求めた定
径圧延機の入側における温度分布と定径圧延機が圧延す
べき目標径により与えられるべき継目無管の変形ひずみ
量とに基づき、定径圧延機出側の継目無管の温度分布を
予測し、平均温度を予測する手段は、この予測した温度
分布に基づき定径圧延機出側の継目無管の平均温度を予
測する。目標径を設定する手段は、この予測した平均温
度における、仕上げ径から逆算した算出目標径と前記目
標径とを略一致させるべく、前記目標径を設定する。こ
れにより、管肉厚及び各工程の圧延スケジュールによら
ず、熱収縮率の予測精度を高精度に保持することが出来
る。
The means for predicting the temperature distribution is based on the obtained temperature distribution on the entrance side of the constant diameter rolling mill and the amount of deformation of the seamless pipe to be given by the target diameter to be rolled by the constant diameter rolling mill. The means for predicting the temperature distribution of the seamless pipe on the exit side of the constant diameter rolling mill and estimating the average temperature predicts the average temperature of the seamless pipe on the exit side of the constant diameter rolling mill based on the predicted temperature distribution. The means for setting the target diameter sets the target diameter so that the calculated target diameter at the predicted average temperature, which is calculated backward from the finish diameter, substantially matches the target diameter. Thereby, the prediction accuracy of the heat shrinkage can be maintained with high accuracy regardless of the pipe wall thickness and the rolling schedule of each step.

【0014】第4発明に係る継目無管の外径制御装置
は、加熱炉で加熱された丸ビレットを、穿孔機により穿
孔して中空素管となし、圧延機により圧延した後、定径
圧延機により圧延して冷却し所定の仕上げ径の継目無管
に仕上げるに際して、外径を制御する継目無管の外径制
御装置であって、前記加熱炉で加熱された前記丸ビレッ
トの温度と加熱炉から前記穿孔機迄の搬送時間とに基づ
き、穿孔機入側の前記丸ビレットの温度分布を求める手
段と、該手段が求めた温度分布と穿孔機により前記丸ビ
レットから前記中空素管へ変形したことによる変形ひず
み量とに基づき、穿孔機出側の前記中空素管の温度分布
を求める手段と、該手段が求めた温度分布と穿孔機から
前記圧延機迄の搬送時間とに基づき、圧延機入側の前記
中空素管の温度分布を求める手段と、該手段が求めた温
度分布と圧延機による前記中空素管の変形ひずみ量とに
基づき、圧延機出側の前記中空素管の温度分布を求める
手段と、該手段が求めた温度分布と圧延機から前記定径
圧延機迄の搬送時間とに基づき、定径圧延機入側の前記
中空素管の温度分布を求める手段と、該温度分布と定径
圧延機が圧延すべき目標径により与えられるべき継目無
管の変形ひずみ量とに基づき、定径圧延機出側の前記継
目無管の温度分布を予測する手段と、該手段が予測した
温度分布に基づき定径圧延機出側の前記継目無管の平均
温度を予測する手段と、該手段が予測した平均温度にお
ける、前記仕上げ径から逆算した算出目標径と前記目標
径とを略一致させるべく、前記目標径を設定する手段と
を備えることを特徴とする。
The outer diameter control apparatus for a seamless pipe according to the fourth invention is characterized in that a round billet heated in a heating furnace is perforated into a hollow shell by a perforator, and then rolled by a rolling mill. When rolling and cooling by a mill to finish a seamless pipe of a predetermined finish diameter, a seamless pipe outer diameter control device for controlling the outer diameter, the temperature and heating of the round billet heated in the heating furnace Means for determining the temperature distribution of the round billet on the inlet side of the drilling machine based on the transfer time from the furnace to the drilling machine, and deformation of the round billet into the hollow shell by the drilling machine by the temperature distribution determined by the means. Means for determining the temperature distribution of the hollow shell on the exit side of the drilling machine, based on the amount of deformation strain caused by this, and rolling based on the temperature distribution determined by the means and the transport time from the drilling machine to the rolling mill. Temperature distribution of the hollow shell on the entry side Means for determining, based on the temperature distribution determined by the means and the deformation strain of the hollow shell by the rolling mill, means for determining the temperature distribution of the hollow shell on the rolling mill exit side, the temperature determined by the means Means for obtaining a temperature distribution of the hollow shell on the inlet side of the constant-diameter rolling mill based on the distribution and the transport time from the rolling mill to the constant-diameter rolling mill, and a target to be rolled by the temperature distribution and the constant-diameter rolling mill. Means for predicting the temperature distribution of the seamless pipe on the exit side of the constant diameter rolling mill based on the deformation strain of the seamless pipe to be given by the diameter, and output of the constant diameter rolling mill based on the temperature distribution predicted by the means. Means for predicting the average temperature of the seamless pipe on the side, and setting the target diameter so that the calculated target diameter calculated from the finish diameter and the target diameter at the average temperature predicted by the means substantially match the target diameter. Means.

【0015】第2発明に係る継目無管の外径制御方法及
び第4発明に係る継目無管の外径制御装置では、加熱炉
で加熱された丸ビレットを、穿孔機により穿孔して中空
素管となし、圧延機により圧延した後、定径圧延機によ
り圧延して冷却し所定の仕上げ径の継目無管に仕上げ
る。丸ビレットの温度分布を求める手段は、加熱炉で加
熱された丸ビレットの温度と加熱炉から穿孔機迄の搬送
時間とに基づき、穿孔機入側の丸ビレットの温度分布を
求める。
In the seamless pipe outer diameter control method according to the second invention and the seamless pipe outer diameter control apparatus according to the fourth invention, a round billet heated in a heating furnace is pierced by a piercing machine to form a hollow element. After being rolled by a rolling mill, the roll is rolled and cooled by a constant diameter rolling mill to finish a seamless pipe having a predetermined finishing diameter. The means for determining the temperature distribution of the round billet obtains the temperature distribution of the round billet on the entrance side of the drilling machine based on the temperature of the round billet heated in the heating furnace and the transport time from the heating furnace to the drilling machine.

【0016】穿孔機出側の中空素管の温度分布を求める
手段は、丸ビレットの温度分布を求める手段が求めた温
度分布と穿孔機により丸ビレットから中空素管へ変形し
たことによる変形ひずみ量とに基づき、穿孔機出側の中
空素管の温度分布を求める。圧延機入側の中空素管の温
度分布を求める手段は、穿孔機出側の中空素管の温度分
布を求める手段が求めた温度分布と穿孔機から圧延機迄
の搬送時間とに基づき、圧延機入側の中空素管の温度分
布を求める。
The means for determining the temperature distribution of the hollow shell on the exit side of the drilling machine is composed of the temperature distribution determined by the means for determining the temperature distribution of the round billet and the deformation strain due to the deformation from the round billet to the hollow shell by the drilling machine. Based on the above, the temperature distribution of the hollow shell on the exit side of the drilling machine is obtained. The means for determining the temperature distribution of the hollow shell on the rolling mill entrance side is based on the temperature distribution determined by the means for determining the temperature distribution of the hollow shell on the exit side of the drilling machine and the transport time from the drilling machine to the rolling mill. Obtain the temperature distribution of the hollow shell on the entrance side.

【0017】圧延機出側の中空素管の温度分布を求める
手段は、圧延機入側の中空素管の温度分布を求める手段
が求めた温度分布と圧延機による中空素管の変形ひずみ
量とに基づき、圧延機出側の中空素管の温度分布を求め
る。定径圧延機入側の中空素管の温度分布を求める手段
は、圧延機出側の中空素管の温度分布を求める手段が求
めた温度分布と、圧延機から定径圧延機迄の搬送時間と
に基づき、定径圧延機入側の中空素管の温度分布を求め
る。
The means for determining the temperature distribution of the hollow shell on the exit side of the rolling mill includes the temperature distribution determined by the means for determining the temperature distribution of the hollow shell on the entrance side of the rolling mill and the deformation strain of the hollow shell by the rolling mill. Based on the above, the temperature distribution of the hollow shell on the exit side of the rolling mill is determined. The means for determining the temperature distribution of the hollow shell on the inlet side of the constant diameter rolling mill includes the temperature distribution obtained by the means for determining the temperature distribution of the hollow shell on the exit side of the rolling mill, and the transfer time from the rolling mill to the constant diameter rolling mill. Based on this, the temperature distribution of the hollow shell on the inlet side of the constant diameter rolling mill is determined.

【0018】温度分布を予測する手段は、定径圧延機入
側の中空素管の温度分布を求める手段が求めた温度分布
と定径圧延機が圧延すべき目標径により与えられるべき
継目無管の変形ひずみ量とに基づき、定径圧延機出側の
継目無管の温度分布を予測する。平均温度を予測する手
段は、温度分布を予測する手段が予測した温度分布に基
づき定径圧延機出側の継目無管の平均温度を予測し、目
標径を設定する手段は、平均温度を予測する手段が予測
した平均温度における、仕上げ径から逆算した算出目標
径と目標径とを略一致させるべく、目標径を設定する。
これにより、管肉厚及び各工程の圧延スケジュールによ
らず、熱収縮率の予測精度を高精度に保持することが出
来る。
The means for predicting the temperature distribution is a seamless pipe to be given by the temperature distribution determined by the means for determining the temperature distribution of the hollow shell on the inlet side of the constant diameter rolling mill and the target diameter to be rolled by the constant diameter rolling mill. The temperature distribution of the seamless pipe on the exit side of the constant-diameter rolling mill is predicted based on the deformation strain amount. The means for predicting the average temperature predicts the average temperature of the seamless pipe on the exit side of the constant diameter rolling mill based on the temperature distribution predicted by the means for predicting the temperature distribution, and the means for setting the target diameter predicts the average temperature. The target diameter is set so that the calculated target diameter calculated backward from the finish diameter at the average temperature predicted by the means for performing the calculation substantially matches the target diameter.
Thereby, the prediction accuracy of the heat shrinkage can be maintained with high accuracy regardless of the pipe wall thickness and the rolling schedule of each step.

【0019】[0019]

【発明の実施の形態】以下に、本発明をその実施の形態
を示す図面に基づいて説明する。図1は、本発明に係る
継目無管の外径制御方法及び継目無管の外径制御装置の
実施の形態の構成を示すブロック図である。この継目無
管の外径制御装置に関わる継目無管の製造方法は、加熱
炉1において高温に加熱されたビレット2(丸ビレッ
ト)を、穿孔機3においてプラグ芯金6及びプラグ芯金
6の先端に設けられたプラグ5により穿孔して、中空素
管4に加工する。この過程で、中空素管4内部では加工
熱が生じる為、穿孔前のビレット2の状態のときより
も、中空素管4の平均温度は上昇する。また、中空素管
4内面では、プラグ5との接触による伝達熱及びプラグ
芯金6への輻射熱により、温度降下が生じる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing an embodiment. FIG. 1 is a block diagram showing a configuration of an embodiment of a seamless pipe outer diameter control method and a seamless pipe outer diameter control device according to the present invention. A method of manufacturing a seamless pipe related to the outer diameter control device for a seamless pipe is as follows. A billet 2 (round billet) heated to a high temperature in a heating furnace 1 is connected to a plug core 6 and a plug core 6 in a punch 3. The hollow shell 4 is formed by piercing with a plug 5 provided at the tip. In this process, since the processing heat is generated inside the hollow shell 4, the average temperature of the hollow shell 4 is higher than in the state of the billet 2 before perforation. Further, on the inner surface of the hollow shell 4, a temperature drop occurs due to heat transfer due to contact with the plug 5 and radiant heat to the plug core 6.

【0020】次に、その加工した中空素管4を、マンド
レルミル又はプラグミル等の延伸圧延機7迄搬送し、延
伸圧延機7により圧延する。この過程で、延伸圧延機7
がマンドレルミルである場合は、マンドレルバー8が中
空素管4内に挿入される為、中空素管4内面からマンド
レルバー8への輻射熱及び接触による伝達熱が生じる。
また、穿孔時と同様に、中空素管4内部には加工熱が生
じる。
Next, the processed hollow shell 4 is conveyed to a stretching mill 7 such as a mandrel mill or a plug mill, and is rolled by the stretching mill 7. In this process, the elongation mill 7
Is a mandrel mill, since the mandrel bar 8 is inserted into the hollow shell 4, radiant heat from the inner surface of the hollow shell 4 to the mandrel bar 8 and heat transfer due to contact are generated.
Further, as in the case of drilling, processing heat is generated inside the hollow shell 4.

【0021】次に、その圧延した中空素管4を、定径圧
延機9又はストレッチレデューサミルにより所要の熱間
外径を有する仕上げ管10に仕上げる。この過程でも、
仕上げ管10内部で加工熱が生じる。従って、仕上げ管
10の管表面温度と管内部平均温度との間には、圧延条
件及び圧延寸法に応じて温度差が生じる。最終製品に冷
却される迄の熱収縮率は、仕上げ管10の平均温度に依
存する。通常は、圧延した中空素管4を再加熱炉(図示
せず)において一定温度に均熱化するが、フルリトラク
ト式マンドレルミル等では、マンドレルミルと定径圧延
機9とをタンデム配置して、再加熱炉を省略することも
ある。
Next, the rolled hollow shell 4 is finished into a finished pipe 10 having a required hot outer diameter by a constant diameter rolling mill 9 or a stretch reducer mill. During this process,
Processing heat is generated inside the finishing tube 10. Therefore, a temperature difference occurs between the surface temperature of the finished tube 10 and the average temperature inside the tube according to the rolling conditions and the rolling dimensions. The heat shrinkage before cooling to the final product depends on the average temperature of the finishing tube 10. Normally, the rolled hollow shell 4 is soaked at a constant temperature in a reheating furnace (not shown). However, in a full retract type mandrel mill or the like, a mandrel mill and a constant diameter rolling mill 9 are arranged in tandem. In some cases, the reheating furnace may be omitted.

【0022】上述した継目無管の製造方法において、本
発明に係る継目無管の外径制御装置13は、当該ビレッ
ト2が加熱炉1から出たことを検出する出炉検出器1c
からその検出信号を与えられ、そのときの加熱温度を加
熱温度計1bから、また、そのときの寸法を寸法測定器
1aからそれぞれ与えられる。外径制御装置13(継目
無管の外径制御装置)は、また、当該ビレット2が穿孔
機3に入ったことと、当該ビレット2が穿孔されて中空
素管4となって出たことを検出する入出検出器3bから
それらの検出信号を与えられ、穿孔機3の最終パスにお
けるプラグ5の径とロール間隔とを寸法設定器3aから
与えられる。
In the above-described method for manufacturing a seamless pipe, the outer diameter control device 13 for a seamless pipe according to the present invention includes a furnace detector 1c for detecting that the billet 2 has left the heating furnace 1.
, The detection signal is given, the heating temperature at that time is given from the heating thermometer 1b, and the dimension at that time is given from the dimension measuring instrument 1a. The outside diameter control device 13 (seamless tube outside diameter control device) also confirms that the billet 2 has entered the drilling machine 3 and that the billet 2 has been pierced to form the hollow shell 4. The detection signal is given from the input / output detector 3b to be detected, and the diameter and the roll interval of the plug 5 in the final pass of the drilling machine 3 are given from the dimension setting device 3a.

【0023】外径制御装置13は、また、当該中空素管
4が延伸圧延機7に入ったことと、当該中空素管4が圧
延されて出たことを検出する入出検出器7bからそれら
の検出信号を与えられ、延伸圧延機7のマンドレルバー
8の径とロール間隔とを寸法設定器7aから与えられ
る。外径制御装置13は、また、当該中空素管4が定径
圧延機9に入ったことを検出する入鋼検出器9bからそ
の検出信号を与えられ、定径圧延機9の最終ロールスタ
ンドにおけるロール間隔を寸法設定器9aから与えられ
る。
The outer diameter control device 13 also receives a signal from the in / out detector 7b for detecting that the hollow shell 4 has entered the elongating mill 7 and that the hollow shell 4 has been rolled out. The detection signal is given, and the diameter and the roll interval of the mandrel bar 8 of the elongating mill 7 are given from the dimension setting device 7a. The outer diameter control device 13 is also provided with a detection signal from a steel input detector 9b that detects that the hollow shell 4 has entered the constant diameter rolling mill 9, and receives the detection signal at the final roll stand of the constant diameter rolling mill 9. The roll interval is given from the dimension setting device 9a.

【0024】以下に、このような構成の外径制御装置1
3の動作を、それを示す図2〜4のフローチャートを参
照しながら説明する。外径制御装置13は、加熱炉1に
おいて高温に加熱された当該ビレット2が加熱炉1から
出たことを示す検出信号を、出炉検出器1cから与えら
れると(S2)、そのときの時刻を記憶し(S4)、加
熱温度計1bから与えられたそのときの加熱温度と、寸
法測定器1aから与えられたそのときの寸法とを読み込
む(S6)。次に、外径制御装置13は、当該ビレット
2が穿孔機3に入ったことを示す検出信号を、入出検出
器3bから与えられると(S8)、そのときの時刻を記
憶し(S10)、その時刻と当該ビレット2が加熱炉1
から出たとき(S2)に記憶した(S4)時刻とから、
加熱炉1及び穿孔機3間の搬送時間を演算する(S1
2)。
The outer diameter control device 1 having such a configuration will be described below.
The operation 3 will be described with reference to the flowcharts of FIGS. When a detection signal indicating that the billet 2 heated to a high temperature in the heating furnace 1 has exited from the heating furnace 1 is given from the furnace output detector 1c (S2), the outer diameter control device 13 sets the time at that time. The memory is stored (S4), and the current heating temperature given from the heating thermometer 1b and the current dimension given from the dimension measuring device 1a are read (S6). Next, when a detection signal indicating that the billet 2 has entered the drilling machine 3 is given from the entry / exit detector 3b (S8), the outer diameter control device 13 stores the time at that time (S10). The time and the billet 2 correspond to the heating furnace 1
From the time (S4) stored at the time of exiting from (S2),
The transfer time between the heating furnace 1 and the punch 3 is calculated (S1).
2).

【0025】次に、外径制御装置13は、穿孔機3入側
における当該ビレット2の半径方向の温度分布Ti3
(r)を演算する(S14)。但し、rは半径方向の位
置を表すものとする。温度分布Ti3(r)は、加熱炉
1から出たときの温度分布をTo1(r)、搬送時にお
ける当該ビレット2からの出熱量をQo2とすると、 Ti3(r)=f(To1(r),Qo2) (1) から求めることが出来る。温度分布To1(r)は、当
該ビレット2が加熱炉1から出たときに読み込んだ(S
6)加熱温度と寸法とから演算することが出来、出熱量
Qo2は、演算した(S12)搬送時間と、鋼種毎に固
有の輻射率、熱伝導率及び熱伝達率等とに基づいて演算
する。
Next, the outer diameter control device 13 determines a temperature distribution Ti3 in the radial direction of the billet 2 on the entrance side of the drilling machine 3.
(R) is calculated (S14). Here, r represents the position in the radial direction. The temperature distribution Ti3 (r) is given by To1 (r) as the temperature distribution at the time of exiting from the heating furnace 1 and Qo2 as the amount of heat output from the billet 2 at the time of transportation. Ti3 (r) = f (To1 (r) , Qo2) (1). The temperature distribution To1 (r) was read when the billet 2 came out of the heating furnace 1 (S
6) The heat output Qo2 can be calculated from the heating temperature and the dimensions, and the heat output Qo2 is calculated based on the calculated (S12) transport time and the emissivity, heat conductivity, heat transfer coefficient and the like specific to each steel type. .

【0026】次に、外径制御装置13は、穿孔機3にお
ける当該ビレット2から当該中空素管4への変形ひずみ
量を演算する(S16)。穿孔機3における変形ひずみ
量は、入側における外径、肉厚、長さをそれぞれDi
3、WTi3、Li3とし、出側における外径、肉厚、
長さをそれぞれDo3、WTo3、Lo3とし、半径方
向ひずみ量をφL3、軸方向ひずみ量をφr3、円周方
向ひずみ量をφθ3とすると、 φL3=Log(Lo3/Li3) (2) φr3=Log(WTo3/WTi3) (3) φθ3=−φL3−φr3 (4) となる。入側における外径Di3、肉厚WTi3、長さ
Li3は、寸法測定器1aから与えられ読み込んでおり
(S6)、出側における外径Do3、肉厚WTo3、長
さLo3は、寸法設定器3aから与えられる。
Next, the outer diameter control device 13 calculates the amount of deformation strain from the billet 2 to the hollow shell 4 in the drilling machine 3 (S16). The amount of deformation strain in the drilling machine 3 is determined by using the outer diameter, wall thickness, and length on the entry side as Di, respectively.
3, WTi3, Li3, the outer diameter, wall thickness on the outlet side,
If the lengths are Do3, WTo3, and Lo3, respectively, the radial strain is φL3, the axial strain is φr3, and the circumferential strain is φθ3, φL3 = Log (Lo3 / Li3) (2) φr3 = Log ( (WTo3 / WTi3) (3) φθ3 = −φL3-φr3 (4) The outer diameter Di3, the thickness WTi3, and the length Li3 on the entrance side are given and read from the dimension measuring device 1a (S6), and the outer diameter Do3, the thickness WTo3, and the length Lo3 on the exit side are determined by the dimension setting device 3a. Given by

【0027】全体の変形ひずみ量を表す相当ひずみ量を
ε3とすると、 ε3=((2/9)×((φL3−φθ3)2 +(φθ3−φr3)2 +(φr3−φL3)2 ))1/2 (5) から求めることが出来る。
Assuming that the equivalent strain representing the entire deformation strain is ε3, ε3 = ((2/9) × ((φL3-φθ3) 2 + (φθ3-φr3) 2 + (φr3-φL3) 2 )) It can be obtained from 1/2 (5).

【0028】次に、外径制御装置13は、穿孔機3出側
における当該中空素管4の温度分布To3(r)を演算
し記憶する(S18)。穿孔機3内の工程における加工
発熱量をQi3、材料変形抵抗をKf、変形ひずみ量と
発熱量との関係を表す係数をηととすると、 Qi3=η×Kf×ε3 (6) となる。尚、圧延スケジュールによって穿孔機3、延伸
圧延機7及び定径圧延機9の各工程における変形ひずみ
量は異なるので、(6)式を用いて各ピース(ビレット
2又は中空素管4)毎にオンラインにより、加工発熱量
Qi3の予測計算を行う。
Next, the outer diameter control device 13 calculates and stores the temperature distribution To3 (r) of the hollow shell 4 on the exit side of the drilling machine 3 (S18). Qi3 = η × Kf × ε3 (6) where Qi3 is the machining heat generation amount in the process in the drilling machine 3, Kf is the material deformation resistance, and η is the coefficient representing the relationship between the deformation strain amount and the heat generation amount. In addition, since the amount of deformation strain in each step of the piercing machine 3, the stretching rolling machine 7 and the constant diameter rolling machine 9 differs depending on the rolling schedule, each piece (the billet 2 or the hollow shell 4) is calculated using the equation (6). A prediction calculation of the processing calorific value Qi3 is performed online.

【0029】穿孔機3内の工程における当該ビレット2
又は当該中空素管4の外表面からの出熱量をQo3、当
該中空素管4の内表面からの出熱量をQo3´とする
と、穿孔機3出側における温度分布To3(r)は、 To3(r)=f(Ti3(r),Qi3,Qo3,Qo3´) (7) から求めることが出来る。(7)式の演算は、例えば、
管の半径方向に肉厚を複数メッシュに分割した伝熱計算
モデルを用いて、オンラインにより実行することが可能
である。出熱量Qo3,Qo3´は、穿孔機3内の各工
程における各所要時間と、鋼種毎に固有の輻射率、熱伝
導率及び熱伝達率等とに基づいて、プラグ5との接触に
よる伝達熱及びプラグ芯金6への輻射熱等を演算するこ
とにより求める。
The billet 2 in the process in the punch 3
Alternatively, assuming that the amount of heat output from the outer surface of the hollow shell 4 is Qo3 and the amount of heat output from the inner surface of the hollow shell 4 is Qo3 ′, the temperature distribution To3 (r) on the outlet side of the drilling machine 3 is To3 ( r) = f (Ti3 (r), Qi3, Qo3, Qo3 ') (7) The operation of equation (7) is, for example,
It can be executed online using a heat transfer calculation model in which the wall thickness is divided into a plurality of meshes in the radial direction of the tube. The heat output Qo3, Qo3 ′ is determined based on the required time in each step in the drilling machine 3 and the heat transfer by contact with the plug 5 based on the radiation rate, heat conductivity, heat transfer rate, etc., which are specific to each steel type. And the radiant heat to the plug core 6 are calculated.

【0030】次に、外径制御装置13は、穿孔機3にお
いて穿孔された当該中空素管4が穿孔機3から出たこと
を示す検出信号を、入出検出器3bから与えられると
(S20)、そのときの時刻を記憶する(S22)。次
に、外径制御装置13は、当該中空素管4が延伸圧延機
7に入ったことを示す検出信号を、入出検出器7bから
与えられると(S24)、そのときの時刻を記憶し(S
26)、その時刻と当該中空素管4が穿孔機3から出た
とき(S20)に記憶した(S22)時刻とから、穿孔
機3及び延伸圧延機7間の搬送時間を演算する(S2
8)。
Next, the outer diameter control device 13 receives a detection signal indicating that the hollow shell 4 pierced in the piercing machine 3 has exited the piercing machine 3 from the in / out detector 3b (S20). The time at that time is stored (S22). Next, when a detection signal indicating that the hollow shell 4 has entered the elongating mill 7 is given from the entry / exit detector 7b (S24), the outer diameter control device 13 stores the time at that time (S24). S
26) From the time and the time (S22) stored when the hollow shell 4 comes out of the drilling machine 3 (S20), the transport time between the drilling machine 3 and the elongation mill 7 is calculated (S2).
8).

【0031】次に、外径制御装置13は、延伸圧延機7
入側における当該中空素管4の半径方向の温度分布Ti
7(r)を演算する(S30)。温度分布Ti7(r)
は、穿孔機3から延伸圧延機7への搬送時における当該
中空素管4からの出熱量をQo4とすると、 Ti7(r)=f(To3(r),Qo4) (8) から求めることが出来る。穿孔機3出側の温度分布To
3(r)は、(7)式により演算し記憶しており(S1
8)、出熱量Qo4は、演算した(S28)搬送時間
と、鋼種毎に固有の輻射率、熱伝導率及び熱伝達率等と
に基づいて演算する。
Next, the outer diameter control device 13 controls the elongating mill 7
Temperature distribution Ti in the radial direction of the hollow shell 4 on the entry side
7 (r) is calculated (S30). Temperature distribution Ti7 (r)
Can be obtained from Ti7 (r) = f (To3 (r), Qo4) (8), where Qo4 is the heat output from the hollow shell 4 at the time of transfer from the piercing machine 3 to the elongation mill 7. I can do it. Temperature distribution To on the exit side of drilling machine 3 To
3 (r) is calculated by equation (7) and stored (S1
8) The heat output Qo4 is calculated based on the calculated transfer time (S28) and the emissivity, heat conductivity, heat transfer coefficient and the like specific to each steel type.

【0032】次に、外径制御装置13は、延伸圧延機7
における当該中空素管4の変形ひずみ量を演算する(S
32)。延伸圧延機7における変形ひずみ量は、入側に
おける外径、肉厚、長さをそれぞれDi7、WTi7、
Li7とし、出側における外径、肉厚、長さをそれぞれ
Do7、WTo7、Lo7とし、半径方向ひずみ量をφ
L7、軸方向ひずみ量をφr7、円周方向ひずみ量をφ
θ7とすると、 φL7=Log(Lo7/Li7) (9) φr7=Log(WTo7/WTi7) (10) φθ7=−φL7−φr7 (11) となる。入側における外径Di7、肉厚WTi7、長さ
Li7は、寸法測定器3aから与えられ、出側における
外径Do7、肉厚WTo7、長さLo7は、寸法設定器
7aから与えられる。
Next, the outside diameter control device 13
Of the deformation strain of the hollow shell 4 at (S)
32). The amount of deformation strain in the elongating mill 7 is determined by setting the outer diameter, wall thickness, and length on the entry side to Di7, WTi7,
Li7, the outside diameter, wall thickness, and length on the outlet side are Do7, WTo7, and Lo7, respectively, and the radial strain amount is φ.
L7, φr7 for axial strain, φ for circumferential strain
Assuming θ7, φL7 = Log (Lo7 / Li7) (9) φr7 = Log (WTo7 / WTi7) (10) φθ7 = −φL7−φr7 (11) The outer diameter Di7, the wall thickness WTi7, and the length Li7 on the entry side are given from the dimension measuring device 3a, and the outer diameter Do7, the wall thickness WTo7, and the length Lo7 on the exit side are given from the dimension setting device 7a.

【0033】全体の変形ひずみ量を表す相当ひずみ量を
ε7とすると、 ε7=((2/9)×((φL7−φθ7)2 +(φθ7−φr7)2 +(φr7−φL7)2 ))1/2 (12) から求めることが出来る。
Assuming that the equivalent strain representing the entire deformation strain is ε7, ε7 = ((2/9) × ((φL7−φθ7) 2 + (φθ7−φr7) 2 + (φr7−φL7) 2 )) It can be obtained from 1/2 (12).

【0034】次に、外径制御装置13は、延伸圧延機7
出側における当該中空素管4の温度分布To7(r)を
演算し記憶する(S34)。延伸圧延機7の工程におけ
る加工発熱量をQi7、材料変形抵抗をKf、変形ひず
み量と発熱量との関係を表す係数をηととすると、 Qi7=η×Kf×ε7 (13) となる。
Next, the outer diameter control device 13
The temperature distribution To7 (r) of the hollow shell 4 on the outlet side is calculated and stored (S34). Qi7 = η × Kf × ε7 (13), where Qi7 is the processing heat generation amount in the process of the elongating mill 7, Kf is the material deformation resistance, and η is a coefficient representing the relationship between the deformation strain amount and the heat generation amount.

【0035】延伸圧延機7内の工程における当該中空素
管4の外表面からの出熱量をQo7、当該中空素管4の
内表面からの出熱量をQo7´とすると、延伸圧延機7
出側における温度分布To7(r)は、 To7(r)=f(Ti7(r),Qi7,Qo7,Qo7´) (14) から求めることが出来る。出熱量Qo7,Qo7´は、
延伸圧延機7内の各工程における各所要時間と、鋼種毎
に固有の輻射率、熱伝導率及び熱伝達率等とに基づい
て、マンドレルバー8への輻射熱及び伝達熱等を演算す
ることにより求める。
Assuming that the amount of heat output from the outer surface of the hollow shell 4 in the process in the elongating mill 7 is Qo7 and the amount of heat output from the inner surface of the hollow shell 4 is Qo7 ',
The temperature distribution To7 (r) on the outlet side can be obtained from To7 (r) = f (Ti7 (r), Qi7, Qo7, Qo7 ') (14). The heat output Qo7, Qo7 '
By calculating the radiant heat and the heat transfer to the mandrel bar 8 based on each required time in each step in the elongating mill 7 and the emissivity, heat conductivity, heat transfer coefficient and the like specific to each steel type. Ask.

【0036】次に、外径制御装置13は、延伸圧延機7
において圧延された当該中空素管4が延伸圧延機7から
出たことを示す検出信号を、入出検出器7bから与えら
れると(S36)、そのときの時刻を記憶する(S3
8)。次に、外径制御装置13は、当該中空素管4が定
径圧延機9に入ったことを示す検出信号を、入鋼検出器
9bから与えられると(S40)、そのときの時刻を記
憶し(S42)、その時刻と当該中空素管4が延伸圧延
機7から出たとき(S36)に記憶した(S38)時刻
とから、延伸圧延機7及び定径圧延機9間の搬送時間を
演算する(S44)。定径圧延機9は、当該中空素管4
を、所要の熱間外径を有する仕上げ管10に仕上げる。
Next, the outer diameter control device 13
When a detection signal indicating that the hollow shell 4 rolled in the above step has exited from the elongating mill 7 is given from the entrance / exit detector 7b (S36), the time at that time is stored (S3).
8). Next, when a detection signal indicating that the hollow shell 4 has entered the constant diameter rolling mill 9 is given from the steel entry detector 9b (S40), the outer diameter control device 13 stores the time at that time. (S42), and from the time and the time (S38) stored when the hollow shell 4 comes out of the elongating mill 7 (S36), the transfer time between the elongating mill 7 and the constant diameter mill 9 is calculated. The calculation is performed (S44). The constant-diameter rolling mill 9 includes the hollow shell 4
Is finished into a finished tube 10 having a required hot outer diameter.

【0037】次に、外径制御装置13は、定径圧延機9
入側における当該中空素管4の半径方向の温度分布Ti
9(r)を演算する(S46)。温度分布Ti9(r)
は、延伸圧延機7から定径圧延機9への搬送時における
当該中空素管4からの出熱量をQo8とすると、 Ti9(r)=f(To7(r),Qo8) (15) から求めることが出来る。延伸圧延機7出側の温度分布
To7(r)は、(14)式により演算し記憶しており
(S34)、出熱量Qo8は、演算した(S44)搬送
時間と、鋼種毎に固有の輻射率、熱伝導率及び熱伝達率
等とに基づいて演算する。
Next, the outside diameter control device 13 is controlled by the constant diameter rolling mill 9.
Temperature distribution Ti in the radial direction of the hollow shell 4 on the entry side
9 (r) is calculated (S46). Temperature distribution Ti9 (r)
Is obtained from Ti9 (r) = f (To7 (r), Qo8) (15), where Qo8 is the amount of heat output from the hollow shell 4 at the time of transfer from the elongating mill 7 to the constant diameter mill 9. I can do it. The temperature distribution To7 (r) on the exit side of the elongating rolling mill 7 is calculated and stored according to the equation (14) (S34), and the heat output Qo8 is calculated (S44). The calculation is performed based on the coefficient, heat conductivity, heat transfer coefficient, and the like.

【0038】次に、外径制御装置13は、定径圧延機9
出側における仕上げ管10の熱間目標外径(目標径)を
仮設定し(S48)、当該中空素管4の変形ひずみ量を
演算する(S50)。定径圧延機9における変形ひずみ
量は、入側における外径、肉厚、長さをそれぞれDi
9、WTi9、Li9とし、出側における外径、肉厚、
長さをそれぞれDo9、WTo9、Lo9とし、半径方
向ひずみ量をφL9、軸方向ひずみ量をφr9、円周方
向ひずみ量をφθ9とすると、 φL9=Log(Lo9/Li9) (16) φr9=Log(WTo9/WTi9) (17) φθ9=−φL9−φr9 (18) となる。入側における外径Di9、肉厚WTi9、長さ
Li9は、寸法測定器7aから与えられ、出側における
外径Do9、肉厚WTo9、長さLo9は、仮設定して
ある(S48)。
Next, the outer diameter control device 13 is controlled by the constant diameter rolling mill 9.
A target hot outer diameter (target diameter) of the finishing tube 10 on the outlet side is temporarily set (S48), and the deformation strain amount of the hollow shell 4 is calculated (S50). The amount of deformation strain in the constant-diameter rolling mill 9 is obtained by calculating the outer diameter, the thickness, and the length on the entry side by Di, respectively.
9, WTi9, Li9, the outer diameter and wall thickness on the exit side,
When the lengths are Do9, WTo9, and Lo9, respectively, the radial strain is φL9, the axial strain is φr9, and the circumferential strain is φθ9, φL9 = Log (Lo9 / Li9) (16) φr9 = Log ( (WTo9 / WTi9) (17) φθ9 = −φL9−φr9 (18) The outside diameter Di9, the thickness WTi9, and the length Li9 on the entry side are provided from the dimension measuring device 7a, and the outside diameter Do9, the thickness WTo9, and the length Lo9 on the exit side are provisionally set (S48).

【0039】全体の変形ひずみ量を表す相当ひずみ量を
ε9とすると、 ε9=((2/9)×((φL9−φθ9)2 +(φθ9−φr9)2 +(φr9−φL9)2 ))1/2 (19) から求めることが出来る。
Assuming that the equivalent strain representing the entire deformation strain is ε9, ε9 = ((2/9) × ((φL9−φθ9) 2 + (φθ9−φr9) 2 + (φr9−φL9) 2 )) It can be obtained from 1/2 (19).

【0040】次に、外径制御装置13は、定径圧延機9
出側における仕上げ管10の温度分布To9(r)を演
算し記憶する(S52)。定径圧延機9の工程における
加工発熱量をQi9、材料変形抵抗をKf、変形ひずみ
量と発熱量との関係を表す係数をηととすると、 Qi9=η×Kf×ε9 (20) となる。
Next, the outer diameter control device 13 controls the constant diameter rolling mill 9.
The temperature distribution To9 (r) of the finishing tube 10 on the outlet side is calculated and stored (S52). Qi9 = η × Kf × ε9 (20) where Qi9 is the processing heat generation amount in the process of the constant diameter rolling mill 9, Kf is the material deformation resistance, and η is a coefficient indicating the relationship between the deformation strain amount and the heat generation amount. .

【0041】定径圧延機9内の工程における当該中空素
管4の外表面からの出熱量をQo9、当該中空素管4の
内表面からの出熱量をQo9´とすると、定径圧延機9
出側における温度分布To9(r)は、 To9(r)=f(Ti9(r),Qi9,Qo9,Qo9´) (21) から求めることが出来る。出熱量Qo9,Qo9´は、
定径圧延機9内の各工程における各所要時間と、鋼種毎
に固有の輻射率、熱伝導率及び熱伝達率等とに基づいて
求める。
Assuming that the amount of heat output from the outer surface of the hollow shell 4 in the process in the constant diameter mill 9 is Qo9 and the amount of heat output from the inner surface of the hollow shell 4 is Qo9 ',
The temperature distribution To9 (r) on the outlet side can be obtained from To9 (r) = f (Ti9 (r), Qi9, Qo9, Qo9 ') (21). The heat output Qo9, Qo9 '
It is determined based on each required time in each step in the constant diameter rolling mill 9 and the emissivity, heat conductivity, heat transfer coefficient and the like specific to each steel type.

【0042】次に、外径制御装置13は、定径圧延機9
出側における仕上げ管10の管内部の平均温度Tave
を演算し記憶する(S54)。平均温度Taveは、
(21)式により演算し記憶した(S52)定径圧延機
9出側における仕上げ管10の温度分布To9(r)に
基づき、容易に演算することが出来る。次に、外径制御
装置1は、演算し記憶した(S54)平均温度Tave
と冷間目標外径Dc(最終製品の外径)に基づき、熱間
目標外径Dhを演算する(S55)。
Next, the outer diameter control device 13 is controlled by the constant diameter rolling mill 9.
Average temperature Tave inside the finishing tube 10 at the outlet side
Is calculated and stored (S54). The average temperature Tave is:
(S52) It can be easily calculated on the basis of the temperature distribution To9 (r) of the finishing pipe 10 at the exit side of the constant diameter rolling mill 9 which is calculated and stored by the equation (21). Next, the outer diameter control device 1 calculates and stores (S54) the average temperature Tave.
Then, the hot target outer diameter Dh is calculated based on the cold target outer diameter Dc (the outer diameter of the final product) (S55).

【0043】ここで、管内部の平均温度Taveと熱収
縮率との間には、図5に示すような関係があり、平均温
度(管平均温度)が高い程、熱収縮率が大きく、鋼種毎
に固有であることが判っている。従って、定径圧延機9
出側における仕上げ管10の管内部の平均温度Tave
を予測することにより、冷却されて最終製品になる迄の
熱収縮率の予測も可能になり、冷間目標外径Dc(仕上
げ径)と予測した熱収縮率α(Tave)とから、定径
圧延機9出側における熱間目標外径Dh(算出目標径)
を次式により演算することが出来る。 Dh=(1+α(Tave)/100)×Dc (22)
Here, there is a relationship as shown in FIG. 5 between the average temperature Tave inside the pipe and the heat shrinkage rate. As the average temperature (pipe average temperature) increases, the heat shrinkage rate increases, It turns out to be unique to each. Therefore, the sizing mill 9
Average temperature Tave inside the finishing tube 10 at the outlet side
, It is also possible to predict the heat shrinkage from the time of cooling to the final product, and the constant diameter is calculated from the target cold outer diameter Dc (finished diameter) and the predicted heat shrinkage α (Tave). Hot target outer diameter Dh (calculated target diameter) on the exit side of rolling mill 9
Can be calculated by the following equation. Dh = (1 + α (Tave) / 100) × Dc (22)

【0044】次に、外径制御装置13は、仮設定した
(S48)熱間目標外径と、(22)式により演算した
(S55)熱間目標外径Dhとを比較し(S56)、略
一致しなければ、再度、定径圧延機9出側における仕上
げ管10の熱間目標外径を仮設定し(S48)、変形ひ
ずみ量を演算し(S50)、温度分布To9(r)を演
算し記憶し(S52)、管内部の平均温度Taveを演
算し(S54)、熱間目標外径Dhを演算し(S5
5)、仮設定した(S48)熱間目標外径と演算した
(S55)熱間目標外径Dhとを比較する(S56)。
Next, the outer diameter control device 13 compares the tentatively set (S48) hot target outer diameter with the (S55) target hot outer diameter Dh calculated by the equation (22) (S56). If they do not substantially coincide with each other, the hot target outer diameter of the finishing tube 10 on the exit side of the constant-diameter rolling mill 9 is temporarily set again (S48), the deformation strain amount is calculated (S50), and the temperature distribution To9 (r) is calculated. Calculation and storage (S52), calculation of the average temperature Tave inside the pipe (S54), and calculation of the target hot outer diameter Dh (S5).
5) A comparison is made between the provisionally set hot target outer diameter (S48) and the calculated hot target outer diameter Dh (S55) (S56).

【0045】外径制御装置13は、仮設定した(S4
8)熱間目標外径と演算した(S55)熱間目標外径D
hとが略一致したときは(S56)、仮設定した(S4
8)熱間目標外径を、定径圧延機9の定径である熱間目
標外径として、寸法設定器9aに設定する(S58)。
The outer diameter control device 13 is temporarily set (S4
8) Calculated as hot target outer diameter (S55) Hot target outer diameter D
h substantially coincide with each other (S56), they are provisionally set (S4).
8) The hot target outer diameter is set in the dimension setting device 9a as the hot target outer diameter that is the constant diameter of the constant diameter rolling mill 9 (S58).

【0046】尚、上述した、仮設定した(S48)熱間
目標外径と演算した(S55)熱間目標外径Dhとを略
一致させる方法に関しては、定径圧延機9出側の外径計
12の利用方法等、様々な手法が知られており、これら
の手法を利用する。また、温度分布等の温度予測に予測
誤差が発生することが考えられるが、定径圧延機9出側
の表面温度計11の測定実績と、演算予測した定径圧延
機9出側における温度分布To9(r)の表面温度との
比較を行い、その偏差分のみ、演算予測した平均温度T
aveを学習補正する手法を用いることにより、更に平
均温度Taveの予測演算精度の向上が期待出来る。
The above-mentioned method of making the tentatively set (S48) hot target outer diameter and the calculated (S55) hot target outer diameter Dh substantially coincide with each other is as follows. Various methods are known, such as a method of using the total 12, and these methods are used. Further, it is conceivable that a prediction error occurs in the temperature prediction such as the temperature distribution. However, the measurement result of the surface thermometer 11 on the exit side of the constant-diameter rolling mill 9 and the temperature distribution on the exit side of the constant-diameter rolling mill 9 calculated and predicted are considered. To9 (r) is compared with the surface temperature, and only the deviation is calculated and predicted as the average temperature T.
By using the method of learning and correcting ave, it is expected that the accuracy of prediction calculation of the average temperature Tave will be further improved.

【0047】図6(b)は、上述した本発明に係る継目
無管の外径制御方法及び継目無管の外径制御装置を適用
した場合の製品外径精度(冷間目標外径からの誤差)
を、図6(a)は、従来通り、定径圧延機出側の測定し
た表面温度に基づき、操業オペレータが手動介入して熱
間目標外径を修正した場合の製品外径精度(冷間目標外
径からの誤差)を、それぞれ示したグラフである。従来
の方法による製品外径精度では、管の寸法及び仕上げ温
度に依存して、製品外径がばらついているが、本発明に
係る継目無管の外径制御方法及び外径制御装置によれ
ば、管の肉厚、材質及び温度に関わらず、適切に熱間目
標外径を設定することが可能となり、製品外径精度が向
上していることが判る。
FIG. 6 (b) shows the outer diameter accuracy of the product when the outer diameter control method and the outer diameter control device of the seamless pipe according to the present invention described above are applied. error)
FIG. 6 (a) shows the product outer diameter accuracy (cold cold) when the operation operator manually intervenes to correct the hot target outer diameter based on the surface temperature measured on the exit side of the constant-diameter rolling mill as in the past. 2 is a graph showing an error from a target outer diameter. In the product outer diameter accuracy according to the conventional method, the product outer diameter varies depending on the pipe size and the finishing temperature, but according to the seamless pipe outer diameter control method and outer diameter control device according to the present invention, It can be seen that the hot target outer diameter can be appropriately set irrespective of the wall thickness, material and temperature of the pipe, and the accuracy of the product outer diameter is improved.

【0048】[0048]

【発明の効果】本発明に係る継目無管の外径制御方法及
び継目無管の外径制御装置によれば、管肉厚及び各工程
の圧延スケジュールによらず、熱収縮率の予測精度を高
精度に保持することが出来、従来は必要であった外径、
管肉厚、鋼種毎に実験式を構成し演算する手間を省くこ
とが出来る。また、製品の外径精度が向上する。
According to the seamless pipe outer diameter control method and the seamless pipe outer diameter control apparatus of the present invention, the prediction accuracy of the heat shrinkage rate can be improved regardless of the pipe wall thickness and the rolling schedule of each process. It can be held with high precision, and the outer diameter,
The trouble of constructing and calculating an empirical formula for each pipe thickness and steel type can be saved. In addition, the outer diameter accuracy of the product is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る継目無管の外径制御方法及び継目
無管の外径制御装置の実施の形態の構成を示すブロック
図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a seamless pipe outer diameter control method and a seamless pipe outer diameter control device according to the present invention.

【図2】本発明に係る継目無管の外径制御装置の動作を
示すフローチャートである。
FIG. 2 is a flowchart showing the operation of the outer diameter control device for a seamless pipe according to the present invention.

【図3】本発明に係る継目無管の外径制御装置の動作を
示すフローチャートである。
FIG. 3 is a flowchart showing the operation of the seamless pipe outer diameter control device according to the present invention.

【図4】本発明に係る継目無管の外径制御装置の動作を
示すフローチャートである。
FIG. 4 is a flowchart showing the operation of the outer diameter control device for a seamless pipe according to the present invention.

【図5】定径圧延機出側における管内部の平均温度と熱
収縮率との関係の例を示すグラフである。
FIG. 5 is a graph showing an example of the relationship between the average temperature inside the tube and the heat shrinkage on the exit side of the constant diameter rolling mill.

【図6】本発明に係る継目無管の外径制御方法及び継目
無管の外径制御装置の効果を示す為のグラフである。
FIG. 6 is a graph showing the effect of the seamless pipe outer diameter control method and the seamless pipe outer diameter control device according to the present invention.

【図7】継目無管の製造方法の一例を説明する為の説明
図である。
FIG. 7 is an explanatory diagram for explaining an example of a method of manufacturing a seamless tube.

【符号の説明】[Explanation of symbols]

1 加熱炉 1a 寸法測定器 1b 加熱温度計 1c 出炉検出器 2 ビレット(丸ビレット) 3 穿孔機 3a,7a,9a 寸法設定器 3b,7b 入出検出器 4 中空素管 5 プラグ 6 プラグ芯金 7 延伸圧延機 8 マンドレルバー 9 定径圧延機 9b 入鋼検出器 11 表面温度計 12 外径計 13 外径制御装置(継目無管の外径制御装置) DESCRIPTION OF SYMBOLS 1 Heating furnace 1a Dimension measuring device 1b Heating thermometer 1c Outlet detector 2 Billet (round billet) 3 Drilling machine 3a, 7a, 9a Dimension setting device 3b, 7b In / out detector 4 Hollow shell 5 Plug 6 Plug core metal 7 Stretching Rolling mill 8 mandrel bar 9 constant diameter rolling mill 9b steel entry detector 11 surface thermometer 12 outer diameter gauge 13 outer diameter control device (seamless tube outer diameter control device)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉で加熱された丸ビレットを、穿孔
して中空素管となし圧延する各工程を経た後、定径圧延
機により圧延して冷却し所定の仕上げ径の継目無管に仕
上げるに際して、外径を制御する継目無管の外径制御方
法において、 前記加熱炉で加熱された前記丸ビレットの温度と、前記
各工程に伴う搬送時間と、前記各工程に伴う前記丸ビレ
ット又は前記中空素管の変形ひずみ量とに基づき、前記
各工程の入出側及び前記定径圧延機の入側における前記
丸ビレット又は前記中空素管の各温度分布を順次求め、 前記定径圧延機の入側における温度分布と、定径圧延機
が圧延すべき目標径により与えられるべき継目無管の変
形ひずみ量とに基づき、定径圧延機出側の前記継目無管
の温度分布を予測し、 該温度分布に基づき定径圧延機出側の前記継目無管の平
均温度を予測し、 前記仕上げ径から逆算した前記平均温度における算出目
標径と前記目標径とを略一致させるべく、前記目標径を
設定することを特徴とする継目無管の外径制御方法。
After a round billet heated in a heating furnace is perforated and rolled into a hollow shell, each step is followed by rolling and cooling by a constant diameter rolling mill to form a seamless pipe having a predetermined finishing diameter. Upon finishing, in the outer diameter control method of a seamless pipe for controlling the outer diameter, the temperature of the round billet heated in the heating furnace, the transport time associated with each step, and the round billet associated with each step or On the basis of the deformation strain amount of the hollow shell, the temperature distribution of the round billet or the hollow shell on the entrance side of each step and the entrance side of the constant diameter rolling mill is sequentially obtained, Based on the temperature distribution on the inlet side and the deformation strain of the seamless pipe to be given by the target diameter to be rolled by the constant diameter rolling mill, predict the temperature distribution of the seamless pipe on the exit side of the constant diameter rolling mill, Based on the temperature distribution, Predicting the average temperature of the seamless pipe, the target diameter is set to substantially match the calculated target diameter and the target diameter at the average temperature calculated backward from the finish diameter, Outer diameter control method.
【請求項2】 加熱炉で加熱された丸ビレットを、穿孔
機により穿孔して中空素管となし、圧延機により圧延し
た後、定径圧延機により圧延して冷却し所定の仕上げ径
の継目無管に仕上げるに際して、外径を制御する継目無
管の外径制御方法において、 前記加熱炉で加熱された前記丸ビレットの温度と加熱炉
から前記穿孔機迄の搬送時間とに基づき、穿孔機入側の
前記丸ビレットの温度分布を求め、 該温度分布と穿孔機により前記丸ビレットから前記中空
素管へ変形したことによる変形ひずみ量とに基づき、穿
孔機出側の前記中空素管の温度分布を求め、 該温度分布と穿孔機から前記圧延機迄の搬送時間とに基
づき、圧延機入側の前記中空素管の温度分布を求め、 該温度分布と圧延機による前記中空素管の変形ひずみ量
とに基づき、圧延機出側の前記中空素管の温度分布を求
め、 該温度分布と圧延機から前記定径圧延機迄の搬送時間と
に基づき、定径圧延機入側の前記中空素管の温度分布を
求め、 該温度分布と定径圧延機が圧延すべき目標径により与え
られるべき継目無管の変形ひずみ量とに基づき、定径圧
延機出側の前記継目無管の温度分布を予測し、 該温度分布に基づき定径圧延機出側の前記継目無管の平
均温度を予測し、 前記仕上げ径から逆算した前記平均温度における算出目
標径と前記目標径とを略一致させるべく、前記目標径を
設定することを特徴とする継目無管の外径制御方法。
2. A round billet heated in a heating furnace is pierced by a piercing machine to form a hollow shell, rolled by a rolling mill, rolled by a constant diameter rolling mill, cooled, and jointed to a predetermined finishing diameter. In the method of controlling the outer diameter of a seamless pipe for controlling the outer diameter when finishing the pipe, a drilling machine based on a temperature of the round billet heated in the heating furnace and a transfer time from the heating furnace to the drilling machine. Determining the temperature distribution of the round billet on the entrance side, and the temperature of the hollow shell on the exit side of the drilling machine based on the temperature distribution and the amount of deformation strain due to deformation of the round billet into the hollow shell by the drilling machine. Calculating the temperature distribution and the temperature distribution of the hollow shell on the rolling mill entry side based on the temperature distribution and the transport time from the drilling machine to the rolling mill; and deforming the hollow shell by the rolling mill. Rolling mill based on the amount of strain The temperature distribution of the hollow shell on the inlet side of the constant diameter rolling mill is determined based on the temperature distribution and the transport time from the rolling mill to the constant diameter rolling mill. Based on the temperature distribution and the amount of deformation of the seamless pipe to be given by the target diameter to be rolled by the constant diameter rolling mill, the temperature distribution of the seamless pipe on the exit side of the constant diameter rolling mill is predicted. Predicting the average temperature of the seamless pipe on the exit side of the constant diameter rolling mill based on the constant diameter rolling mill, and setting the target diameter so that the calculated target diameter at the average temperature calculated backward from the finish diameter substantially matches the target diameter. A method for controlling the outer diameter of a seamless tube, characterized in that:
【請求項3】 加熱炉で加熱された丸ビレットを、穿孔
して中空素管となし圧延する各工程を経た後、定径圧延
機により圧延して冷却し所定の仕上げ径の継目無管に仕
上げるに際して、外径を制御する継目無管の外径制御装
置であって、 前記加熱炉で加熱された前記丸ビレットの温度と前記各
工程に伴う搬送時間と前記各工程に伴う前記丸ビレット
又は前記中空素管の変形ひずみ量とに基づき、前記各工
程の入出側及び前記定径圧延機の入側における前記丸ビ
レット又は前記中空素管の各温度分布を順次求める各手
段と、 該手段が求めた前記定径圧延機の入側における温度分布
と定径圧延機が圧延すべき目標径により与えられるべき
継目無管の変形ひずみ量とに基づき、定径圧延機出側の
前記継目無管の温度分布を予測する手段と、 該手段が予測した温度分布に基づき定径圧延機出側の前
記継目無管の平均温度を予測する手段と、 該手段が予測した平均温度における、前記仕上げ径から
逆算した算出目標径と前記目標径とを略一致させるべ
く、前記目標径を設定する手段とを備えることを特徴と
する継目無管の外径制御装置。
3. After the round billet heated by the heating furnace is subjected to the steps of perforating, rolling into a hollow shell, and rolling, the roll is cooled by a constant diameter rolling mill to form a seamless pipe having a predetermined finishing diameter. At the time of finishing, it is a seamless pipe outer diameter control device for controlling the outer diameter, the temperature of the round billet heated in the heating furnace and the transport time associated with each step and the round billet associated with each step or Means for sequentially obtaining the temperature distribution of the round billet or the hollow shell on the inlet and outlet sides of the respective steps and on the inlet side of the constant diameter rolling mill, based on the deformation strain amount of the hollow shell, Based on the determined temperature distribution on the inlet side of the constant diameter rolling mill and the deformation strain of the seamless pipe to be given by the target diameter to be rolled by the constant diameter rolling mill, the seamless pipe on the exit side of the constant diameter rolling mill Means for predicting the temperature distribution of Means for predicting the average temperature of the seamless pipe on the exit side of the constant-diameter rolling mill based on the predicted temperature distribution; and, at the average temperature predicted by the means, the calculated target diameter and the target diameter calculated back from the finishing diameter. Means for setting the target diameter so as to make them substantially coincide with each other.
【請求項4】 加熱炉で加熱された丸ビレットを、穿孔
機により穿孔して中空素管となし、圧延機により圧延し
た後、定径圧延機により圧延して冷却し所定の仕上げ径
の継目無管に仕上げるに際して、外径を制御する継目無
管の外径制御装置であって、 前記加熱炉で加熱された前記丸ビレットの温度と加熱炉
から前記穿孔機迄の搬送時間とに基づき、穿孔機入側の
前記丸ビレットの温度分布を求める手段と、 該手段が求めた温度分布と穿孔機により前記丸ビレット
から前記中空素管へ変形したことによる変形ひずみ量と
に基づき、穿孔機出側の前記中空素管の温度分布を求め
る手段と、 該手段が求めた温度分布と穿孔機から前記圧延機迄の搬
送時間とに基づき、圧延機入側の前記中空素管の温度分
布を求める手段と、 該手段が求めた温度分布と圧延機による前記中空素管の
変形ひずみ量とに基づき、圧延機出側の前記中空素管の
温度分布を求める手段と、 該手段が求めた温度分布と圧延機から前記定径圧延機迄
の搬送時間とに基づき、定径圧延機入側の前記中空素管
の温度分布を求める手段と、 該温度分布と定径圧延機が圧延すべき目標径により与え
られるべき継目無管の変形ひずみ量とに基づき、定径圧
延機出側の前記継目無管の温度分布を予測する手段と、 該手段が予測した温度分布に基づき定径圧延機出側の前
記継目無管の平均温度を予測する手段と、 該手段が予測した平均温度における、前記仕上げ径から
逆算した算出目標径と前記目標径とを略一致させるべ
く、前記目標径を設定する手段とを備えることを特徴と
する継目無管の外径制御装置。
4. A round billet heated in a heating furnace is pierced into a hollow shell by a piercing machine, rolled by a rolling mill, then rolled and cooled by a constant diameter rolling mill, and cooled to a seam having a predetermined finishing diameter. When finishing to a pipeless, it is a seamless pipe outer diameter control device for controlling the outer diameter, based on the temperature of the round billet heated in the heating furnace and the transfer time from the heating furnace to the drilling machine, Means for determining the temperature distribution of the round billet on the inlet side of the drilling machine; and, based on the temperature distribution determined by the means and the amount of deformation strain due to deformation of the round billet into the hollow shell by the drilling machine, output of the drilling machine. Means for determining the temperature distribution of the hollow shell on the side of the rolling mill, and determining the temperature distribution of the hollow shell on the side of the rolling mill based on the temperature distribution determined by the means and the transport time from the punch to the rolling mill. Means, and a temperature component determined by the means Means for determining the temperature distribution of the hollow shell on the exit side of the rolling mill, based on the deformation strain of the hollow shell by the rolling mill, and the temperature distribution determined by the means and from the rolling mill to the constant diameter rolling mill. Means for calculating the temperature distribution of the hollow shell on the inlet side of the constant diameter rolling mill based on the transfer time of the constant diameter rolling mill; and the deformation strain of the seamless pipe to be given by the temperature distribution and the target diameter to be rolled by the constant diameter rolling mill. Means for predicting the temperature distribution of the seamless pipe on the exit side of the constant-diameter rolling mill based on the amount, and estimating the average temperature of the seamless pipe on the exit side of the constant-diameter rolling mill based on the temperature distribution predicted by the means. And a means for setting the target diameter so that the calculated target diameter calculated backward from the finish diameter at the average temperature predicted by the means substantially matches the target diameter. Pipe outer diameter control device.
JP05057099A 1999-02-26 1999-02-26 Seamless pipe outer diameter control method and seamless pipe outer diameter control device Expired - Fee Related JP3351376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05057099A JP3351376B2 (en) 1999-02-26 1999-02-26 Seamless pipe outer diameter control method and seamless pipe outer diameter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05057099A JP3351376B2 (en) 1999-02-26 1999-02-26 Seamless pipe outer diameter control method and seamless pipe outer diameter control device

Publications (2)

Publication Number Publication Date
JP2000246318A true JP2000246318A (en) 2000-09-12
JP3351376B2 JP3351376B2 (en) 2002-11-25

Family

ID=12862672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05057099A Expired - Fee Related JP3351376B2 (en) 1999-02-26 1999-02-26 Seamless pipe outer diameter control method and seamless pipe outer diameter control device

Country Status (1)

Country Link
JP (1) JP3351376B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837373A (en) * 2009-03-19 2010-09-22 株式会社日立制作所 Hot-rolling analogue device and rolling history recording analogue method
KR101403147B1 (en) 2012-08-06 2014-06-03 주식회사 포스코 Apparatus and method of determining fault of out-of-roundness in rolled steel
CN105921524A (en) * 2016-05-11 2016-09-07 天津钢管集团股份有限公司 Controlled rolling method in seamless pipe hot rolling process
WO2023178894A1 (en) * 2022-03-25 2023-09-28 宝银特种钢管有限公司 Manufacturing method of ultra-thin seamless tube for high-end equipment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752625B (en) * 2014-01-20 2016-09-28 中南大学 A kind of multiobject seamless steel pipe continuous rolling process rolling schedule optimization method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837373A (en) * 2009-03-19 2010-09-22 株式会社日立制作所 Hot-rolling analogue device and rolling history recording analogue method
JP2010214464A (en) * 2009-03-19 2010-09-30 Hitachi Ltd Hot rolling simulator and rolling history simulator
KR101403147B1 (en) 2012-08-06 2014-06-03 주식회사 포스코 Apparatus and method of determining fault of out-of-roundness in rolled steel
CN105921524A (en) * 2016-05-11 2016-09-07 天津钢管集团股份有限公司 Controlled rolling method in seamless pipe hot rolling process
WO2023178894A1 (en) * 2022-03-25 2023-09-28 宝银特种钢管有限公司 Manufacturing method of ultra-thin seamless tube for high-end equipment system

Also Published As

Publication number Publication date
JP3351376B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
US20060059969A1 (en) Method of manufacturing a seamless pipe
JP3351376B2 (en) Seamless pipe outer diameter control method and seamless pipe outer diameter control device
RU2386504C2 (en) Method and device for monitoring of technological process for manufacturing of pipes from steel by hot method
JP4402502B2 (en) Winding temperature controller
EP2133159B1 (en) Method of manufacturing a seamless pipe or tube
JPH0871616A (en) Device for rolling seamless tube and method for controlling rolling
JP6075309B2 (en) Heating furnace control method and control apparatus
JP7424335B2 (en) Heating control method and device, hot-rolled steel plate manufacturing method, and transportation prediction model generation method
JP2021109185A (en) Control method for rolling device, control device for rolling device, and manufacturing method for steel plate
JP4370572B2 (en) Mandrel mill rolling control method, rolling control device, control program, and seamless pipe
JP2004202573A (en) Manufacturing method and apparatus for seamless steel pipe
JP7327675B2 (en) data collection device
JPS5997705A (en) Continuous rolling method
US20220236725A1 (en) Physical model identification system
JPS6043805B2 (en) Outer diameter control method for pipe forming machine
JP4013484B2 (en) Outside diameter control method and outside diameter control apparatus
JPH0380566B2 (en)
JPS6128408B2 (en)
JP4964061B2 (en) Control method for steel wire rod cooling
JP3082633B2 (en) Control method of roll speed of stretch reducer
JPS6235846B2 (en)
JP2000288616A (en) Manufacture of seamless steel tube
JP3082672B2 (en) Rolling method of seamless steel pipe
JP2021109186A (en) Control method for rolling device, control device for rolling device, and manufacturing method for steel plate
JPH105817A (en) Method for rolling seamless steel tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees