JP2000244179A - Electromagnetic shielding method for building - Google Patents

Electromagnetic shielding method for building

Info

Publication number
JP2000244179A
JP2000244179A JP4588799A JP4588799A JP2000244179A JP 2000244179 A JP2000244179 A JP 2000244179A JP 4588799 A JP4588799 A JP 4588799A JP 4588799 A JP4588799 A JP 4588799A JP 2000244179 A JP2000244179 A JP 2000244179A
Authority
JP
Japan
Prior art keywords
mortar
electromagnetic shielding
concrete
weight
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4588799A
Other languages
Japanese (ja)
Other versions
JP3564632B2 (en
Inventor
Katsunori Yamaki
克則 山木
Masami Murashige
正省 村重
Yorihaya Yokota
依早弥 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP4588799A priority Critical patent/JP3564632B2/en
Publication of JP2000244179A publication Critical patent/JP2000244179A/en
Application granted granted Critical
Publication of JP3564632B2 publication Critical patent/JP3564632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain light-weight electromagnetic shielding mortar and concrete which impart electromagnetic shielding function to a wall, a slab and interior material of a building. SOLUTION: Mortal materials 5 and 6 or concrete materials 5, 6 and 7 are mixed and kneaded with iron oxide 4 and carbon 8, having a volume of which a transmission ratio T per unit thickness corresponding to a electromagnetic wave to be shielded is less than a prescribed level T0, and the specific gravity after solidation is made less than the specific gravity at the solidification of the mortal material or the concrete material. Preferably, light-weight electromagnetic shielding mortal 1 is made by the iron oxide 4 and the carbon 8 of 50 to 300 weight % and water 6 of 30 to 70 weight % with respect to the cement 5 which is mixed and kneaded, and electromagnetic shielding concrete 2 is made by the iron oxide 4 and the carbon 8 of 50 to 500 weight %, fine aggregate and rough aggregate of 30 to 500 weight % and water 6 of 30 to 70 weight % being mixed and kneaded with respect to the cement 5. It is more preferable that a mixed powder 9 of the iron oxide 4 and the carbon 8 be made, and blast furnace second ash and the like generated at a steel making step be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術の分野】本発明は軽量電磁遮蔽モル
タル及びコンクリートに関し、とくに電磁遮蔽が求めら
れる建物の壁面や床スラブの材料、内装材として用いる
ことができる軽量の電磁遮蔽モルタル及びコンクリート
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight electromagnetic shielding mortar and concrete, and more particularly to a lightweight electromagnetic shielding mortar and concrete that can be used as a material for a wall surface or a floor slab of a building requiring electromagnetic shielding and as an interior material.

【0002】[0002]

【従来の技術】オフィスビル等において、マイクロ波や
ミリ波を用いた無線LANシステム(Local Area Netwo
rk System)、屋内PHS(Personal Handy Phone Syst
em)の普及が進み、建物内部と外部との間または建物内
部の区画相互間の電磁シールド(以下、建物の電磁遮蔽
ということがある。)に対する要求が高まっている。
2. Description of the Related Art In an office building or the like, a wireless LAN system (Local Area Network) using microwaves or millimeter waves is used.
rk System), indoor PHS (Personal Handy Phone Syst)
With the spread of em), requirements for electromagnetic shielding between the inside and outside of a building or between sections inside a building (hereinafter sometimes referred to as electromagnetic shielding of a building) are increasing.

【0003】例えば無線LANシステムや屋内PHSで
は、通信情報の漏洩を防止するために建物の電磁遮蔽が
必要とされる。また屋内でPHSを使用する場合は、使
用できるチャンネル数に制限があり、異なるビル間やフ
ロアー間での干渉やチャンネル数の不足を補うために建
物の電磁遮蔽が要求される。
For example, in a wireless LAN system or indoor PHS, electromagnetic shielding of a building is required to prevent leakage of communication information. In the case of using the PHS indoors, the number of usable channels is limited, and electromagnetic shielding of a building is required to compensate for interference between different buildings or floors and shortage of the number of channels.

【0004】さらにコンサートホール等の建物内施設で
は、携帯電話機の呼出音が迷惑とならないように通信電
波の遮蔽が求められることがある。また電波の影響を受
け易い電子機器等を設けた建物内の放送施設や医療施設
では、施設内の電界強度を機器の耐性レベル以下に抑え
て誤動作等を防止するために電磁遮蔽が必要とされる。
なお電磁遮蔽は、マイクロ波やミリ波に限らず、テレビ
電波等のVHF帯やUHF帯についても求められる。
[0004] Further, in a facility in a building such as a concert hall, it is sometimes required to shield communication radio waves so as not to disturb the ringing sound of the portable telephone. Also, in broadcasting facilities and medical facilities in buildings equipped with electronic devices that are easily affected by radio waves, electromagnetic shielding is required to prevent malfunctions by suppressing the electric field intensity in the facilities below the tolerance level of the equipment. You.
The electromagnetic shielding is not limited to microwaves and millimeter waves, but is also required for VHF bands and UHF bands of television radio waves and the like.

【0005】従来の建物の電磁遮蔽方法の一例は、建物
の外壁、スラブ、仕切壁等を必要な電波減衰レベルが得
られる金属板、金属箔、金属網等の導電性部材又はこれ
らの複合部材等(以下、電磁遮蔽部材という。)で被覆
することにより、建物内部を外部から遮蔽するものであ
る。
[0005] One example of the conventional electromagnetic shielding method for a building is a conductive member such as a metal plate, a metal foil, a metal net, or a composite member thereof, which can provide a required radio wave attenuation level to an outer wall, a slab, a partition wall or the like of the building. (Hereinafter referred to as an electromagnetic shielding member) to shield the inside of the building from the outside.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の電磁遮
蔽部材で建物の壁を被覆する方法は、建物の躯体打設後
に電磁遮蔽部材の被覆工事を行なう必要があり、電磁遮
蔽部材の施工にコストがかかり、また全体の工期が長く
なる問題点がある。複数の電磁遮蔽部材の接合により被
覆する場合は、接合部から電波が進入し易く、この電波
の遮蔽漏れがシールド性能の劣化の原因となる問題点も
ある。さらに電磁遮蔽部材の重量負荷が大きくなる場合
は、施工に際し建物構造上の対策が必要となることがあ
る。施工が簡単でしかも軽量の電磁遮蔽材料の開発が望
まれていた。
However, the conventional method of covering the wall of a building with an electromagnetic shielding member requires that the electromagnetic shielding member be covered after the building of the building is cast. There are problems that the cost is high and the entire construction period is long. In the case of covering by joining a plurality of electromagnetic shielding members, radio waves easily enter from the joint, and there is also a problem that the shielding leakage of the radio waves causes deterioration of the shielding performance. Further, when the weight load of the electromagnetic shielding member increases, it may be necessary to take measures against the building structure during construction. There has been a demand for the development of a lightweight electromagnetic shielding material that is easy to construct.

【0007】そこで本発明の目的は、建物の壁やスラブ
又は内装材に電磁遮蔽機能を付与する軽量電磁遮蔽モル
タル及びコンクリートを提供するにある。
Accordingly, an object of the present invention is to provide a lightweight electromagnetic shielding mortar and concrete for providing an electromagnetic shielding function to a building wall, slab, or interior material.

【0008】[0008]

【課題を解決するための手段】図1の実施例を参照する
に、本発明の軽量電磁遮蔽モルタル1は、遮蔽対象電波
に対する単位厚さ当りの透過係数Tを所定レベルT0
下とする量の鉄酸化物4とカーボン8とをモルタル材料
5、6に混練してなり、固化後の比重をモルタル材料
5、6の固化時の比重以下としてなるものである。ここ
でカーボンは、鉄酸化物に対し比重が小さい無定形炭素
であり、例えば比重が1.3〜1.5程度のものである。
With reference to the embodiment of FIG. 1, a lightweight electromagnetic shielding mortar 1 of the present invention has a transmission coefficient T per unit thickness with respect to a radio wave to be shielded of a predetermined level T 0 or less. The iron oxide 4 and the carbon 8 are kneaded with the mortar materials 5 and 6 so that the specific gravity after solidification is equal to or less than the specific gravity of the mortar materials 5 and 6 at the time of solidification. Here, carbon is amorphous carbon having a lower specific gravity than iron oxide, and for example, has a specific gravity of about 1.3 to 1.5.

【0009】好ましくは、セメント5に対して50〜300
重量%の鉄酸化物4及びカーボン8と、30〜70重量%の
水6とを混練することにより軽量電磁遮蔽モルタル1と
する。一般にモルタルとは砂等の細骨材とセメントと水
とを練混ぜたものであるが(「建築用語辞典(第二
版)」(1995-4-10)技報堂、「セメントモルタル」の
項)、本発明では鉄酸化物4及びカーボン8を細骨材と
して用いることができる。ただし必要に応じて、本発明
の電磁遮蔽モルタル1に、セメントに対し100重量%以
下で柔軟性を与えるに足る量の砂等の細骨材を混練して
もよい。
Preferably, 50 to 300 for cement 5
A lightweight electromagnetic shielding mortar 1 is obtained by kneading iron oxide 4 and carbon 8 in weight% and water 6 in 30 to 70 weight%. In general, mortar is a mixture of fine aggregate such as sand, cement and water ("Architectural Dictionary (2nd edition)" (1995-4-10) Gihodo, "Cement mortar") In the present invention, iron oxide 4 and carbon 8 can be used as fine aggregate. However, if necessary, the electromagnetic shielding mortar 1 of the present invention may be kneaded with fine aggregate such as sand in an amount sufficient to give flexibility at 100% by weight or less to cement.

【0010】また本発明の軽量電磁遮蔽コンクリート2
は、遮蔽対象電波に対する単位厚さ当りの透過係数Tを
所定レベルT0以下とする量の鉄酸化物4とカーボン8
とをコンクリート材料5、6、7に混練してなり、固化
後の比重をコンクリート材料5、6、7固化時の比重以
下としてなるものである。好ましくは、セメント5に対
して50〜500重量%の鉄酸化物4及びカーボン8と、30
〜500重量%の細骨材及び粗骨材7と、30〜70重量%の
水6とを混練することにより軽量電磁遮蔽コンクリート
とする。
[0010] Further, the lightweight electromagnetic shielding concrete 2 of the present invention.
Are iron oxide 4 and carbon 8 in such an amount that the transmission coefficient T per unit thickness with respect to the radio wave to be shielded is not more than a predetermined level T 0.
Are kneaded with the concrete materials 5, 6, and 7, and the specific gravity after solidification is set to be equal to or less than the specific gravity when the concrete materials 5, 6, and 7 solidify. Preferably, 50 to 500% by weight of iron oxide 4 and carbon 8 with respect to cement 5,
A lightweight electromagnetic shielding concrete is obtained by kneading 500% by weight of fine aggregate and coarse aggregate 7 and 30-70% by weight of water 6.

【0011】鉄酸化物4及びカーボン8の混合紛体9
を、例えば製鋼工程で発生するダスト(以下、製鋼ダス
トという。)の一種である高炉2次灰、高炉環境集塵ダ
スト、高炉1次灰等とすることができる。製鋼ダストと
は、製鋼所の各作業施設から発生する煤塵、粉塵を乾式
又は湿式集塵機にて捕集した環境集塵ダストであり、発
生する施設別に成分の特性・性状が異なり、施設別に固
有の名称がある。高炉内で鉄鉱石等を還元したガスは含
塵ガス(高炉ガス)として排出され、高炉2次灰とは高
炉ガス清浄時に捕集した粉塵で、乾式、湿式集塵された
ダストである。ただし本発明の鉄酸化物4及びカーボン
8は高炉2次灰等に限定されない。
[0011] Mixed powder 9 of iron oxide 4 and carbon 8
Can be, for example, blast furnace secondary ash, blast furnace environment dust collection dust, blast furnace primary ash, etc., which are one type of dust generated in the steel making process (hereinafter referred to as steel making dust). Steelmaking dust is environmental dust that is collected by dry or wet type dust collectors from dust and dust generated from each workplace of a steelworks.The characteristics and properties of components differ depending on the facility where the dust is generated, and are unique to each facility. There is a name. The gas obtained by reducing iron ore and the like in the blast furnace is discharged as dust-containing gas (blast furnace gas), and the blast furnace secondary ash is dust collected during blast furnace gas cleaning, and is dry and wet dust collected. However, the iron oxide 4 and the carbon 8 of the present invention are not limited to blast furnace secondary ash and the like.

【0012】[0012]

【発明の実施の形態】図1(A)に示すように、鉄酸化
物4及びカーボン8の混合紛体9として高炉2次灰を用
い、その混合紛体9と普通ポルトランドセメント5と水
6とを重量比1:1:0.5の割合で、普通モルタルと同
様の方法により混練して電磁遮蔽モルタル1とし、その
電磁遮蔽モルタル1で図1(C)に示すような厚さd=
30mmのパネル材16を製造して遮蔽性能(電磁波減衰量)
及び比重を確認する実験を行なった。また比較のため、
砂と普通ポルトランドセメント5と水6とを重量比1:
1:0.5の割合で混練した普通モルタル(以下、比較モ
ルタルという。)によりパネル材16を製造し、その遮蔽
性能及び比重を確認した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1A, a blast furnace secondary ash is used as a mixed powder 9 of iron oxide 4 and carbon 8, and the mixed powder 9, ordinary Portland cement 5 and water 6 are mixed. At a weight ratio of 1: 1: 0.5, the mixture is kneaded by the same method as that for ordinary mortar to form an electromagnetic shielding mortar 1, and the electromagnetic shielding mortar 1 has a thickness d = as shown in FIG.
Shielding performance (electromagnetic wave attenuation) by manufacturing 30mm panel material 16
An experiment for confirming the specific gravity was performed. For comparison,
The weight ratio of sand to ordinary Portland cement 5 and water 6 is 1:
A panel material 16 was manufactured from ordinary mortar kneaded at a ratio of 1: 0.5 (hereinafter referred to as comparative mortar), and its shielding performance and specific gravity were confirmed.

【0013】実験に用いた高炉2次灰は、35重量%のFe
2O3、25重量%のカーボンを含むものであった。ただし
本発明の電磁遮蔽モルタル1中に混練する鉄酸化物はFe
2O3に限定されず、FeO等の他の鉄酸化物とすることがで
きる。また鉄酸化物に対するカーボンの割合も、この例
に限定されない。電磁遮蔽モルタル1に用いるセメント
は、普通ポルトランドセメント以外の適当なセメントと
することができる。
The blast furnace secondary ash used in the experiment was 35% by weight of Fe.
2 O 3 , containing 25% by weight of carbon. However, the iron oxide kneaded in the electromagnetic shielding mortar 1 of the present invention is Fe
It is not limited to 2 O 3 but may be another iron oxide such as FeO. Also, the ratio of carbon to iron oxide is not limited to this example. The cement used for the electromagnetic shielding mortar 1 can be any suitable cement other than ordinary Portland cement.

【0014】実験では、打設から50日経過した後のパネ
ル材16を使用した。その理由は、打設後1ヶ月程度の間
はモルタルの透過係数Tが急激に増大し、安定しないか
らである。この期間はモルタル1内の水和反応が大きく
進行するので、モルタル1内の含水率の減少が透過係数
増大の主要な原因と考えられる。本発明者は、モルタル
の含水率の増加により透過係数Tが大きく減少すること
を実験的に確認した。
In the experiment, the panel material 16 after 50 days had passed since the casting was used. The reason is that the permeability coefficient T of the mortar increases rapidly for about one month after the casting and is not stable. During this period, the hydration reaction in the mortar 1 progresses greatly, so that the decrease in the water content in the mortar 1 is considered to be the main cause of the increase in the permeability coefficient. The present inventor has experimentally confirmed that the permeability coefficient T is greatly reduced by increasing the water content of the mortar.

【0015】パネル材16の遮蔽性能の測定装置は、図4
に示すように、ベクトルネットワークアナライザ(VN
A)24と電波発信器25及び受信器(ホーンアンテナ)26
とを用いた。発信器25及び受信器26を隔壁22で仕切られ
たシールドルーム20a、20bにそれぞれ隔壁22の所定位置
と対向させて配置し、その隔壁22の所定位置に設けた孔
に電磁遮蔽モルタル1又は比較モルタルのパネル材16を
嵌め込み、パネル材16と隔壁22との間を電波が漏れない
ように密着させて固定した。シールドルーム20a、20bの
内面と隔壁22の両面とを電波吸収部材で被覆することに
より、外部からの進入電波やシールドルーム内面での反
射電波が受信器26で受信されるのを防止した。
FIG. 4 shows an apparatus for measuring the shielding performance of the panel material 16.
As shown in the figure, a vector network analyzer (VN
A) 24, radio transmitter 25 and receiver (horn antenna) 26
And were used. The transmitter 25 and the receiver 26 are arranged in the shielded rooms 20a and 20b separated by the partition wall 22 so as to face the predetermined position of the partition wall 22, respectively. The mortar panel member 16 was fitted and fixed between the panel member 16 and the partition wall 22 in such a manner that radio waves would not leak. By covering the inner surfaces of the shield rooms 20a and 20b and both surfaces of the partition wall 22 with radio wave absorbing members, it is possible to prevent the receiver 26 from receiving radio waves entering from outside and radio waves reflected from the inner surfaces of the shield room.

【0016】電波周波数として800MHz〜4.2GHz帯域を使
用し、送信器25からパネル材16の面に対して垂直となる
ように電波を送出し、パネル材16を透過した電波を受信
器26で受信し、アナライザー24で透過電波の振幅を測定
した。また隔壁22の孔からパネル材16を取り外し、孔の
空隙を介して受信した電波の振幅を測定し、パネル材16
の透過電波の振幅との比からパネル材16の遮蔽性能(電
磁波減衰量)を求めた。実験結果を図5にグラフとして
示す。なお遮蔽性能と透過係数Tとの関係は下記(1)式
で表すことができるので、パネル材16の透過係数Tを遮
蔽性能の値に基づき算出することができる。
Using a band of 800 MHz to 4.2 GHz as a radio frequency, a radio wave is transmitted from the transmitter 25 so as to be perpendicular to the surface of the panel material 16, and the radio wave transmitted through the panel material 16 is received by the receiver 26. Then, the amplitude of the transmitted radio wave was measured by the analyzer 24. Further, the panel member 16 is removed from the hole of the partition wall 22, and the amplitude of the radio wave received through the gap of the hole is measured.
The shielding performance (electromagnetic wave attenuation) of the panel material 16 was determined from the ratio to the amplitude of the transmitted radio wave. The experimental results are shown as a graph in FIG. Since the relationship between the shielding performance and the transmission coefficient T can be expressed by the following equation (1), the transmission coefficient T of the panel member 16 can be calculated based on the value of the shielding performance.

【0017】[0017]

【数1】 遮蔽性能=-20・log(透過係数T)………………………………(1)[Equation 1] Shielding performance = -20 · log (transmission coefficient T) ……………………… (1)

【0018】図5の高炉2次灰のグラフから分かるよう
に、厚さ30mmとした高炉2次灰混練モルタル1のパネル
材16により、1GHz帯で約15dB、2GHz帯で約20dB、3GH
z帯で約25dBの遮蔽性能を得ることができた。また図5
の比較モルタルのグラフと高炉2次灰のグラフとの比較
から分かるように、高炉2次灰混練モルタル1のパネル
材16は、比較モルタルのパネル材16に比し、1GHz帯で
約6dB、2GHz帯で約10dB、3GHz帯で約15dB大きい遮蔽
性能を得ることができた。
As can be seen from the graph of the blast furnace secondary ash in FIG. 5, the panel material 16 of the blast furnace secondary ash kneading mortar 1 having a thickness of 30 mm is about 15 dB in the 1 GHz band, about 20 dB in the 2 GHz band, and 3 GH.
Approximately 25dB shielding performance was obtained in the z band. FIG.
As can be seen from a comparison between the graph of the comparative mortar and the graph of the secondary ash of the blast furnace, the panel material 16 of the blast furnace secondary ash kneading mortar 1 is about 6 dB in the 1 GHz band and 2 GHz compared to the panel material 16 of the comparative mortar. Approximately 10dB in the 3GHz band and about 15dB in the 3GHz band were obtained.

【0019】本発明の電波遮蔽モルタル1が比較モルタ
ルより大きな遮蔽性能を有する理由は、以下のように考
えられる。すなわち図3に示すように、比較モルタルに
おける電波の遮蔽はモルタル表面での反射損失とモルタ
ル通過時の吸収損失(図3の)のみであるのに対し、
電波遮蔽モルタル1では更に、セメントにより固化され
た鉄酸化物による反射・回折による損失(図3の)、
及び鉄酸化物及びカーボンによる吸収及び反射損失(図
3の)の複合的作用により電波を遮蔽するからであ
る。
The reason why the radio wave shielding mortar 1 of the present invention has higher shielding performance than the comparative mortar is considered as follows. That is, as shown in FIG. 3, the radio wave shielding in the comparative mortar is only the reflection loss on the mortar surface and the absorption loss when passing through the mortar (of FIG. 3),
In the radio wave shielding mortar 1, loss due to reflection and diffraction by iron oxide solidified by cement (FIG. 3),
This is because radio waves are shielded by a combined effect of absorption and reflection loss (of FIG. 3) by iron oxide and carbon.

【0020】また前記組成の高炉2次灰に代えて、製鋼
ダストの一種である高炉鋳床集塵ダストと普通ポルトラ
ンドセメント5と水6とを重量比1:1:0.5の割合で
混練したモルタルを用い、上記と同様にして遮蔽性能の
確認実験を行なった。鋳床とは高炉本体の出銑口周りの
ことである。高炉鋳床集塵ダストとは、出銑およびスラ
グ排出作業に伴う発煙及び発塵の防止・高熱作業雰囲気
の改善のために、出銑口部から樋先端及び落し口に至る
樋および開口部に設けたカバーとフード、その間の主な
発塵・発煙個所に設置したエアカーテンから、ダクトを
介して集塵されたダストである。実験に用いた高炉鋳床
集塵ダストの組成は、40重量%のFe2O3、0.5重量%のSi
O2、0.4重量%のAl2O3、及び0.6重量%のMgOを含み、カ
ーボンを含まないものである。この実験結果を図5に併
せて示す。
In place of the blast furnace secondary ash having the above composition, a mortar obtained by kneading blast furnace cast floor dust collected as a kind of steelmaking dust, ordinary Portland cement 5 and water 6 at a weight ratio of 1: 1: 0.5. And an experiment for confirming the shielding performance was performed in the same manner as described above. The cast floor is around the taphole of the blast furnace main body. Blast furnace cast floor dust is collected in the gutter and opening from the tap hole to the gutter tip and drop to prevent smoke and dust generation and improve the atmosphere of hot work due to tapping and slag discharge work. Dust collected via a duct from the provided cover and hood, and from the air curtains installed at the main dust and smoke locations between them. The composition of the dust collected from the blast furnace cast floor used in the experiment was 40% by weight of Fe 2 O 3 and 0.5% by weight of Si.
It contains O 2 , 0.4% by weight of Al 2 O 3 , and 0.6% by weight of MgO, and does not contain carbon. The results of this experiment are also shown in FIG.

【0021】図5の高炉鋳床集塵ダストのグラフから分
かるように、高炉鋳床集塵ダスト混練モルタル1のパネ
ル材16の遮蔽性能は、1GHz帯で約20dB、2GHz帯で約27
dB、3GHz帯で約35dBであり、高炉2次灰混練モルタル
1のパネル材16に比し大きな遮蔽性能を示す。この遮蔽
性能の相違は、高炉2次灰中の金属酸化物量に比し、高
炉鋳床集塵ダスト中の金属酸化物量が多いことが主要な
原因であると考えられる。
As can be seen from the graph of blast furnace cast floor dust collection dust shown in FIG. 5, the shielding performance of panel material 16 of blast furnace cast floor dust collection dust mixing mortar 1 is about 20 dB in the 1 GHz band and about 27 dB in the 2 GHz band.
dB, about 35 dB in the 3 GHz band, showing greater shielding performance than the panel material 16 of the blast furnace secondary ash kneading mortar 1. It is considered that this difference in the shielding performance is mainly due to the fact that the amount of metal oxide in the dust collected from the blast furnace cast floor is larger than the amount of metal oxide in the secondary ash of the blast furnace.

【0022】次に、実験に用いた電磁遮蔽モルタル1及
び比較モルタルのパネル材16の強度及び比重を計測し
た。高炉鋳床集塵ダスト混練モルタル1のパネル材16の
強度及び比重も併せて計測した。計測結果を下記表1に
示す。表1から分かるように、金属酸化物のみを含む高
炉鋳床集塵ダスト混練のモルタルでは比較モルタルに比
し比重が大きくなるのに対し、35重量%のFe2O3と25重
量%のカーボンを含む高炉2次灰混練モルタル1では、
強度を比較モルタルと同程度に維持しつつ、比重を比較
モルタルと同等またはそれ以下とすることができる。
Next, the strength and specific gravity of the panel material 16 of the electromagnetic shielding mortar 1 and the comparative mortar used in the experiment were measured. The strength and specific gravity of the panel material 16 of the blast furnace cast floor dust-mixing mortar 1 were also measured. The measurement results are shown in Table 1 below. As can be seen from Table 1, the mortar containing only metal oxides in the blast furnace cast floor dust-kneading dust has a higher specific gravity than the comparative mortar, whereas 35% by weight of Fe 2 O 3 and 25% by weight of carbon In the blast furnace secondary ash kneading mortar 1 containing
The specific gravity can be made equal to or less than that of the comparative mortar while maintaining the same strength as that of the comparative mortar.

【0023】[0023]

【表1】 [Table 1]

【0024】すなわち上記実験から、鉄酸化物4及びカ
ーボン8のモルタル材料5、6に対する混練量を調節す
ることにより、電波遮蔽モルタル1の特定周波数に対す
る遮蔽性能すなわち透過係数Tを調整することができ、
しかも電波遮蔽モルタルの比重を比較モルタルと同等ま
たはそれ以下とすることができることが確認できた。本
発明者は、更なる実験の結果、モルタル材料5、6に対
する鉄酸化物4及びカーボン8の混練量の調節とパネル
材16の厚さdの調節とにより、特定周波数に対して所定
レベルT0の透過係数を与える電波遮蔽モルタル1のパ
ネル材16が製造できることを確認した。また、鉄酸化物
4とカーボン8との混練量の割合の調節により、電波遮
蔽モルタル1のパネル材16の比重が調整可能であり、そ
のパネル材16の比重をモルタル材料5、6の固化時の比
重以下にできることを確認した。
That is, from the above experiment, by adjusting the kneading amounts of the iron oxide 4 and the carbon 8 with respect to the mortar materials 5 and 6, the shielding performance, that is, the transmission coefficient T of the radio wave shielding mortar 1 at a specific frequency can be adjusted. ,
Moreover, it was confirmed that the specific gravity of the radio wave shielding mortar can be equal to or less than that of the comparative mortar. As a result of further experiments, the present inventor has found that by adjusting the kneading amount of the iron oxide 4 and the carbon 8 with respect to the mortar materials 5 and 6 and the thickness d of the panel material 16, a predetermined level T for a specific frequency can be obtained. It was confirmed that the panel material 16 of the radio wave shielding mortar 1 giving a transmission coefficient of 0 can be manufactured. The specific gravity of the panel material 16 of the radio wave shielding mortar 1 can be adjusted by adjusting the ratio of the kneading amount of the iron oxide 4 and the carbon 8, and the specific gravity of the panel material 16 can be adjusted when the mortar materials 5 and 6 are solidified. It was confirmed that the specific gravity can be reduced to less than the specific gravity.

【0025】以上、電磁遮蔽モルタル1の比重及び透過
係数について説明したが、電磁遮蔽コンクリート2の比
重及び透過係数についても、混合紛体9中の鉄酸化物4
とカーボン8との割合の調整、及びコンクリート2中の
混合紛体9の混練量とパネル材16の厚さdとの調節によ
り、モルタル1の場合と同様に調整することができる。
ただし電磁遮蔽コンクリート2の場合は、骨材の混練量
が増えるに応じて遮蔽性能が減少するので、同一組成の
混合紛体9を用いた同一厚さのパネル材16によりモルタ
ル1と同様の遮蔽性能を得るためには、モルタル1の場
合に比し混合紛体9の混練量を増やす必要がある。
Although the specific gravity and the transmission coefficient of the electromagnetic shielding mortar 1 have been described above, the specific gravity and the transmission coefficient of the electromagnetic shielding concrete 2 are not limited to the iron oxide 4 in the mixed powder 9.
By adjusting the ratio between the mortar 1 and the carbon 8 and adjusting the kneading amount of the mixed powder 9 in the concrete 2 and the thickness d of the panel member 16, the adjustment can be made in the same manner as in the case of the mortar 1.
However, in the case of the electromagnetic shielding concrete 2, since the shielding performance decreases as the amount of aggregate mixed increases, the same shielding performance as that of the mortar 1 by the panel material 16 of the same thickness using the mixed powder 9 of the same composition. In order to obtain the mortar 1, it is necessary to increase the kneading amount of the mixed powder 9 as compared with the case of the mortar 1.

【0026】本発明の電磁遮蔽モルタル1又はコンクリ
ート2を用いて被遮蔽建物の壁及び/又はスラブを形成
すれば、建物の躯体自体に電磁遮蔽機能を持たせること
ができ、躯体とは別に電磁遮蔽部材を設ける必要がない
ので、電磁遮蔽部材の施工期間の短縮が図れる。また従
来の電磁遮蔽部材の補強材として、建物の外壁部分、床
や天井部分に本発明の電磁遮蔽モルタル1又はコンクリ
ート2を打設することにより、従来問題となっていた電
磁遮蔽部材の継目からの電波の漏れを軽減することがで
きる。しかも本発明の電磁遮蔽モルタル1又はコンクリ
ート2は、比重を普通モルタル又はコンクリートと同程
度またはそれ以下とすることができるので、建物構造へ
の負担の増大を抑えることができる。
If the walls and / or slabs of the building to be shielded are formed using the electromagnetic shielding mortar 1 or concrete 2 of the present invention, the building itself can have an electromagnetic shielding function. Since there is no need to provide a shielding member, the construction period of the electromagnetic shielding member can be shortened. Further, as a reinforcing material for the conventional electromagnetic shielding member, the electromagnetic shielding mortar 1 or concrete 2 of the present invention is cast on the outer wall portion, floor, or ceiling portion of the building, so that the electromagnetic shielding member from the seam which has been a problem in the past can be obtained. Leakage of radio waves can be reduced. Moreover, since the specific gravity of the electromagnetic shielding mortar 1 or concrete 2 of the present invention can be made equal to or less than that of ordinary mortar or concrete, an increase in burden on the building structure can be suppressed.

【0027】こうして本発明の目的である「建物の壁や
スラブ又は内装材に電磁遮蔽機能を付与する軽量電磁遮
蔽モルタル及びコンクリート」の提供が達成できる。
Thus, the object of the present invention, that is, the provision of "lightweight electromagnetic shielding mortar and concrete for imparting an electromagnetic shielding function to building walls, slabs or interior materials" can be achieved.

【0028】高炉2次灰等の製鋼ダストは、製鉄プラン
トの製鋼工程の副産物として大量に産出されるので、安
価である。従って高炉2次灰等を用いて電磁遮蔽モルタ
ル1又はコンクリート2とすれば、電磁遮蔽コストの低
減が図れる。ただし、高炉2次灰等に限らず、鉄酸化物
4とカーボン9とを適当な割合で含む混合紛体9を用い
ることにより、特定周波数に対して所定レベルT0の透
過係数を有し且つ比重が小さい電波遮蔽モルタル1又は
コンクリート2とすることができる。
Steelmaking dust such as blast furnace secondary ash is inexpensive because it is produced in large quantities as a by-product of the steelmaking process of the steelmaking plant. Therefore, if the electromagnetic shielding mortar 1 or the concrete 2 is formed using blast furnace secondary ash or the like, the electromagnetic shielding cost can be reduced. However, not limited to the blast furnace secondary ash and the like, the use of the mixed powder 9 containing the iron oxide 4 and the carbon 9 at an appropriate ratio allows the material to have a transmission coefficient of a predetermined level T 0 for a specific frequency and a specific gravity. Mortar 1 or concrete 2 having a small value.

【0029】[0029]

【実施例】図1(B)及び図2は、作業現場において、
鉄筋建物10に設けた型枠(図示せず)内に本発明の電磁
遮蔽モルタル1又はコンクリート2を打設し、建物10の
壁11及び/又はスラブ13を構築する本発明の実施例を示
す。図1(B)の符号14はコンクリートミキサー、図2
の符号12はデッキプレートを示す。このように作業現場
で打設する場合は、モルタル1又はコンクリート2中の
混合紛体9の混練量と打設厚さdとの調節により、壁11
又はスラブ13に所要の透過レベルT0を付与することが
できる。
1 (B) and FIG. 2 show a work site.
An embodiment of the present invention in which the electromagnetic shielding mortar 1 or the concrete 2 of the present invention is poured into a formwork (not shown) provided in a reinforced building 10 to construct a wall 11 and / or a slab 13 of the building 10 is shown. . 1 (B) is a concrete mixer, FIG.
Reference numeral 12 denotes a deck plate. In the case of casting at the work site in this manner, the wall 11 is adjusted by adjusting the kneading amount of the mixed powder 9 in the mortar 1 or the concrete 2 and the casting thickness d.
Alternatively, the required transmission level T 0 can be given to the slab 13.

【0030】図2の実施例において、壁11又はスラブ13
の透過レベルT0が打設前に設計されている場合は、電
磁遮蔽モルタル1又はコンクリート2中の混合紛体9の
混練量を定めると共に、壁11又はスラブ13の打設厚さd
の設計が必要となる。本発明者は、打設厚さdの設計の
ために、電磁遮蔽モルタル1又はコンクリート2の複素
誘電率ε=εr−jεi(以下、単に誘電率εということ
がある。)が利用できることを見出した。誘電率εによ
れば、電磁遮蔽モルタル1又はコンクリート2自体の単
位厚さ当りの遮蔽性能を定めることができる。
In the embodiment of FIG. 2, the wall 11 or the slab 13
If the transmission level T 0 in is designed to hit設前, together define a kneading amount of the mixed powder 9 of the electromagnetic shielding mortar 1 or concrete 2, hitting設厚d of the wall 11 or slab 13
Design is required. The inventor can use the complex permittivity ε = ε r −jε i (hereinafter, sometimes simply referred to as permittivity ε) of the electromagnetic shielding mortar 1 or concrete 2 for designing the casting thickness d. Was found. According to the dielectric constant ε, the shielding performance per unit thickness of the electromagnetic shielding mortar 1 or the concrete 2 itself can be determined.

【0031】すなわち一般的に、一様の誘電率εを有す
る厚さdの層(一層モデル)の透過係数Tは次式(2)で
表すことができる(IEEE TRANSACTIONS ON ANTENNAS AN
D PROPAGATION、VOL.44、NO.1、JANUARY 1996、pp.35-3
6、"Measurement of the Complex Refractive Index of
Concrete at 57.5 GHz")。ここで、δ=(2πd/λ)
(ε−sin2θ)1/2、k0=2π/λである。またλは遮蔽
対象電波の波長、θは遮蔽対象電波の入射角を示す。R'
には、遮蔽対象電波の偏波により、下記(3)式のR'sまた
は下記(4)式のR'pを代入する。
That is, in general, the transmission coefficient T of a layer (single-layer model) having a thickness d and having a uniform dielectric constant ε can be expressed by the following equation (2) (IEEE TRANSACTIONS ON ANTENNAS AN
D PROPAGATION, VOL.44, NO.1, JANUARY 1996, pp.35-3
6, "Measurement of the Complex Refractive Index of
Concrete at 57.5 GHz "), where δ = (2πd / λ)
(Ε−sin 2 θ) 1/2 and k 0 = 2π / λ. Λ indicates the wavelength of the radio wave to be shielded, and θ indicates the angle of incidence of the radio wave to be shielded. R '
Is substituted by R's of the following equation (3) or R'p of the following equation (4) according to the polarization of the radio wave to be shielded.

【0032】例えば厚さdのモルタルパネル材16の誘電
率εは、パネル材16の厚さdと遮蔽対象電波の波長λと
入射角θ(図5では垂直)とに基づき、透過係数Tの実
測値と式(2)との分散が最小となるように推定すること
ができる。図5の高炉2次灰混練モルタル1の実測値か
らは、1GHzでは誘電率ε=17−j7、3GHzではε=17−
j15、5GHzではε=17−j23であると推定できる。これ
に対し同図の比較モルタルの実測値からは、1〜5GHz
の周波数帯において誘電率ε=8-j1であると推定でき
る。この誘電率εの実数部εr及び虚数部εiの大きさの
相違が、モルタル自体の遮蔽性能の相違に対応する。
For example, the dielectric constant ε of the mortar panel material 16 having a thickness d is determined based on the thickness d of the panel material 16, the wavelength λ of the radio wave to be shielded, and the incident angle θ (vertical in FIG. 5). It can be estimated so that the variance between the measured value and equation (2) is minimized. From the measured values of the blast furnace secondary ash kneading mortar 1 in FIG. 5, the dielectric constant ε = 17−j7 at 1 GHz and ε = 17− at 3 GHz.
At j15 and 5 GHz, it can be estimated that ε = 17−j23. On the other hand, from the measured values of the comparative mortar shown in FIG.
It can be estimated that the dielectric constant ε = 8-j1 in the frequency band of. The size difference of the real part epsilon r and the imaginary part epsilon i permittivity epsilon corresponds to the difference in shielding performance of the mortar itself.

【0033】[0033]

【数2】 (Equation 2)

【0034】従って、例えば図5の高炉2次灰混練モル
タル1を用い、3GHz帯に対して所定レベルT0の透過係
数を与える建物10の壁又はスラブを打設する場合は、モ
ルタル1の3GHz帯に対する誘電率ε=17−j15と所定レ
ベルT0とから、(2)式に基づいて打設すべき壁又はスラ
ブの厚さdを算出することができる。
Therefore, for example, when the blast furnace secondary ash kneading mortar 1 shown in FIG. 5 is used to cast a wall or a slab of the building 10 giving a transmission coefficient of a predetermined level T 0 to the 3 GHz band, From the dielectric constant ε = 17−j15 for the band and the predetermined level T 0 , the thickness d of the wall or slab to be cast can be calculated based on the equation (2).

【0035】また本発明者は、電磁遮蔽モルタル1又は
コンクリート2の誘電率εと遮蔽性能との比較検討か
ら、大きな遮蔽性能を得るためには誘電率εの虚数部ε
iを大きくすることが効果的であることを見出した。下
記表2は、厚さd=20cm、遮蔽対象電波の入射角θ=0
度(垂直入射)と仮定した場合に、周波数f=1.2GHz及
び2.4GHzの2種類の遮蔽対象電波に対する誘電率εと遮
蔽性能との関係の計算結果を示す。なお図5に示すよう
に、周波数f=1.2GHz及び2.4GHzに対する比較モルタル
の遮蔽性能は、それぞれ6dB及び10dBである。
Further, the present inventor has compared the dielectric constant ε of the electromagnetic shielding mortar 1 or the concrete 2 with the shielding performance and found that the imaginary part ε of the dielectric constant ε was required to obtain a large shielding performance.
It was found that increasing i was effective. Table 2 below shows that the thickness d = 20 cm and the incident angle θ of the radio wave to be shielded = 0.
The calculation results of the relationship between the dielectric constant ε and the shielding performance for two types of shielding target radio waves at frequencies f = 1.2 GHz and 2.4 GHz, assuming the degree (normal incidence), are shown. As shown in FIG. 5, the shielding performance of the comparative mortar for frequencies f = 1.2 GHz and 2.4 GHz is 6 dB and 10 dB, respectively.

【0036】[0036]

【表2】 [Table 2]

【0037】表2の第6〜9欄の比較から分かるよう
に、誘電率εの実数部εrを大きくしても遮蔽性能は必
ずしも大きくなるとは限らない。これに対し表1の第1
〜4欄に示すように、誘電率εの虚数部εiを大きくす
ることにより遮蔽性能を大きくし、透過係数Tを小さく
することができる。このことから、電磁遮蔽モルタル1
又はコンクリート2中の鉄酸化物4及びカーボン9の混
練量を、比較モルタル又はコンクリートと同程度または
それ以下の比重が得られる条件の下で、モルタル1又は
コンクリート2の誘電率εの虚数部εiが大きくなるよ
うに選択することが好ましい。
[0037] As seen from a comparison of the 6-9 column of Table 2, shield also increase the real part epsilon r of the dielectric constant epsilon performance is not necessarily increased. In contrast, the first in Table 1
As shown in to 4 column can be a shielding performance by increasing by increasing the imaginary part epsilon i permittivity epsilon, reducing the transmission coefficient T. From this, electromagnetic shielding mortar 1
Alternatively, the imaginary part ε of the dielectric constant ε of the mortar 1 or the concrete 2 is adjusted under the condition that the specific gravity of the same or less than that of the comparative mortar or concrete is obtained by mixing the iron oxide 4 and the carbon 9 in the concrete 2. It is preferable to select i to be large.

【0038】以上説明したように、遮蔽対象電波に対し
大きな誘電率εを与える量の鉄酸化物4とカーボン8と
が混練された電波遮蔽モルタル1又はコンクリート2を
用い、所定透過レベルT0を与える厚さdで打設するこ
とにより、例えば図2の建物10の壁11及びスラブ13自体
に必要な電磁遮蔽機能を持たせることができる。
As described above, the radio wave shielding mortar 1 or the concrete 2 in which the iron oxide 4 and the carbon 8 are kneaded in an amount that gives a large dielectric constant ε to the radio wave to be shielded, and the predetermined transmission level T 0 is set. By casting with the given thickness d, for example, the wall 11 and the slab 13 of the building 10 in FIG. 2 can have a necessary electromagnetic shielding function.

【0039】また図1(C)に示すように、電波遮蔽モ
ルタル1又はコンクリート2により所定透過レベルT0
で厚さdの電磁遮蔽パネル材16を形成し、そのパネル材
16を用いて建物10の外壁11、スラブ13及び仕切壁に必要
な電磁遮蔽機能を持たせることもできる。なお本発明の
電磁遮蔽モルタル1又はコンクリート2と他の建材とを
層状に組み合わせたパネル材を用いる場合は、式(2)に
示す一層モデルに代えて、多層誘電体モデルを用いてそ
のパネル材の透過係数を求めることが可能である。
As shown in FIG. 1 (C), the radio wave shielding mortar 1 or concrete 2 is used to set a predetermined transmission level T 0.
To form an electromagnetic shielding panel material 16 having a thickness d.
By using 16, the outer wall 11, the slab 13, and the partition wall of the building 10 can be provided with a necessary electromagnetic shielding function. When a panel material in which the electromagnetic shielding mortar 1 or concrete 2 of the present invention and another building material are combined in a layered form is used, the panel material is obtained by using a multilayer dielectric model instead of the one-layer model shown in equation (2). Can be determined.

【0040】更に、例えば壁やスラブの遮蔽性能が不足
する場合には、その壁11やスラブ13上の内装材として、
本発明の電磁遮蔽モルタル1又はコンクリート2を所定
透過レベルT0が得られる厚さdで塗布することによ
り、壁やスラブの遮蔽機能を補強することも可能であ
る。
Further, for example, when the shielding performance of a wall or a slab is insufficient, as an interior material on the wall 11 or the slab 13,
By applying the electromagnetic shielding mortar 1 or the concrete 2 of the present invention at a thickness d that can obtain a predetermined transmission level T 0, it is also possible to reinforce the shielding function of walls and slabs.

【0041】なお、本発明の電磁遮蔽モルタル1又はコ
ンクリート2は黒褐色ないし茶褐色を呈し、意匠的な配
色からみても従来の普通モルタル又はコンクリートに劣
るものではない。本発明の電磁遮蔽モルタル1又はコン
クリート2を護岸用コンクリート、又は意匠ブロックと
して用いることも可能である。
The electromagnetic shielding mortar 1 or concrete 2 of the present invention has a dark brown or brown color and is not inferior to the conventional ordinary mortar or concrete from the viewpoint of design color. The electromagnetic shielding mortar 1 or concrete 2 of the present invention can also be used as seawall concrete or a design block.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明の軽
量電磁遮蔽モルタル又はコンクリートは、遮蔽対象電波
に対する単位厚さ当りの透過係数を所定レベル以下とす
る量の鉄酸化物とカーボンとをモルタル材料又はコンク
リート材料に混練し、固化後の比重をモルタル材料又は
コンクリート材料の固化時の比重以下とするので、次の
顕著な効果を奏する。
As described in detail above, the lightweight electromagnetic shielding mortar or concrete according to the present invention comprises iron oxide and carbon in such an amount that the transmission coefficient per unit thickness to a radio wave to be shielded is not more than a predetermined level. Since it is kneaded with the mortar material or the concrete material and the specific gravity after solidification is set to be equal to or less than the specific gravity at the time of solidification of the mortar material or the concrete material, the following remarkable effects are exhibited.

【0043】(イ)鉄酸化物とカーボンの混練量の調整
により、モルタル又はコンクリートに必要な透過レベル
を与えることができる。 (ロ)建物の躯体自体に電磁遮蔽機能を持たせることが
できるので、躯体とは別に電磁遮蔽部材を施工する手間
を省き、施工期間の短縮が図れる。 (ハ)従来問題となっていた電磁遮蔽部材の継目からの
電波の漏れが軽減でき、遮蔽機能の劣化のおそれが小さ
い。 (ニ)従来のモルタル又はコンクリートと同程度の比重
とし得るので、電磁遮蔽の際に建物構造に与える負荷の
増大を抑えることができる。 (ホ)製鋼ダストの利用により製造コストの低減を図る
ことができ、また製鋼ダストのリサイクルに貢献でき
る。 (ヘ)電磁遮蔽モルタル又はコンクリートの誘電率に基
づき、所定遮蔽レベルが得られる壁又はスラブの厚さを
設計することができる。
(A) By adjusting the kneading amount of iron oxide and carbon, it is possible to provide a mortar or concrete with a necessary permeation level. (B) Since the building body itself can be provided with an electromagnetic shielding function, it is possible to save time and labor for installing an electromagnetic shielding member separately from the building body, thereby shortening the construction period. (C) Leakage of radio waves from the joint of the electromagnetic shielding member, which has conventionally been a problem, can be reduced, and the possibility of deterioration of the shielding function is small. (D) Since the specific gravity can be approximately the same as that of the conventional mortar or concrete, an increase in the load applied to the building structure during electromagnetic shielding can be suppressed. (E) Use of steelmaking dust can reduce manufacturing costs and contribute to recycling of steelmaking dust. (F) Based on the dielectric constant of the electromagnetic shielding mortar or concrete, it is possible to design the thickness of the wall or slab to obtain a predetermined shielding level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、鉄筋建物の壁及びスラブの説明図である。FIG. 2 is an explanatory view of a wall and a slab of a reinforced building.

【図3】は、本発明による電磁遮蔽の原理を示す説明図
である。
FIG. 3 is an explanatory diagram showing the principle of electromagnetic shielding according to the present invention.

【図4】は、電磁遮蔽性能の測定装置の説明図である。FIG. 4 is an explanatory view of a measuring device of electromagnetic shielding performance.

【図5】は、本発明のモルタルによる電磁遮蔽性能を示
すグラフである。
FIG. 5 is a graph showing the electromagnetic shielding performance of the mortar of the present invention.

【符号の説明】[Explanation of symbols]

1…電磁遮蔽モルタル 2…電磁遮蔽コンクリート 4…鉄酸化物 5…セメント 6…水 7…骨材 8…カーボン 9…混合紛体 10…鉄筋建物 11…建物外壁 12…デッキプレート 13…スラブ 14…コンクリートミキサー 16…電磁遮蔽パネル材 20…シールドルーム 21…電波吸収部材 22…隔壁 24…ネットワークアナライ
ザー 25…送信器 26…受信器
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic shielding mortar 2 ... Electromagnetic shielding concrete 4 ... Iron oxide 5 ... Cement 6 ... Water 7 ... Aggregate 8 ... Carbon 9 ... Mixed powder 10 ... Reinforced building 11 ... Building outer wall 12 ... Deck plate 13 ... Slab 14 ... Concrete Mixer 16 ... Electromagnetic shielding panel material 20 ... Shield room 21 ... Radio wave absorbing member 22 ... Partition wall 24 ... Network analyzer 25 ... Transmitter 26 ... Receiver

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年3月6日(2000.3.6)[Submission date] March 6, 2000 (200.3.6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 建物の電磁シールド方法 Title of the Invention Electromagnetic shielding method for buildings

【特許請求の範囲】[Claims]

【請求項】請求項1又は2の電磁シールド方法におい
て、前記電磁遮蔽モルタルを、セメントに対して50〜30
0重量%の前記鉄酸化物及びカーボンと30〜70重量%の
水とを混練したものとしてなる建物の電磁シールド方
3. The electromagnetic shielding method according to claim 1 or 2 , wherein said electromagnetic shielding mortar is applied to cement in a proportion of 50 to 30 with respect to cement.
An electromagnetic shielding method for a building, which is obtained by kneading 0% by weight of the iron oxide and carbon and 30 to 70% by weight of water.
Law .

【請求項】請求項3の電磁シールド方法において、
記電磁遮蔽モルタルを、セメントに対し100重量%以下
で柔軟性を与えるに足る量の細骨材を混練したものとし
てなる建物の電磁シールド方法
4. The electromagnetic shielding method according to claim 3, before
The serial electromagnetic shielding mortar, and that by kneading fine aggregate in an amount sufficient to provide flexibility in 100% by weight relative to the cement
The method of electromagnetic shielding of buildings .

【請求項】請求項1又は2の電磁シールド方法におい
て、前記鉄酸化物及びカーボンの混合粉体製鉄工程で
発生する高炉2次灰としてなる建物の電磁シールド方
Te 5. The electromagnetic shielding method smell of claim 1 or 2 <br/>, electromagnetic shielding side of a building comprising a blast furnace 2 Tsugihai for generating a mixed powder of the iron oxide and carbon in a steel process
Law .

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術の分野】本発明は建物の電磁シール
ド方法に関し、とくに電磁遮蔽が求められる建物の壁面
や床スラブの材料、内装材として軽量の電磁遮蔽モルタ
ル及びコンクリートを用いた建物の電磁シールド方法
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic seal for a building.
In particular, the present invention relates to an electromagnetic shielding method for a building using light-weight electromagnetic shielding mortar and concrete as interior materials, and materials for wall and floor slabs of a building requiring electromagnetic shielding.

【0002】[0002]

【従来の技術】オフィスビル等において、マイクロ波や
ミリ波を用いた無線LANシステム(Local Area Netwo
rk System)、屋内PHS(Personal Handy Phone Syst
em)の普及が進み、建物内部と外部との間または建物内
部の区画相互間の電磁シールド(以下、建物の電磁遮蔽
ということがある。)に対する要求が高まっている。
2. Description of the Related Art In an office building or the like, a wireless LAN system (Local Area Network) using microwaves or millimeter waves is used.
rk System), indoor PHS (Personal Handy Phone Syst)
With the spread of em), requirements for electromagnetic shielding between the inside and outside of a building or between sections inside a building (hereinafter sometimes referred to as electromagnetic shielding of a building) are increasing.

【0003】例えば無線LANシステムや屋内PHSで
は、通信情報の漏洩を防止するために建物の電磁遮蔽が
必要とされる。また屋内でPHSを使用する場合は、使
用できるチャンネル数に制限があり、異なるビル間やフ
ロアー間での干渉やチャンネル数の不足を補うために建
物の電磁遮蔽が要求される。
For example, in a wireless LAN system or indoor PHS, electromagnetic shielding of a building is required to prevent leakage of communication information. In the case of using the PHS indoors, the number of usable channels is limited, and electromagnetic shielding of a building is required to compensate for interference between different buildings or floors and shortage of the number of channels.

【0004】さらにコンサートホール等の建物内施設で
は、携帯電話機の呼出音が迷惑とならないように通信電
波の遮蔽が求められることがある。また電波の影響を受
け易い電子機器等を設けた建物内の放送施設や医療施設
では、施設内の電界強度を機器の耐性レベル以下に抑え
て誤動作等を防止するために電磁遮蔽が必要とされる。
なお電磁遮蔽は、マイクロ波やミリ波に限らず、テレビ
電波等のVHF帯やUHF帯についても求められる。
[0004] Further, in a facility in a building such as a concert hall, it is sometimes required to shield communication radio waves so as not to disturb the ringing sound of the portable telephone. Also, in broadcasting facilities and medical facilities in buildings equipped with electronic devices that are easily affected by radio waves, electromagnetic shielding is required to prevent malfunctions by suppressing the electric field intensity in the facilities below the tolerance level of the equipment. You.
The electromagnetic shielding is not limited to microwaves and millimeter waves, but is also required for VHF bands and UHF bands of television radio waves and the like.

【0005】従来の建物の電磁遮蔽方法の一例は、建物
の外壁、スラブ、仕切壁等を必要な電波減衰レベルが得
られる金属板、金属箔、金属網等の導電性部材又はこれ
らの複合部材等(以下、電磁遮蔽部材という。)で被覆
することにより、建物内部を外部から遮蔽するものであ
る。
[0005] One example of the conventional electromagnetic shielding method for a building is a conductive member such as a metal plate, a metal foil, a metal net, or a composite member thereof, which can provide a required radio wave attenuation level to an outer wall, a slab, a partition wall or the like of the building. (Hereinafter referred to as an electromagnetic shielding member) to shield the inside of the building from the outside.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の電磁遮
蔽部材で建物の壁を被覆する方法は、建物の躯体打設後
に電磁遮蔽部材の被覆工事を行なう必要があり、電磁遮
蔽部材の施工にコストがかかり、また全体の工期が長く
なる問題点がある。複数の電磁遮蔽部材の接合により被
覆する場合は、接合部から電波が進入し易く、この電波
の遮蔽漏れがシールド性能の劣化の原因となる問題点も
ある。さらに電磁遮蔽部材の重量負荷が大きくなる場合
は、施工に際し建物構造上の対策が必要となることがあ
る。施工が簡単でしかも軽量の電磁遮蔽材料の開発が望
まれていた。
However, the conventional method of covering the wall of a building with an electromagnetic shielding member requires that the electromagnetic shielding member be covered after the building of the building is cast. There are problems that the cost is high and the entire construction period is long. In the case of covering by joining a plurality of electromagnetic shielding members, radio waves easily enter from the joint, and there is also a problem that the shielding leakage of the radio waves causes deterioration of the shielding performance. Further, when the weight load of the electromagnetic shielding member increases, it may be necessary to take measures against the building structure during construction. There has been a demand for the development of a lightweight electromagnetic shielding material that is easy to construct.

【0007】そこで本発明の目的は、電波の遮蔽漏れが
軽減でき且つ建物構造への重量負荷が小さくできる建物
の電磁シールド方法を提供するにある。
[0007] Therefore, an object of the present invention is to prevent leakage of radio waves.
A building that can reduce and reduce the weight load on the building structure
To provide an electromagnetic shielding method .

【0008】[0008]

【課題を解決するための手段】図1及び2の実施例を参
照するに、本発明の建物の電磁シールド方法は、鉄酸化
物とカーボンとを混練した所定厚さdの電磁遮蔽モルタ
1又はコンクリート2の遮蔽対象電波に対する透過係
数Tを測定し、モルタル1又はコンクリート2の厚さd
と透過係数Tと誘電率εの関係式(下記式(2)参照)へ
前記測定した透過係数Tと前記所定厚さdとを代入する
ことによりモルタル1又はコンクリート2の誘電率εを
求め、前記遮蔽対象電波に対し所望の透過係数Tを与え
る壁及び/又はスラブの厚さdを前記関係式への前記誘
電率εの代入により定め、モルタル1又はコンクリート
2を前記定めた厚さdで打設することにより遮蔽建物の
壁及び/又はスラブを形成してなるものである。ここで
カーボンは、鉄酸化物に対し比重が小さい無定形炭素で
あり、例えば比重が1.3〜1.5程度のものである。
Referring to the embodiment of Figure 1 and 2 SUMMARY OF THE INVENTION The electromagnetic shielding method of building of the invention, the electromagnetic shielding mortar 1 having a predetermined thickness d obtained by kneading the iron oxide and carbon Or the transmission system for the radio wave to be shielded by concrete 2
Measure the number T and determine the thickness d of the mortar 1 or concrete 2
To the relational equation between the transmission coefficient T and the dielectric constant ε (see the following equation (2))
Substitute the measured transmission coefficient T and the predetermined thickness d
The dielectric constant ε of mortar 1 or concrete 2 is
And give a desired transmission coefficient T to the shielding target radio wave.
The thickness d of the wall and / or slab to
Mortar 1 or concrete
2 with the thickness d specified above,
It is formed by forming walls and / or slabs . Here, carbon is amorphous carbon having a lower specific gravity than iron oxide, and for example, has a specific gravity of about 1.3 to 1.5.

【0009】好ましくは、本発明で用いる電磁遮蔽モル
タル1を、セメント5に対して50〜300重量%の鉄酸化
物4及びカーボン8と、30〜70重量%の水6とを混練
たものとする。一般にモルタルとは砂等の細骨材とセメ
ントと水とを練混ぜたものであるが(「建築用語辞典
(第二版)」(1995-4-10)技報堂、「セメントモルタ
ル」の項)、本発明では鉄酸化物4及びカーボン8を細
骨材として用いることができる。ただし必要に応じて、
本発明で用いる電磁遮蔽モルタル1に、セメントに対し
100重量%以下で柔軟性を与えるに足る量の砂等の細骨
材を混練してもよい。
Preferably, the electromagnetic shielding mole used in the present invention
The kneader 1 is kneaded with 50 to 300% by weight of iron oxide 4 and carbon 8 and 30 to 70% by weight of water 6 with respect to cement 5.
It shall be assumed. In general, mortar is a mixture of fine aggregate such as sand, cement and water ("Architectural Dictionary (2nd edition)" (1995-4-10) Gihodo, "Cement mortar") In the present invention, iron oxide 4 and carbon 8 can be used as fine aggregate. However, if necessary,
The electromagnetic shielding mortar 1 used in the present invention
A fine aggregate such as sand may be kneaded in an amount sufficient to give flexibility at 100% by weight or less.

【0010】また好ましくは、本発明で用いる電磁遮蔽
コンクリート2を、セメント5に対して50〜500重量%
の鉄酸化物4及びカーボン8と、30〜500重量%の細骨
材及び粗骨材7と、30〜70重量%の水6とを混練したも
とする。
[0010] Preferably, the electromagnetic shielding used in the present invention is used.
Concrete 2 is 50 to 500% by weight of cement 5
And iron oxide 4 and carbon 8, a fine aggregate and coarse aggregate 7 of 30 to 500 wt%, also obtained by kneading the water 6 of 30 to 70 wt%
And the.

【0011】鉄酸化物4及びカーボン8の混合粉体
を、例えば製鉄工程で発生するダスト(以下、製鉄ダス
トという。)の一種である高炉2次灰、高炉集塵ダス
ト、高炉1次灰等とすることができる。製鉄ダストと
は、製鉄所の各作業施設から発生する煤塵、粉塵を乾式
又は湿式集塵機にて捕集した環境集塵ダストであり、発
生する施設別に成分の特性・性状が異なり、施設別に固
有の名称がある。高炉内で鉄鉱石等を還元したガスは含
塵ガス(高炉ガス)として排出され、高炉2次灰とは高
炉ガス清浄時に捕集した粉塵で、乾式、湿式集塵された
ダストである。ただし本発明の鉄酸化物4及びカーボン
8は高炉2次灰等に限定されない。
A powder mixture 9 of iron oxide 4 and carbon 8
Can be, for example, blast furnace secondary ash, blast furnace dust, blast furnace primary ash, and the like, which are a kind of dust generated in the iron making process (hereinafter, referred to as iron making dust). Steelmaking dust is environmental dust that is collected by a dry or wet dust collector from dust and dust generated from each worksite of a steelworks.The characteristics and properties of components differ depending on the facility where the dust is generated, and are unique to each facility. There is a name. The gas obtained by reducing iron ore and the like in the blast furnace is discharged as dust-containing gas (blast furnace gas), and the blast furnace secondary ash is dust collected during blast furnace gas cleaning, and is dry and wet dust collected. However, the iron oxide 4 and the carbon 8 of the present invention are not limited to blast furnace secondary ash and the like.

【0012】[0012]

【発明の実施の形態】図1(A)に示すように、鉄酸化
物4及びカーボン8の混合粉体9として高炉2次灰を用
い、その混合粉体9と普通ポルトランドセメント5と水
6とを重量比1:1:0.5の割合で、普通モルタルと同
様の方法により混練して本発明で用いる電磁遮蔽モルタ
ル1とし、その電磁遮蔽モルタル1で図1(C)に示す
ような厚さd=30mmのパネル材16を製造して遮蔽性能
(電磁波減衰量)及び比重を確認する実験を行なった。
また比較のため、砂と普通ポルトランドセメント5と水
6とを重量比1:1:0.5の割合で混練した普通モルタ
ル(以下、比較モルタルという。)によりパネル材16を
製造し、その遮蔽性能及び比重を確認した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1 (A), a blast furnace secondary ash is used as a mixed powder 9 of iron oxide 4 and carbon 8, and the mixed powder 9, ordinary Portland cement 5 and water 6 are used. Is kneaded at a weight ratio of 1: 1: 0.5 by the same method as that for ordinary mortar to obtain an electromagnetic shielding mortar 1 used in the present invention, and the electromagnetic shielding mortar 1 has a thickness as shown in FIG. An experiment was conducted to produce a panel material 16 with d = 30 mm and confirm the shielding performance (electromagnetic wave attenuation) and specific gravity.
Further, for comparison, a panel material 16 was manufactured using a normal mortar (hereinafter, referred to as a comparative mortar) in which sand, ordinary Portland cement 5 and water 6 were kneaded at a weight ratio of 1: 1: 0.5, and the shielding performance and The specific gravity was confirmed.

【0013】実験に用いた高炉2次灰は、35重量%のFe
2O3、25重量%のカーボンを含むものであった。ただし
本発明で用いる電磁遮蔽モルタル1中に混練する鉄酸化
物はFe2O3に限定されず、FeO等の他の鉄酸化物とするこ
とができる。また鉄酸化物に対するカーボンの割合も、
この例に限定されない。電磁遮蔽モルタル1に用いるセ
メントは、普通ポルトランドセメント以外の適当なセメ
ントとすることができる。
The blast furnace secondary ash used in the experiment was 35% by weight of Fe.
2 O 3 , containing 25% by weight of carbon. However, the iron oxide kneaded in the electromagnetic shielding mortar 1 used in the present invention is not limited to Fe 2 O 3 , and may be another iron oxide such as FeO. Also, the ratio of carbon to iron oxide
It is not limited to this example. The cement used for the electromagnetic shielding mortar 1 can be any suitable cement other than ordinary Portland cement.

【0014】実験では、打設から50日経過した後のパネ
ル材16を使用した。その理由は、打設後1ヶ月程度の間
はモルタルの透過係数Tが急激に増大し、安定しないか
らである。この期間はモルタル1内の水和反応が大きく
進行するので、モルタル1内の含水率の減少が透過係数
増大の主要な原因と考えられる。本発明者は、モルタル
の含水率の増加により透過係数Tが大きく減少すること
を実験的に確認した。
In the experiment, the panel material 16 after 50 days had passed since the casting was used. The reason is that the permeability coefficient T of the mortar increases rapidly for about one month after the casting and is not stable. During this period, the hydration reaction in the mortar 1 progresses greatly, so that the decrease in the water content in the mortar 1 is considered to be the main cause of the increase in the permeability coefficient. The present inventor has experimentally confirmed that the permeability coefficient T is greatly reduced by increasing the water content of the mortar.

【0015】パネル材16の遮蔽性能の測定装置は、図4
に示すように、ベクトルネットワークアナライザ(VN
A)24と電波発信器25及び受信器(ホーンアンテナ)26
とを用いた。発信器25及び受信器26を隔壁22で仕切られ
たシールドルーム20a、20bにそれぞれ隔壁22の所定位置
と対向させて配置し、その隔壁22の所定位置に設けた孔
に電磁遮蔽モルタル1又は比較モルタルのパネル材16を
嵌め込み、パネル材16と隔壁22との間を電波が漏れない
ように密着させて固定した。シールドルーム20a、20bの
内面と隔壁22の両面とを電波吸収部材で被覆することに
より、外部からの進入電波やシールドルーム内面での反
射電波が受信器26で受信されるのを防止した。
FIG. 4 shows an apparatus for measuring the shielding performance of the panel material 16.
As shown in the figure, a vector network analyzer (VN
A) 24, radio transmitter 25 and receiver (horn antenna) 26
And were used. The transmitter 25 and the receiver 26 are arranged in the shielded rooms 20a and 20b separated by the partition wall 22 so as to face the predetermined position of the partition wall 22, respectively. The mortar panel member 16 was fitted and fixed between the panel member 16 and the partition wall 22 in such a manner that radio waves would not leak. By covering the inner surfaces of the shield rooms 20a and 20b and both surfaces of the partition wall 22 with radio wave absorbing members, it is possible to prevent the receiver 26 from receiving radio waves entering from outside and radio waves reflected from the inner surfaces of the shield room.

【0016】電波周波数として800MHz〜4.2GHz帯域を使
用し、送信器25からパネル材16の面に対して垂直となる
ように電波を送出し、パネル材16を透過した電波を受信
器26で受信し、アナライザー24で透過電波の振幅を測定
した。また隔壁22の孔からパネル材16を取り外し、孔の
空隙を介して受信した電波の振幅を測定し、パネル材16
の透過電波の振幅との比からパネル材16の遮蔽性能(電
磁波減衰量)を求めた。実験結果を図5にグラフとして
示す。なお遮蔽性能と透過係数Tとの関係は下記(1)式
で表すことができるので、パネル材16の透過係数Tを遮
蔽性能の値に基づき算出することができる。
Using a band of 800 MHz to 4.2 GHz as a radio frequency, a radio wave is transmitted from the transmitter 25 so as to be perpendicular to the surface of the panel material 16, and the radio wave transmitted through the panel material 16 is received by the receiver 26. Then, the amplitude of the transmitted radio wave was measured by the analyzer 24. Further, the panel member 16 is removed from the hole of the partition wall 22, and the amplitude of the radio wave received through the gap of the hole is measured.
The shielding performance (electromagnetic wave attenuation) of the panel material 16 was determined from the ratio to the amplitude of the transmitted radio wave. The experimental results are shown as a graph in FIG. Since the relationship between the shielding performance and the transmission coefficient T can be expressed by the following equation (1), the transmission coefficient T of the panel member 16 can be calculated based on the value of the shielding performance.

【0017】[0017]

【数1】 遮蔽性能=-20・log(透過係数T)………………………………(1)[Equation 1] Shielding performance = -20 · log (transmission coefficient T) ……………………… (1)

【0018】図5の高炉2次灰のグラフから分かるよう
に、厚さ30mmとした高炉2次灰混練モルタル1のパネル
材16により、1GHz帯で約15dB、2GHz帯で約20dB、3GH
z帯で約25dBの遮蔽性能を得ることができた。また図5
の比較モルタルのグラフと高炉2次灰のグラフとの比較
から分かるように、高炉2次灰混練モルタル1のパネル
材16は、比較モルタルのパネル材16に比し、1GHz帯で
約6dB、2GHz帯で約10dB、3GHz帯で約15dB大きい遮蔽
性能を得ることができた。
As can be seen from the graph of the blast furnace secondary ash in FIG. 5, the panel material 16 of the blast furnace secondary ash kneading mortar 1 having a thickness of 30 mm is about 15 dB in the 1 GHz band, about 20 dB in the 2 GHz band, and 3 GH.
Approximately 25dB shielding performance was obtained in the z band. FIG.
As can be seen from a comparison between the graph of the comparative mortar and the graph of the secondary ash of the blast furnace, the panel material 16 of the blast furnace secondary ash kneading mortar 1 is about 6 dB in the 1 GHz band and 2 GHz compared to the panel material 16 of the comparative mortar. Approximately 10dB in the 3GHz band and about 15dB in the 3GHz band were obtained.

【0019】本発明で用いる電磁遮蔽モルタル1が比較
モルタルより大きな遮蔽性能を有する理由は、以下のよ
うに考えられる。すなわち図3に示すように、比較モル
タルにおける電波の遮蔽はモルタル表面での反射損失と
モルタル通過時の吸収損失(図3の)のみであるのに
対し、電磁遮蔽モルタル1では更に、セメントにより固
化された鉄酸化物による反射・回折による損失(図3の
)、及び鉄酸化物及びカーボンによる吸収及び反射損
失(図3の)の複合的作用により電波を遮蔽するから
である。
The reason why the electromagnetic shielding mortar 1 used in the present invention has higher shielding performance than the comparative mortar is considered as follows. That is, as shown in FIG. 3, the radio wave shielding in the comparative mortar is only the reflection loss on the mortar surface and the absorption loss when passing through the mortar (FIG. 3), whereas the electromagnetic shielding mortar 1 is further solidified by cement. This is because the radio wave is shielded by the combined effect of the loss due to the reflection and diffraction by the iron oxide (FIG. 3) and the absorption and reflection loss by the iron oxide and carbon (FIG. 3).

【0020】また前記組成の高炉2次灰に代えて、製鉄
ダストの一種である高炉集塵ダストと普通ポルトランド
セメント5と水6とを重量比1:1:0.5の割合で混練
したモルタルを用い、上記と同様にして遮蔽性能の確認
実験を行なった。高炉集塵ダストとは、出銑およびスラ
グ排出作業に伴う発煙及び発塵の防止・高熱作業雰囲気
の改善のために、出銑口部から樋先端及び落し口に至る
樋および開口部に設けたカバーとフード、その間の主な
発塵・発煙個所に設置したエアカーテンから、ダクトを
介して集塵されたダストである。実験に用いた高炉集塵
ダストの組成は、40重量%のFe2O3、0.5重量%のSiO2
0.4重量%のAl2O3、及び0.6重量%のMgOを含み、カーボ
ンを含まないものである。この実験結果を図5に併せて
示す。
Instead of the blast furnace secondary ash having the above composition, blast furnace dust collected as a kind of ironmaking dust, ordinary Portland cement 5 and water 6 are kneaded at a weight ratio of 1: 1: 0.5. Using the obtained mortar, an experiment for confirming the shielding performance was performed in the same manner as described above. Blast furnace dust is provided in the gutters and openings from the tap hole to the gutter tip and the outlet to prevent smoke and dust generation associated with tapping and slag discharge work, and to improve the atmosphere of hot work. Dust collected via a duct from the cover and hood, and air curtains installed at the main places of dust and smoke emission between them. The composition of the blast furnace dust used in the experiment was 40% by weight of Fe 2 O 3 , 0.5% by weight of SiO 2 ,
It contains 0.4% by weight of Al 2 O 3 and 0.6% by weight of MgO and does not contain carbon. The results of this experiment are also shown in FIG.

【0021】図5の高炉集塵ダストのグラフから分かる
ように、高炉集塵ダスト混練モルタル1のパネル材16の
遮蔽性能は、1GHz帯で約20dB、2GHz帯で約27dB、3GH
z帯で約35dBであり、高炉2次灰混練モルタル1のパネ
ル材16に比し大きな遮蔽性能を示す。この遮蔽性能の相
違は、高炉2次灰中の金属酸化物量に比し、高炉集塵ダ
スト中の金属酸化物量が多いことが主要な原因であると
考えられる。
As can be seen from the graph of blast furnace dust collection dust in FIG. 5, the shielding performance of panel material 16 of blast furnace dust collection kneading mortar 1 is about 20 dB in the 1 GHz band, about 27 dB in the 2 GHz band, and 3 GH.
It is about 35 dB in the z-band, and shows greater shielding performance than the panel material 16 of the blast furnace secondary ash kneading mortar 1. It is considered that this difference in shielding performance is mainly due to the fact that the amount of metal oxide in the dust collected from the blast furnace is larger than the amount of metal oxide in the secondary ash of the blast furnace.

【0022】次に、実験に用いた電磁遮蔽モルタル1及
び比較モルタルのパネル材16の強度及び比重を計測し
た。高炉集塵ダスト混練モルタル1のパネル材16の強度
及び比重も併せて計測した。計測結果を下記表1に示
す。表1から分かるように、金属酸化物のみを含む高炉
集塵ダスト混練のモルタルでは比較モルタルに比し比重
が大きくなるのに対し、35重量%のFe2O3と25重量%の
カーボンを含む高炉2次灰混練モルタル1では、強度を
比較モルタルと同程度に維持しつつ、比重を比較モルタ
ルと同等またはそれ以下とすることができる。
Next, the strength and specific gravity of the panel material 16 of the electromagnetic shielding mortar 1 and the comparative mortar used in the experiment were measured. The strength and specific gravity of the panel material 16 of the blast furnace dust-mixed mortar 1 were also measured. The measurement results are shown in Table 1 below. As can be seen from Table 1, mortar containing only metal oxide in blast furnace dust-mixed mortar has a higher specific gravity than the comparative mortar, but contains 35% by weight of Fe 2 O 3 and 25% by weight of carbon. In the blast furnace secondary ash kneading mortar 1, the specific gravity can be made equal to or less than the comparative mortar while maintaining the strength at the same level as the comparative mortar.

【0023】[0023]

【表1】 [Table 1]

【0024】すなわち上記実験から、鉄酸化物4及びカ
ーボン8のモルタル材料5、6に対する混練量を調節す
ることにより、電磁遮蔽モルタル1の特定周波数に対す
る遮蔽性能すなわち透過係数Tを調整することができ、
しかも電磁遮蔽モルタルの比重を比較モルタルと同等ま
たはそれ以下とすることができることが確認できた。本
発明者は、更なる実験の結果、モルタル材料5、6に対
する鉄酸化物4及びカーボン8の混練量の調節とパネル
材16の厚さdの調節とにより、特定周波数に対して所定
レベルT0の透過係数を与える電磁遮蔽モルタル1のパ
ネル材16が製造できることを確認した。また、鉄酸化物
4とカーボン8との混練量の割合の調節により、電磁
蔽モルタル1のパネル材16の比重が調整可能であり、そ
のパネル材16の比重をモルタル材料5、6の固化時の比
重以下にできることを確認した。
That is, from the above experiment, by adjusting the kneading amounts of the iron oxide 4 and the carbon 8 to the mortar materials 5 and 6, the shielding performance, that is, the transmission coefficient T of the electromagnetic shielding mortar 1 at a specific frequency can be adjusted. ,
Moreover, it was confirmed that the specific gravity of the electromagnetic shielding mortar can be equal to or less than that of the comparative mortar. As a result of further experiments, the present inventor has found that by adjusting the kneading amount of the iron oxide 4 and the carbon 8 with respect to the mortar materials 5 and 6 and the thickness d of the panel material 16, a predetermined level T for a specific frequency can be obtained. It was confirmed that the panel material 16 of the electromagnetic shielding mortar 1 giving a transmission coefficient of 0 can be manufactured. The specific gravity of the panel material 16 of the electromagnetic shielding mortar 1 can be adjusted by adjusting the ratio of the kneading amount of the iron oxide 4 and the carbon 8, and the specific gravity of the panel material 16 is adjusted to the mortar material 5. , 6 were confirmed to be lower than the specific gravity at the time of solidification.

【0025】以上、電磁遮蔽モルタル1の比重及び透過
係数について説明したが、電磁遮蔽コンクリート2の比
重及び透過係数についても、混合粉体9中の鉄酸化物4
とカーボン8との割合の調整、及びコンクリート2中の
混合粉体9の混練量とパネル材16の厚さdとの調節によ
り、モルタル1の場合と同様に調整することができる。
ただし電磁遮蔽コンクリート2の場合は、骨材の混練量
が増えるに応じて遮蔽性能が減少するので、同一組成の
混合粉体9を用いた同一厚さのパネル材16によりモルタ
ル1と同様の遮蔽性能を得るためには、モルタル1の場
合に比し混合粉体9の混練量を増やす必要がある。
Although the specific gravity and the transmission coefficient of the electromagnetic shielding mortar 1 have been described above, the specific gravity and the transmission coefficient of the electromagnetic shielding concrete 2 are not limited to the iron oxide 4 in the mixed powder 9.
The mortar 1 can be adjusted in the same manner as in the case of the mortar 1 by adjusting the ratio between the mortar 1 and the carbon 8 and adjusting the kneading amount of the mixed powder 9 in the concrete 2 and the thickness d of the panel material 16.
However, in the case of the electromagnetic shielding concrete 2, since the shielding performance decreases as the amount of aggregate mixed increases, the same shielding as the mortar 1 by the panel material 16 of the same thickness using the mixed powder 9 of the same composition. In order to obtain performance, it is necessary to increase the kneading amount of the mixed powder 9 as compared with the case of the mortar 1.

【0026】図2に示すように、現場で打設する壁11又As shown in FIG. 2, a wall 11 or
はスラブ13の透過レベルT0が打設前に決められているMeans that the transmission level T 0 of the slab 13 is determined before casting
場合は、電磁遮蔽モルタル1又はコンクリート2中の鉄In case, iron in the electromagnetic shielding mortar 1 or concrete 2
酸化物4及びカーボン8の混練量を定めると共に、壁11The kneading amount of the oxide 4 and the carbon 8 is determined, and
又はスラブ13の打設厚さdの設計が必要となる。本発明Alternatively, it is necessary to design the casting thickness d of the slab 13. The present invention
者は、打設厚さdの設計のために、電磁遮蔽モルタル1The mortar 1 is required for the design of the casting thickness d.
又はコンクリート2の複素誘電率ε=εr−jεi(以Or the complex permittivity ε = ε r −jε i of the concrete 2 (hereinafter
下、単に誘電率εということがある。)が利用できるこBelow, it may be simply called dielectric constant ε. ) Is available
とを見出した。誘電率εによれば、電磁遮蔽モルタル1And found. According to the dielectric constant ε, the electromagnetic shielding mortar 1
又はコンクリート2自体の単位厚さ当りの遮蔽性能を定Or determine the shielding performance per unit thickness of concrete 2 itself
めることができる。Can be

【0027】すなわち一般的に、一様の誘電率εを有すThat is, generally, it has a uniform dielectric constant ε
る厚さdの層(一層モデル)の透過係数Tは次式(2)でThe transmission coefficient T of a layer having a thickness d (single-layer model) is given by the following equation (2).
表すことができる(IEEE TRANSACTIONS ON ANTENNAS ANCan be represented (IEEE TRANSACTIONS ON ANTENNAS AN
D PROPAGATION、VOL.44、NO.1、JANUARY 1996、pp.35-3D PROPAGATION, VOL.44, NO.1, JANUARY 1996, pp.35-3
6、"Measurement of the Complex Refractive Index of6, "Measurement of the Complex Refractive Index of
Concrete at 57.5 GHz")。ここで、δ=(2πd/λ) Concrete at 57.5 GHz "), where δ = (2πd / λ)
(ε−sin2θ)1/2、k0=2π/λである。またλは遮蔽(Ε−sin 2 θ) 1/2 and k 0 = 2π / λ. Also, λ is shielding
対象電波の波長、θは遮蔽対象電波の入射角を示す。式The wavelength, θ, of the target radio wave indicates the incident angle of the shielding target radio wave. formula
(2)のR'には、遮蔽対象電波の偏波により、下記式(3)のR ′ of (2) is calculated by the following equation (3) depending on the polarization of the radio wave to be shielded.
R'sまたは下記式(4)のR'pを代入する。Substitute R's or R'p of the following equation (4).

【0028】例えば、図5の実験で用いた厚さdのパネFor example, the panel of thickness d used in the experiment of FIG.
ル材16について考えると、電磁遮蔽モルタル1又はコンConsidering the steel material 16, the electromagnetic shielding mortar 1
クリート2の誘電率εは、パネル材16の厚さdと遮蔽対The dielectric constant ε of the cleat 2 depends on the thickness d of the panel material 16 and the shielding ratio.
象電波の波長λと入射角θ(図5では垂直)とに基づAnd the incident angle θ (vertical in FIG. 5).
き、透過係数Tの実測値と式(2)との分散が最小となるThe variance between the measured value of the transmission coefficient T and equation (2) is minimized.
ように推定することができる(以下、説明簡単化のたCan be estimated as follows.
め、式(2)への透過係数Tと厚さdとの代入ということSubstituting the transmission coefficient T and thickness d into equation (2)
がある。)。同図の高炉2次灰混練モルタル1の実測値There is. ). Measured value of blast furnace secondary ash kneading mortar 1 in the same figure
からは、1GHzでは誘電率ε=17−j7、3GHzではε=17From the above, at 1 GHz, the permittivity ε = 17−j7, at 3 GHz, ε = 17
−j15、5GHzではε=17−j23であると推定できる。こAt −j15 and 5 GHz, it can be estimated that ε = 17−j23. This
れに対し同図の比較モルタルの実測値からは、1〜5GHOn the other hand, from the measured value of the comparative mortar in the same figure, 1 to 5 GH
zの周波数帯において誘電率ε=8−j1であると推定できIt can be estimated that the dielectric constant ε = 8−j1 in the frequency band z.
る。この誘電率εの実数部εr及び虚数部εiの大きさのYou. The magnitude of the real part ε r and the imaginary part ε i of this permittivity ε
相違が、モルタル1又はコンクリート2自体の遮蔽性能The difference is the shielding performance of mortar 1 or concrete 2 itself
の相違に対応する。Corresponding to the differences.

【0029】[0029]

【数2】 (Equation 2)

【0030】従って、例えば図5の高炉2次灰混練モルTherefore, for example, the blast furnace secondary ash kneading mole shown in FIG.
タル1を用い、3GHz帯に対して所定レベルT0の透過係Transmission level of a predetermined level T 0 for 3 GHz band using
数を与える建物10の壁又はスラブを打設する場合は、モWhen casting the walls or slabs of the building 10 giving
ルタル1の3GHz帯に対する誘電率ε=17−j15と所定レThe dielectric constant ε = 17−j15 for the 3 GHz band
ベルT0とから、式(2)に基づいて打設すべき壁又はスラBell T 0 Prefecture, walls or slide to be pouring based on the equation (2)
ブの厚さdを算出することができる。The thickness d of the knob can be calculated.

【0031】 本発明は、軽量の電磁遮蔽モルタル1又は
コンクリート2を用いて被遮蔽建物の壁及び/又はスラ
ブを形成するので、建物の躯体自体に電磁遮蔽機能を持
たせることができ、躯体とは別に電磁遮蔽部材を設ける
必要がないので、電磁遮蔽部材の施工期間の短縮が図れ
る。また従来の電磁遮蔽部材の補強材として、建物の外
壁部分、床や天井部分に本発明の電磁遮蔽モルタル1又
はコンクリート2を打設することにより、従来問題とな
っていた電磁遮蔽部材の継目からの電波の漏れを軽減す
ることができる。しかも本発明で用いる電磁遮蔽モルタ
ル1又はコンクリート2は、比重を普通モルタル又はコ
ンクリートと同程度またはそれ以下とすることができる
ので、建物構造への負担の増大を抑えることができる。
[0031] The present invention, because it forms the walls and / or slabs of the shield building with an electromagnetic shielding mortar 1 or concrete 2 lightweight, it can have an electromagnetic shielding function skeleton itself of the building, and skeleton Since it is not necessary to separately provide an electromagnetic shielding member, the construction period of the electromagnetic shielding member can be shortened. Further, as a reinforcing material for the conventional electromagnetic shielding member, the electromagnetic shielding mortar 1 or concrete 2 of the present invention is cast on the outer wall portion, floor, or ceiling portion of the building, so that the electromagnetic shielding member from the seam which has been a problem in the past can be obtained. Leakage of radio waves can be reduced. Moreover, since the specific gravity of the electromagnetic shielding mortar 1 or concrete 2 used in the present invention can be made equal to or less than that of ordinary mortar or concrete, an increase in the burden on the building structure can be suppressed.

【0032】 こうして本発明の目的である「電波の遮蔽
漏れが軽減でき且つ建物構造への重量負荷が小さくでき
る建物の電磁シールド方法」の提供が達成できる。
As described above, the object of the present invention is to provide a radio wave shield.
Leakage can be reduced and the weight load on the building structure can be reduced.
To provide an electromagnetic shielding method for buildings .

【0033】 高炉2次灰等の製鉄ダストは、製鉄プラン
トの製鉄工程の副産物として大量に産出されるので、安
価である。従って高炉2次灰等を用いて電磁遮蔽モルタ
ル1又はコンクリート2とすれば、電磁遮蔽コストの低
減が図れる。ただし、高炉2次灰等に限らず、鉄酸化物
4とカーボン9とを適当な割合で含む混合粉体9を用い
ることにより、特定周波数に対して所定レベルT0の透
過係数を有し且つ比重が小さい電磁遮蔽モルタル1又は
コンクリート2とすることができる。
The steel dust such as blast furnace secondary ash, since it is in large quantities produced as a by-product of the iron-making process of the steel plant, it is inexpensive. Therefore, if the electromagnetic shielding mortar 1 or the concrete 2 is formed using blast furnace secondary ash or the like, the electromagnetic shielding cost can be reduced. However, not only the blast furnace secondary ash and the like but also the use of the mixed powder 9 containing the iron oxide 4 and the carbon 9 at an appropriate ratio has a transmission coefficient of a predetermined level T 0 for a specific frequency and The electromagnetic shielding mortar 1 or concrete 2 having a small specific gravity can be used.

【0034】[0034]

【実施例】図1(B)及び図2は、作業現場において、
鉄筋建物10に設けた型枠(図示せず)内に本発明の電磁
遮蔽モルタル1又はコンクリート2を打設し、建物10の
壁11及び/又はスラブ13を構築する本発明の実施例を示
す。図1(B)の符号14はコンクリートミキサー、図2
の符号12はデッキプレートを示す。このように作業現場
で打設する場合は、モルタル1又はコンクリート2中の
混合粉体9の混練量と打設厚さdとの調節により、壁11
又はスラブ13に所要の透過レベルT0を付与することが
できる。
1 (B) and FIG. 2 show a work site.
An embodiment of the present invention in which the electromagnetic shielding mortar 1 or the concrete 2 of the present invention is poured into a formwork (not shown) provided in a reinforced building 10 to construct a wall 11 and / or a slab 13 of the building 10 is shown. . 1 (B) is a concrete mixer, FIG.
Reference numeral 12 denotes a deck plate. In the case of casting at the work site in this manner, the wall 11 is adjusted by adjusting the kneading amount of the mixed powder 9 in the mortar 1 or the concrete 2 and the casting thickness d.
Alternatively, the required transmission level T 0 can be given to the slab 13.

【0035】また本発明者は、電磁遮蔽モルタル1又は
コンクリート2の誘電率εと遮蔽性能との比較検討か
ら、大きな遮蔽性能を得るためには誘電率εの虚数部ε
iを大きくすることが効果的であることを見出した。下
記表2は、厚さd=20cm、遮蔽対象電波の入射角θ=0
度(垂直入射)と仮定した場合に、周波数f=1.2GHz及
び2.4GHzの2種類の遮蔽対象電波に対する誘電率εと遮
蔽性能との関係の計算結果を示す。なお図5に示すよう
に、周波数f=1.2GHz及び2.4GHzに対する比較モルタル
の遮蔽性能は、それぞれ6dB及び10dBである。
Further, the present inventor has compared the dielectric constant ε of the electromagnetic shielding mortar 1 or the concrete 2 with the shielding performance and found that the imaginary part ε of the dielectric constant ε was required to obtain a large shielding performance.
It was found that increasing i was effective. Table 2 below shows that the thickness d = 20 cm and the incident angle θ of the radio wave to be shielded = 0.
The calculation results of the relationship between the dielectric constant ε and the shielding performance for two types of shielding target radio waves at frequencies f = 1.2 GHz and 2.4 GHz, assuming the degree (normal incidence), are shown. As shown in FIG. 5, the shielding performance of the comparative mortar for frequencies f = 1.2 GHz and 2.4 GHz is 6 dB and 10 dB, respectively.

【0036】[0036]

【表2】 [Table 2]

【0037】表2の第6〜9欄の比較から分かるよう
に、誘電率εの実数部εrを大きくしても遮蔽性能は必
ずしも大きくなるとは限らない。これに対し表1の第1
〜4欄に示すように、誘電率εの虚数部εiを大きくす
ることにより遮蔽性能を大きくし、透過係数Tを小さく
することができる。このことから、電磁遮蔽モルタル1
又はコンクリート2中の鉄酸化物4及びカーボン9の混
練量を、比較モルタル又はコンクリートと同程度または
それ以下の比重が得られる条件の下で、モルタル1又は
コンクリート2の誘電率εの虚数部εiが大きくなるよ
うに選択することが好ましい。
[0037] As seen from a comparison of the 6-9 column of Table 2, shield also increase the real part epsilon r of the dielectric constant epsilon performance is not necessarily increased. In contrast, the first in Table 1
As shown in to 4 column can be a shielding performance by increasing by increasing the imaginary part epsilon i permittivity epsilon, reducing the transmission coefficient T. From this, electromagnetic shielding mortar 1
Alternatively, the imaginary part ε of the dielectric constant ε of the mortar 1 or the concrete 2 is adjusted under the condition that the specific gravity of the same or less than that of the comparative mortar or concrete is obtained by mixing the iron oxide 4 and the carbon 9 in the concrete 2. It is preferable to select i to be large.

【0038】以上説明したように、遮蔽対象電波に対し
大きな誘電率εを与える量の鉄酸化物4とカーボン8と
が混練された電磁遮蔽モルタル1又はコンクリート2を
用い、所定透過レベルT0を与える厚さdで打設するこ
とにより、例えば図2の建物10の壁11及びスラブ13自体
に必要な電磁遮蔽機能を持たせることができる。
As described above, using the electromagnetic shielding mortar 1 or the concrete 2 in which the iron oxide 4 and the carbon 8 are kneaded in an amount giving a large dielectric constant ε to the radio wave to be shielded, the predetermined transmission level T 0 is set. By casting with the given thickness d, for example, the wall 11 and the slab 13 of the building 10 in FIG. 2 can have a necessary electromagnetic shielding function.

【0039】また図1(C)に示すように、電磁遮蔽モ
ルタル1又はコンクリート2により所定透過レベルT0
で厚さdの電磁遮蔽パネル材16を形成し、そのパネル材
16を用いて建物10の外壁11、スラブ13及び仕切壁に必要
な電磁遮蔽機能を持たせることもできる。なお電磁遮蔽
モルタル1又はコンクリート2と他の建材とを層状に組
み合わせたパネル材を用いる場合は、式(2)に示す一層
モデルに代えて、多層誘電体モデルを用いてそのパネル
材の透過係数を求めることが可能である。
As shown in FIG. 1 (C), a predetermined transmission level T 0 is provided by the electromagnetic shielding mortar 1 or concrete 2.
To form an electromagnetic shielding panel material 16 having a thickness d.
By using 16, the outer wall 11, the slab 13, and the partition wall of the building 10 can be provided with a necessary electromagnetic shielding function. When using a panel material in which electromagnetic shielding mortar 1 or concrete 2 and another building material are combined in a layered form, the transmission coefficient of the panel material is obtained by using a multilayer dielectric model instead of the one-layer model shown in equation (2). Is possible.

【0040】更に、例えば壁やスラブの遮蔽性能が不足
する場合には、その壁11やスラブ13上の内装材として、
電磁遮蔽モルタル1又はコンクリート2を所定透過レベ
ルT 0が得られる厚さdで塗布することにより、壁やス
ラブの遮蔽機能を補強することも可能である。
Furthermore, for example, the shielding performance of walls and slabs is insufficient.
If you do, as an interior material on the wall 11 or slab 13,
Electromagnetic shielding mortar 1 or concrete 2
Le T 0Is applied at a thickness d that gives
It is also possible to reinforce the shielding function of the love.

【0041】なお、本発明で用いる電磁遮蔽モルタル1
又はコンクリート2は黒褐色ないし茶褐色を呈し、意匠
的な配色からみても従来の普通モルタル又はコンクリー
トに劣るものではない。本発明で用いる電磁遮蔽モルタ
ル1又はコンクリート2を護岸用コンクリート、又は意
匠ブロックとして用いることも可能である。
The electromagnetic shielding mortar 1 used in the present invention
Alternatively, the concrete 2 exhibits a blackish brown or brownish color, and is not inferior to the conventional ordinary mortar or concrete in terms of the design color. The electromagnetic shielding mortar 1 or concrete 2 used in the present invention can be used as seawall concrete or a design block.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明の
物の電磁遮蔽方法は、鉄酸化物とカーボンとを混練し
電磁遮蔽モルタル又はコンクリートの遮蔽対象電波に対
する誘電率を求め、遮蔽対象電波に対し所望の透過係数
を与える壁及び/又はスラブの厚さを前記誘電率に基づ
き定め、電磁遮蔽モルタル又はコンクリートを前記定め
た厚さで打設することにより遮蔽建物の壁又はスラブを
形成するので、次の顕著な効果を奏する。
As described in detail above, the construction of the present invention
Electromagnetic shielding method things, by kneading the iron oxide and carbon
Electromagnetic shielding mortar or concrete
The desired permittivity for the radio wave to be shielded.
The thickness of the walls and / or slabs giving
Specified, electromagnetic shielding mortar or concrete specified above
Wall or slab of shielded building by casting
Since it forms , it has the following remarkable effects.

【0043】(イ)鉄酸化物とカーボンの混練量の調整
により、モルタル又はコンクリートに必要な透過レベル
を与えることができる。 (ロ)建物の躯体自体に電磁遮蔽機能を持たせることが
できるので、躯体とは別に電磁遮蔽部材を施工する手間
を省き、施工期間の短縮が図れる。 (ハ)従来問題となっていた電磁遮蔽部材の継目からの
電波の漏れが軽減でき、遮蔽機能の劣化のおそれが小さ
い。 (ニ)従来のモルタル又はコンクリートと同程度の比重
とし得るので、電磁遮蔽の際に建物構造に与える負荷の
増大を抑えることができる。 (ホ)製鉄ダストの利用により製造コストの低減を図る
ことができ、また製鉄ダストのリサイクルに貢献でき
る。
(A) By adjusting the kneading amount of iron oxide and carbon, it is possible to provide a mortar or concrete with a necessary permeation level. (B) Since the building body itself can be provided with an electromagnetic shielding function, it is possible to save time and labor for installing an electromagnetic shielding member separately from the building body, thereby shortening the construction period. (C) Leakage of radio waves from the joint of the electromagnetic shielding member, which has conventionally been a problem, can be reduced, and the possibility of deterioration of the shielding function is small. (D) Since the specific gravity can be approximately the same as that of the conventional mortar or concrete, an increase in the load applied to the building structure during electromagnetic shielding can be suppressed. (E) The use of iron-made dust can reduce manufacturing costs and contribute to the recycling of iron-made dust.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、鉄筋建物の壁及びスラブの説明図である。FIG. 2 is an explanatory view of a wall and a slab of a reinforced building.

【図3】は、本発明による電磁遮蔽の原理を示す説明図
である。
FIG. 3 is an explanatory diagram showing the principle of electromagnetic shielding according to the present invention.

【図4】は、電磁遮蔽性能の測定装置の説明図である。FIG. 4 is an explanatory view of a measuring device of electromagnetic shielding performance.

【図5】は、本発明のモルタルによる電磁遮蔽性能を示
すグラフである。
FIG. 5 is a graph showing the electromagnetic shielding performance of the mortar of the present invention.

【符号の説明】 1…電磁遮蔽モルタル 2…電磁遮蔽コンクリート 4…鉄酸化物 5…セメント 6…水 7…骨材 8…カーボン 9…混合粉体 10…鉄筋建物 11…建物外壁 12…デッキプレート 13…スラブ 14…コンクリートミキサー 16…電磁遮蔽パネル材 20…シールドルーム 21…電波吸収部材 22…隔壁 24…ネットワークアナライ
ザー 25…送信器 26…受信器
[Description of Signs] 1 ... Electromagnetic shielding mortar 2 ... Electromagnetic shielding concrete 4 ... Iron oxide 5 ... Cement 6 ... Water 7 ... Aggregate 8 ... Carbon 9 ... Mixedpowder  10 ... Reinforced building 11 ... Building outer wall 12 ... Deck plate 13 ... Slab 14 ... Concrete mixer 16 ... Electromagnetic shielding panel material 20 ... Shield room 21 ... Electromagnetic absorption member 22 ... Partition wall 24 ... Network analysis
The 25… Transmitter 26… Receiver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C04B 111:90 (72)発明者 横田 依早弥 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 Fターム(参考) 4G012 PA11 PA14 PA28 5E321 AA44 BB31 GG05 GG11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) // C04B 111: 90 (72) Inventor Yoriya Yokota 2-9-1-1, Tobita-Kita Kacho, Chofu-shi, Tokyo Kashima 4G012 PA11 PA14 PA28 5E321 AA44 BB31 GG05 GG11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】遮蔽対象電波に対する単位厚さ当りの透過
係数を所定レベル以下とする量の鉄酸化物とカーボンと
をモルタル材料に混練してなり、固化後の比重を前記モ
ルタル材料の固化時の比重以下としてなる軽量電磁遮蔽
モルタル。
1. A mortar material is kneaded with an amount of iron oxide and carbon in such a quantity that a transmission coefficient per unit thickness for a radio wave to be shielded per unit thickness is equal to or less than a predetermined level, and a specific gravity after solidification is determined when the mortar material is solidified. Lightweight electromagnetic shielding mortar whose specific gravity is less than or equal to.
【請求項2】請求項1の電磁遮蔽モルタルにおいて、セ
メントに対して50〜300重量%の前記鉄酸化物及びカー
ボンと30〜70重量%の水とを混練してなる軽量電磁遮蔽
モルタル。
2. The electromagnetic shielding mortar according to claim 1, wherein 50 to 300% by weight of said iron oxide and carbon and 30 to 70% by weight of water are kneaded with respect to cement.
【請求項3】請求項2の電磁遮蔽モルタルにおいて、セ
メントに対し100重量%以下で柔軟性を与えるに足る量
の細骨材を混練してなる軽量電磁遮蔽モルタル。
3. A lightweight electromagnetic shielding mortar according to claim 2, wherein a fine aggregate is kneaded in an amount sufficient to give flexibility to the cement at 100% by weight or less.
【請求項4】請求項1又は2の電磁遮蔽モルタルにおい
て、前記鉄酸化物及びカーボンの混合紛体を製鋼工程で
発生する高炉2次灰としてなる軽量電磁遮蔽モルタル。
4. A lightweight electromagnetic shielding mortar according to claim 1, wherein said mixed powder of iron oxide and carbon is used as secondary ash in a blast furnace generated in a steel making process.
【請求項5】遮蔽対象電波に対する単位厚さ当りの透過
係数を所定レベル以下とする量の鉄酸化物とカーボンと
をコンクリート材料に混練してなり、固化後の比重を前
記コンクリート材料の固化時の比重以下としてなる軽量
電磁遮蔽コンクリート。
5. A concrete material is kneaded with iron oxide and carbon in such an amount that a transmission coefficient per unit thickness for a radio wave to be shielded per unit thickness is equal to or less than a predetermined level, and a specific gravity after solidification is determined when the concrete material is solidified. Lightweight electromagnetic shielding concrete whose specific gravity is less than or equal to.
【請求項6】請求項5の電磁遮蔽コンクリートにおい
て、セメントに対して50〜500重量%の前記鉄酸化物及
びカーボンと30〜500重量%の骨材と30〜70重量%の水
とを混練してなる軽量電磁遮蔽コンクリート。
6. The electromagnetic shielding concrete according to claim 5, wherein 50 to 500% by weight of said iron oxide and carbon, 30 to 500% by weight of aggregate and 30 to 70% by weight of water are kneaded with cement. Lightweight electromagnetic shielding concrete.
【請求項7】請求項5又は6の電磁遮蔽コンクリートに
おいて、前記鉄酸化物及びカーボンの混合紛体を製鋼工
程で発生する高炉2次灰としてなる軽量電磁遮蔽コンク
リート。
7. The electromagnetic shielding concrete according to claim 5, wherein said mixed powder of iron oxide and carbon is used as secondary ash in a blast furnace generated in a steel making process.
JP4588799A 1999-02-24 1999-02-24 Building electromagnetic shielding method Expired - Fee Related JP3564632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4588799A JP3564632B2 (en) 1999-02-24 1999-02-24 Building electromagnetic shielding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4588799A JP3564632B2 (en) 1999-02-24 1999-02-24 Building electromagnetic shielding method

Publications (2)

Publication Number Publication Date
JP2000244179A true JP2000244179A (en) 2000-09-08
JP3564632B2 JP3564632B2 (en) 2004-09-15

Family

ID=12731764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4588799A Expired - Fee Related JP3564632B2 (en) 1999-02-24 1999-02-24 Building electromagnetic shielding method

Country Status (1)

Country Link
JP (1) JP3564632B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081011A (en) * 2000-06-28 2002-03-22 Tdk Corp Electronic wave absorber for road surface, method of manufacturing it, and method of executing it
JP2002138593A (en) * 2000-11-01 2002-05-14 Kajima Corp Construction method for electromagnetic shielding wall body
KR100622567B1 (en) * 2001-03-17 2006-09-12 주식회사 인트켐 Hydraulic composition for electromagnetic wave shielding and molding manufactured therewith
KR20200057403A (en) * 2018-11-16 2020-05-26 성신양회 주식회사 Concrete composition for electromagnetic wave shielding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081011A (en) * 2000-06-28 2002-03-22 Tdk Corp Electronic wave absorber for road surface, method of manufacturing it, and method of executing it
JP2002138593A (en) * 2000-11-01 2002-05-14 Kajima Corp Construction method for electromagnetic shielding wall body
KR100622567B1 (en) * 2001-03-17 2006-09-12 주식회사 인트켐 Hydraulic composition for electromagnetic wave shielding and molding manufactured therewith
KR20200057403A (en) * 2018-11-16 2020-05-26 성신양회 주식회사 Concrete composition for electromagnetic wave shielding
KR102217333B1 (en) * 2018-11-16 2021-02-18 성신양회(주) Concrete composition for electromagnetic wave shielding

Also Published As

Publication number Publication date
JP3564632B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US20160234977A1 (en) Structural concrete mix for construction for electromagnetic wave/pulse shielding
JP3564632B2 (en) Building electromagnetic shielding method
JP3185980B2 (en) Building electromagnetic shielding method
Antonini et al. Shielding effects of reinforced concrete structures to electromagnetic fields due to GSM and UMTS systems
WO2002040799A1 (en) An electromagnetic radiation shielding material
CN116335269A (en) 3D electromagnetic wave-absorbing concrete super structure based on optimized pavement frequency directional steel fibers
Cho et al. Prediction of electromagnetic transmission properties using dielectric property modeling of foamed concrete containing BFS
CN1774113A (en) Blind zone seeking method used in radio local telephone network
JPH06209180A (en) Inner wall material for absorbing electromagnetic wave
JPH0766584A (en) Mortar or concrete lamination type radio wave absorber
Asp et al. Impact of different concrete types on radio propagation: Fundamentals and practical RF measurements
CN101386507A (en) Electromagnetic control cement mortar material and preparation method thereof
JP2002138593A (en) Construction method for electromagnetic shielding wall body
JP2001288833A (en) Electromagnetic shield slab
JP2002314287A (en) Electromagnetic shielding concrete and concrete panel
JP3916326B2 (en) Grout
JPH1112014A (en) Cement composition
JP3056858B2 (en) Radio wave absorber for TV frequency band
JP2735913B2 (en) Radio wave absorber for TV frequency band
JP4420263B2 (en) Electromagnetic shielding method
JPH09214168A (en) Radio wave absorptive wall and adjustment method of absorptive characteristic
Oda Radio wave absorptive building materials for depressing multipath indoors
JPH0447738B2 (en)
JP2000034155A (en) Concrete product, and composite concrete product using the same
Cho et al. Electromagnetic transmission characteristics of eco-friendly foamed concrete wall

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees