JP3564632B2 - Building electromagnetic shielding method - Google Patents

Building electromagnetic shielding method Download PDF

Info

Publication number
JP3564632B2
JP3564632B2 JP4588799A JP4588799A JP3564632B2 JP 3564632 B2 JP3564632 B2 JP 3564632B2 JP 4588799 A JP4588799 A JP 4588799A JP 4588799 A JP4588799 A JP 4588799A JP 3564632 B2 JP3564632 B2 JP 3564632B2
Authority
JP
Japan
Prior art keywords
electromagnetic shielding
mortar
weight
concrete
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4588799A
Other languages
Japanese (ja)
Other versions
JP2000244179A (en
Inventor
克則 山木
正省 村重
依早弥 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP4588799A priority Critical patent/JP3564632B2/en
Publication of JP2000244179A publication Critical patent/JP2000244179A/en
Application granted granted Critical
Publication of JP3564632B2 publication Critical patent/JP3564632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は建物の電磁シールド方法に関し、とくに電磁遮蔽が求められる建物の壁面や床スラブの材料、内装材として軽量の電磁遮蔽モルタル及びコンクリートを用いた建物の電磁シールド方法に関する。
【0002】
【従来の技術】
オフィスビル等において、マイクロ波やミリ波を用いた無線LANシステム(Local Area Network System)、屋内PHS(Personal Handy Phone System)の普及が進み、建物内部と外部との間または建物内部の区画相互間の電磁シールド(以下、建物の電磁遮蔽ということがある。)に対する要求が高まっている。
【0003】
例えば無線LANシステムや屋内PHSでは、通信情報の漏洩を防止するために建物の電磁遮蔽が必要とされる。また屋内でPHSを使用する場合は、使用できるチャンネル数に制限があり、異なるビル間やフロアー間での干渉やチャンネル数の不足を補うために建物の電磁遮蔽が要求される。
【0004】
さらにコンサートホール等の建物内施設では、携帯電話機の呼出音が迷惑とならないように通信電波の遮蔽が求められることがある。また電波の影響を受け易い電子機器等を設けた建物内の放送施設や医療施設では、施設内の電界強度を機器の耐性レベル以下に抑えて誤動作等を防止するために電磁遮蔽が必要とされる。なお電磁遮蔽は、マイクロ波やミリ波に限らず、テレビ電波等のVHF帯やUHF帯についても求められる。
【0005】
従来の建物の電磁遮蔽方法の一例は、建物の外壁、スラブ、仕切壁等を必要な電波減衰レベルが得られる金属板、金属箔、金属網等の導電性部材又はこれらの複合部材等(以下、電磁遮蔽部材という。)で被覆することにより、建物内部を外部から遮蔽するものである。
【0006】
【発明が解決しようとする課題】
しかし、従来の電磁遮蔽部材で建物の壁を被覆する方法は、建物の躯体打設後に電磁遮蔽部材の被覆工事を行なう必要があり、電磁遮蔽部材の施工にコストがかかり、また全体の工期が長くなる問題点がある。複数の電磁遮蔽部材の接合により被覆する場合は、接合部から電波が進入し易く、この電波の遮蔽漏れがシールド性能の劣化の原因となる問題点もある。さらに電磁遮蔽部材の重量負荷が大きくなる場合は、施工に際し建物構造上の対策が必要となることがある。施工が簡単でしかも軽量の電磁遮蔽材料の開発が望まれていた。
【0007】
そこで本発明の目的は、電波の遮蔽漏れが軽減でき且つ建物構造への重量負荷が小さくできる建物の電磁シールド方法を提供するにある。
【0008】
【課題を解決するための手段】
図1及び2の実施例を参照するに、本発明の建物の電磁シールド方法は、鉄酸化物粉体を混練すると共に該鉄酸化物粉体による比重の増加を混練前と同程度に抑える量のカーボン粉体を混練して遮蔽対象周波数の電波に対する誘電率を高めた所定厚さdの電磁遮蔽モルタル1又はコンクリート2の壁体の電波に対する透過係数Tを測定し、前記壁体の厚さdと透過係数Tと誘電率εの関係式(下記式(2)参照)へ前記測定した透過係数Tと前記所定厚さdとを代入することによりモルタル1又はコンクリート2の誘電率εを求め、前記遮蔽対象周波数の電波に対し所望の透過係数Tを与える壁及び/又はスラブの厚さdを前記関係式への前記誘電率εの代入により算出し、モルタル1又はコンクリート2を前記算出した厚さdで打設することにより遮蔽建物の壁及び/又はスラブを形成してなるものである。ここでカーボンは、鉄酸化物に対し比重が小さい無定形炭素であり、例えば比重が1.3〜1.5程度のものである。
【0009】
好ましくは、本発明で用いる電磁遮蔽モルタル1を、セメント5に対して50〜300重量%の鉄酸化物4及びカーボン8と、30〜70重量%の水6とを混練したものとする。一般にモルタルとは砂等の細骨材とセメントと水とを練混ぜたものであるが(「建築用語辞典(第二版)」(1995−4−10)技報堂、「セメントモルタル」の項)、本発明では鉄酸化物4及びカーボン8を細骨材として用いることができる。ただし必要に応じて、本発明で用いる電磁遮蔽モルタル1に、セメントに対し100重量%以下で柔軟性を与えるに足る量の砂等の細骨材を混練してもよい。
【0010】
また好ましくは、本発明で用いる電磁遮蔽コンクリート2を、セメント5に対して50〜500重量%の鉄酸化物4及びカーボン8と、30〜500重量%の細骨材及び粗骨材7と、30〜70重量%の水6とを混練したものとする。
【0011】
鉄酸化物4及びカーボン8の混合粉体9を、例えば製鉄工程で発生するダスト(以下、製鉄ダストという。)の一種である高炉2次灰、高炉集塵ダスト、高炉1次灰等とすることができる。製鉄ダストとは、製鉄所の各作業施設から発生する煤塵、粉塵を乾式又は湿式集塵機にて捕集した環境集塵ダストであり、発生する施設別に成分の特性・性状が異なり、施設別に固有の名称がある。高炉内で鉄鉱石等を還元したガスは含塵ガス(高炉ガス)として排出され、高炉2次灰とは高炉ガス清浄時に捕集した粉塵で、乾式、湿式集塵されたダストである。ただし本発明の鉄酸化物4及びカーボン8は高炉2次灰等に限定されない。
【0012】
【発明の実施の形態】
図1(A)に示すように、鉄酸化物4及びカーボン8の混合粉体9として高炉2次灰を用い、その混合粉体9と普通ポルトランドセメント5と水6とを重量比1:1:0.5の割合で、普通モルタルと同様の方法により混練して本発明で用いる電磁遮蔽モルタル1とし、その電磁遮蔽モルタル1で図1(C)に示すような厚さd=30mmのパネル材16を製造して遮蔽性能(電磁波減衰量)及び比重を確認する実験を行なった。また比較のため、砂と普通ポルトランドセメント5と水6とを重量比1:1:0.5の割合で混練した普通モルタル(以下、比較モルタルという。)によりパネル材16を製造し、その遮蔽性能及び比重を確認した。
【0013】
実験に用いた高炉2次灰は、35重量%のFe、25重量%のカーボンを含むものであった。ただし本発明で用いる電磁遮蔽モルタル1中に混練する鉄酸化物はFeに限定されず、FeO等の他の鉄酸化物とすることができる。また鉄酸化物に対するカーボンの割合も、この例に限定されない。電磁遮蔽モルタル1に用いるセメントは、普通ポルトランドセメント以外の適当なセメントとすることができる。
【0014】
実験では、打設から50日経過した後のパネル材16を使用した。その理由は、打設後1ヶ月程度の間はモルタルの透過係数Tが急激に増大し、安定しないからである。この期間はモルタル1内の水和反応が大きく進行するので、モルタル1内の含水率の減少が透過係数増大の主要な原因と考えられる。本発明者は、モルタルの含水率の増加により透過係数Tが大きく減少することを実験的に確認した。
【0015】
パネル材16の遮蔽性能の測定装置は、図4に示すように、ベクトルネットワークアナライザ(VNA)24と電波発信器25及び受信器(ホーンアンテナ)26とを用いた。発信器25及び受信器26を隔壁22で仕切られたシールドルーム20a、20bにそれぞれ隔壁22の所定位置と対向させて配置し、その隔壁22の所定位置に設けた孔に電磁遮蔽モルタル1又は比較モルタルのパネル材16を嵌め込み、パネル材16と隔壁22との間を電波が漏れないように密着させて固定した。シールドルーム20a、20bの内面と隔壁22の両面とを電波吸収部材で被覆することにより、外部からの進入電波やシールドルーム内面での反射電波が受信器26で受信されるのを防止した。
【0016】
電波周波数として800MHz〜4.2GHz帯域を使用し、送信器25からパネル材16の面に対して垂直となるように電波を送出し、パネル材16を透過した電波を受信器26で受信し、アナライザー24で透過電波の振幅を測定した。また隔壁22の孔からパネル材16を取り外し、孔の空隙を介して受信した電波の振幅を測定し、パネル材16の透過電波の振幅との比からパネル材16の遮蔽性能(電磁波減衰量)を求めた。実験結果を図5にグラフとして示す。なお遮蔽性能と透過係数Tとの関係は下記(1)式で表すことができるので、パネル材16の透過係数Tを遮蔽性能の値に基づき算出することができる。
【0017】
【数1】
遮蔽性能=−20・log(透過係数T)………………………………(1)
【0018】
図5の高炉2次灰のグラフから分かるように、厚さ30mmとした高炉2次灰混練モルタル1のパネル材16により、1GHz帯で約15dB、2GHz帯で約20dB、3GHz帯で約25dBの遮蔽性能を得ることができた。また図5の比較モルタルのグラフと高炉2次灰のグラフとの比較から分かるように、高炉2次灰混練モルタル1のパネル材16は、比較モルタルのパネル材16に比し、1GHz帯で約6dB、2GHz帯で約10dB、3GHz帯で約15dB大きい遮蔽性能を得ることができた。
【0019】
本発明で用いる電磁遮蔽モルタル1が比較モルタルより大きな遮蔽性能を有する理由は、以下のように考えられる。すなわち図3に示すように、比較モルタルにおける電波の遮蔽はモルタル表面での反射損失とモルタル通過時の吸収損失(図3の▲1▼)のみであるのに対し、電磁遮蔽モルタル1では更に、セメントにより固化された鉄酸化物による反射・回折による損失(図3の▲2▼)、及び鉄酸化物及びカーボンによる吸収及び反射損失(図3の▲3▼)の複合的作用により電波を遮蔽するからである。
【0020】
また前記組成の高炉2次灰に代えて、製鉄ダストの一種である高炉集塵ダストと普通ポルトランドセメント5と水6とを重量比1:1:0.5の割合で混練したモルタルを用い、上記と同様にして遮蔽性能の確認実験を行なった。高炉集塵ダストとは、出銑およびスラグ排出作業に伴う発煙及び発塵の防止・高熱作業雰囲気の改善のために、出銑口部から樋先端及び落し口に至る樋および開口部に設けたカバーとフード、その間の主な発塵・発煙個所に設置したエアカーテンから、ダクトを介して集塵されたダストである。実験に用いた高炉集塵ダストの組成は、40重量%のFe、0.5重量%のSiO、0.4重量%のAl、及び0.6重量%のMgOを含み、カーボンを含まないものである。この実験結果を図5に併せて示す。
【0021】
図5の高炉集塵ダストのグラフから分かるように、高炉集塵ダスト混練モルタル1のパネル材16の遮蔽性能は、1GHz帯で約20dB、2GHz帯で約27dB、3GHz帯で約35dBであり、高炉2次灰混練モルタル1のパネル材16に比し大きな遮蔽性能を示す。この遮蔽性能の相違は、高炉2次灰中の金属酸化物量に比し、高炉集塵ダスト中の金属酸化物量が多いことが主要な原因であると考えられる。
【0022】
次に、実験に用いた電磁遮蔽モルタル1及び比較モルタルのパネル材16の強度及び比重を計測した。高炉集塵ダスト混練モルタル1のパネル材16の強度及び比重も併せて計測した。計測結果を下記表1に示す。表1から分かるように、金属酸化物のみを含む高炉集塵ダスト混練のモルタルでは比較モルタルに比し比重が大きくなるのに対し、35重量%のFeと25重量%のカーボンを含む高炉2次灰混練モルタル1では、強度を比較モルタルと同程度に維持しつつ、比重を比較モルタルと同等またはそれ以下とすることができる。
【0023】
【表1】

Figure 0003564632
【0024】
すなわち上記実験から、鉄酸化物4及びカーボン8のモルタル材料5、6に対する混練量を調節することにより、電磁遮蔽モルタル1の特定周波数に対する遮蔽性能すなわち透過係数Tを調整することができ、しかも電磁遮蔽モルタルの比重を比較モルタルと同等またはそれ以下とすることができることが確認できた。本発明者は、更なる実験の結果、モルタル材料5、6に対する鉄酸化物4及びカーボン8の混練量の調節とパネル材16の厚さdの調節とにより、特定周波数に対して所定レベルTの透過係数を与える電磁遮蔽モルタル1のパネル材16が製造できることを確認した。また、鉄酸化物4とカーボン8との混練量の割合の調節により、電磁遮蔽モルタル1のパネル材16の比重が調整可能であり、そのパネル材16の比重をモルタル材料5、6の固化時の比重以下にできることを確認した。
【0025】
以上、電磁遮蔽モルタル1の比重及び透過係数について説明したが、電磁遮蔽コンクリート2の比重及び透過係数についても、混合粉体9中の鉄酸化物4とカーボン8との割合の調整、及びコンクリート2中の混合粉体9の混練量とパネル材16の厚さdとの調節により、モルタル1の場合と同様に調整することができる。ただし電磁遮蔽コンクリート2の場合は、骨材の混練量が増えるに応じて遮蔽性能が減少するので、同一組成の混合粉体9を用いた同一厚さのパネル材16によりモルタル1と同様の遮蔽性能を得るためには、モルタル1の場合に比し混合粉体9の混練量を増やす必要がある。
【0026】
図2に示すように、現場で打設する壁 11 又はスラブ 13 の透過レベルT が打設前に決められている場合は、電磁遮蔽モルタル1又はコンクリート2中の鉄酸化物4及びカーボン8の混練量を定めると共に、壁 11 又はスラブ 13 の打設厚さdの設計が必要となる。本発明者は、打設厚さdの設計のために、電磁遮蔽モルタル1又はコンクリート2の複素誘電率ε=ε ε (以下、単に誘電率εということがある。)が利用できることを見出した。誘電率εによれば、電磁遮蔽モルタル1又はコンクリート2自体の単位厚さ当りの遮蔽性能を定めることができる。
【0027】
すなわち一般的に、一様の誘電率εを有する厚さdの層(一層モデル)の透過 係数Tは次式 (2) で表すことができる( IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION VOL.44 NO.1 JANUARY 1996 pp.35−36 ”Measurement of the Complex Refractive Index of Concrete at 57.5 GHz” )。ここで、δ=( π /λ)(ε− sin θ) 1/2 π/λである。またλは遮蔽対象電波の波長、θは遮蔽対象電波の入射角を示す。式 (2) R’ には、遮蔽対象電波の偏波により、下記式 (3) R’s または下記式 (4) R’p を代入する。
【0028】
例えば、図5の実験で用いた厚さdのパネル材 16 について考えると、電磁遮蔽モルタル1又はコンクリート2の誘電率εは、パネル材 16 の厚さdと遮蔽対象電波の波長λと入射角θ(図5では垂直)とに基づき、透過係数Tの実測値と式 (2) との分散が最小となるように推定することができる(以下、説明簡単化のため、式 (2) への透過係数Tと厚さdとの代入ということがある。)。同図の高炉2次灰混練モルタル1の実測値からは、1 GHz では誘電率ε= 17 j7 、3 GHz ではε= 17 j15 、5 GHz ではε= 17 j23 であると推定できる。これに対し同図の比較モルタルの実測値からは、1〜5 GHz の周波数帯において誘電率ε= j1 であると推定できる。この誘電率εの実数部ε 及び虚数部ε の大きさの相違が、モルタル1又はコンクリート2自体の遮蔽性能の相違に対応する。
【0029】
【数2】
Figure 0003564632
【0030】
従って、例えば図5の高炉2次灰混練モルタル1を用い、3 GHz 帯に対して所 定レベルT の透過係数を与える建物 10 の壁又はスラブを打設する場合は、モルタル1の3 GHz 帯に対する誘電率ε= 17 j15 と所定レベルT とから、式 (2) に基づいて打設すべき壁又はスラブの厚さdを算出することができる。
【0031】
本発明は、軽量の電磁遮蔽モルタル1又はコンクリート2を用いて被遮蔽建物の壁及び/又はスラブを形成するので、建物の躯体自体に電磁遮蔽機能を持たせることができ、躯体とは別に電磁遮蔽部材を設ける必要がないので、電磁遮蔽部材の施工期間の短縮が図れる。また従来の電磁遮蔽部材の補強材として、建物の外壁部分、床や天井部分に本発明の電磁遮蔽モルタル1又はコンクリート2を打設することにより、従来問題となっていた電磁遮蔽部材の継目からの電波の漏れを軽減することができる。しかも本発明で用いる電磁遮蔽モルタル1又はコンクリート2は、比重を普通モルタル又はコンクリートと同程度またはそれ以下とすることができるので、建物構造への負担の増大を抑えることができる。
【0032】
こうして本発明の目的である「電波の遮蔽漏れが軽減でき且つ建物構造への重量負荷が小さくできる建物の電磁シールド方法」の提供が達成できる。
【0033】
高炉2次灰等の製鉄ダストは、製鉄プラントの製鉄工程の副産物として大量に産出されるので、安価である。従って高炉2次灰等を用いて電磁遮蔽モルタル1又はコンクリート2とすれば、電磁遮蔽コストの低減が図れる。ただし、高炉2次灰等に限らず、鉄酸化物4とカーボン9とを適当な割合で含む混合粉体9を用いることにより、特定周波数に対して所定レベルTの透過係数を有し且つ比重が小さい電磁遮蔽モルタル1又はコンクリート2とすることができる。
【0034】
【実施例】
図1(B)及び図2は、作業現場において、鉄筋建物10に設けた型枠(図示せず)内に本発明の電磁遮蔽モルタル1又はコンクリート2を打設し、建物10の壁11及び/又はスラブ13を構築する本発明の実施例を示す。図1(B)の符号14はコンクリートミキサー、図2の符号12はデッキプレートを示す。このように作業現場で打設する場合は、モルタル1又はコンクリート2中の混合粉体9の混練量と打設厚さdとの調節により、壁11又はスラブ13に所要の透過レベルTを付与することができる。
【0035】
また本発明者は、電磁遮蔽モルタル1又はコンクリート2の誘電率εと遮蔽性能との比較検討から、大きな遮蔽性能を得るためには誘電率εの虚数部εを大きくすることが効果的であることを見出した。下記表2は、厚さd=20cm、遮蔽対象電波の入射角θ=0度(垂直入射)と仮定した場合に、周波数f=1.2GHz及び2.4GHzの2種類の遮蔽対象電波に対する誘電率εと遮蔽性能との関係の計算結果を示す。なお図5に示すように、周波数f=1.2GHz及び2.4GHzに対する比較モルタルの遮蔽性能は、それぞれ6dB及び10dBである。
【0036】
【表2】
Figure 0003564632
【0037】
表2の第6〜9欄の比較から分かるように、誘電率εの実数部εを大きくしても遮蔽性能は必ずしも大きくなるとは限らない。これに対し表1の第1〜4欄に示すように、誘電率εの虚数部εを大きくすることにより遮蔽性能を大きくし、透過係数Tを小さくすることができる。このことから、電磁遮蔽モルタル1又はコンクリート2中の鉄酸化物4及びカーボン9の混練量を、比較モルタル又はコンクリートと同程度またはそれ以下の比重が得られる条件の下で、モルタル1又はコンクリート2の誘電率εの虚数部εが大きくなるように選択することが好ましい。
【0038】
以上説明したように、遮蔽対象電波に対し大きな誘電率εを与える量の鉄酸化物4とカーボン8とが混練された電磁遮蔽モルタル1又はコンクリート2を用い、所定透過レベルTを与える厚さdで打設することにより、例えば図2の建物10の壁11及びスラブ13自体に必要な電磁遮蔽機能を持たせることができる。
【0039】
また図1(C)に示すように、電磁遮蔽モルタル1又はコンクリート2により所定透過レベルTで厚さdの電磁遮蔽パネル材16を形成し、そのパネル材16を用いて建物10の外壁11、スラブ13及び仕切壁に必要な電磁遮蔽機能を持たせることもできる。なお電磁遮蔽モルタル1又はコンクリート2と他の建材とを層状に組み合わせたパネル材を用いる場合は、式(2)に示す一層モデルに代えて、多層誘電体モデルを用いてそのパネル材の透過係数を求めることが可能である。
【0040】
更に、例えば壁やスラブの遮蔽性能が不足する場合には、その壁11やスラブ13上の内装材として、電磁遮蔽モルタル1又はコンクリート2を所定透過レベルTが得られる厚さdで塗布することにより、壁やスラブの遮蔽機能を補強することも可能である。
【0041】
なお、本発明で用いる電磁遮蔽モルタル1又はコンクリート2は黒褐色ないし茶褐色を呈し、意匠的な配色からみても従来の普通モルタル又はコンクリートに劣るものではない。本発明で用いる電磁遮蔽モルタル1又はコンクリート2を護岸用コンクリート、又は意匠ブロックとして用いることも可能である。
【0042】
【発明の効果】
以上詳細に説明したように、本発明の建物の電磁遮蔽方法は、鉄酸化物とカーボンとを混練した電磁遮蔽モルタル又はコンクリートの遮蔽対象電波に対する誘 電率を求め、遮蔽対象電波に対し所望の透過係数を与える壁及び/又はスラブの厚さを前記誘電率に基づき定め、電磁遮蔽モルタル又はコンクリートを前記定めた厚さで打設することにより遮蔽建物の壁又はスラブを形成するので、次の顕著な効果を奏する。
【0043】
(イ)鉄酸化物とカーボンの混練量の調整により、モルタル又はコンクリートに必要な透過レベルを与えることができる。
(ロ)建物の躯体自体に電磁遮蔽機能を持たせることができるので、躯体とは別に電磁遮蔽部材を施工する手間を省き、施工期間の短縮が図れる。
(ハ)従来問題となっていた電磁遮蔽部材の継目からの電波の漏れが軽減でき、遮蔽機能の劣化のおそれが小さい。
(ニ)従来のモルタル又はコンクリートと同程度の比重とし得るので、電磁遮蔽の際に建物構造に与える負荷の増大を抑えることができる。
(ホ)製鉄ダストの利用により製造コストの低減を図ることができ、また製鉄ダストのリサイクルに貢献できる。
【図面の簡単な説明】
【図1】は、本発明の一実施例の説明図である。
【図2】は、鉄筋建物の壁及びスラブの説明図である。
【図3】は、本発明による電磁遮蔽の原理を示す説明図である。
【図4】は、電磁遮蔽性能の測定装置の説明図である。
【図5】は、本発明のモルタルによる電磁遮蔽性能を示すグラフである。
【符号の説明】
1…電磁遮蔽モルタル 2…電磁遮蔽コンクリート
4…鉄酸化物 5…セメント
6…水 7…骨材
8…カーボン 9…混合粉体
10…鉄筋建物 11…建物外壁
12…デッキプレート 13…スラブ
14…コンクリートミキサー 16…電磁遮蔽パネル材
20…シールドルーム 21…電波吸収部材
22…隔壁 24…ネットワークアナライザー
25…送信器 26…受信器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic shielding method for a building, and more particularly to an electromagnetic shielding method for a building using light-weight electromagnetic shielding mortar and concrete as interior materials, materials for walls and floor slabs of the building where electromagnetic shielding is required.
[0002]
[Prior art]
In office buildings and the like, wireless LAN systems (Local Area Network System) using microwaves and millimeter waves, and indoor PHSs (Personal Handy Phone Systems) have become widespread, and between buildings and outside or between buildings. There is an increasing demand for an electromagnetic shield (hereinafter, sometimes referred to as an electromagnetic shield of a building).
[0003]
For example, in a wireless LAN system or an indoor PHS, electromagnetic shielding of a building is required to prevent leakage of communication information. In the case of using a PHS indoors, the number of usable channels is limited, and electromagnetic shielding of a building is required to compensate for interference between different buildings or floors and shortage of the number of channels.
[0004]
In addition, in a facility in a building such as a concert hall, it may be required to shield communication radio waves so that the ringing sound of the mobile phone does not bother. Also, in broadcasting facilities and medical facilities in buildings equipped with electronic devices that are easily affected by radio waves, electromagnetic shielding is required to prevent malfunctions by suppressing the electric field intensity in the facilities below the tolerance level of the equipment. You. The electromagnetic shielding is not limited to microwaves and millimeter waves, but is also required for VHF bands and UHF bands of television radio waves and the like.
[0005]
An example of a conventional electromagnetic shielding method for a building is a conductive member such as a metal plate, a metal foil, a metal net, or a composite member thereof (hereinafter, referred to as a metal plate, a metal foil, a metal net, or the like) capable of obtaining a required radio wave attenuation level on an outer wall, a slab, a partition wall, and the like of the building. , An electromagnetic shielding member) to shield the inside of the building from the outside.
[0006]
[Problems to be solved by the invention]
However, the conventional method of covering the walls of a building with an electromagnetic shielding member requires that the electromagnetic shielding member be covered after the building of the building is cast, and the construction of the electromagnetic shielding member is costly, and the overall construction period is short. There is a problem that becomes longer. In the case of covering by joining a plurality of electromagnetic shielding members, radio waves are likely to enter from the joint, and there is also a problem that shielding leakage of the radio waves causes deterioration of shielding performance. Further, when the weight load of the electromagnetic shielding member increases, it may be necessary to take measures for the building structure at the time of construction. There has been a demand for the development of a lightweight electromagnetic shielding material that is easy to carry out.
[0007]
Therefore, an object of the present invention is to provide an electromagnetic shielding method for a building, which can reduce the shielding leakage of radio waves and reduce the weight load on the building structure .
[0008]
[Means for Solving the Problems]
Referring to the embodiment of FIGS. 1 and 2, the electromagnetic shielding method for a building according to the present invention is a method for kneading iron oxide powder and suppressing an increase in specific gravity due to the iron oxide powder to the same level as before kneading . carbon powder by kneading to measure the transmission coefficient T for the radio waves of the electromagnetic shielding mortar 1 or concrete second wall having a predetermined thickness d with increased dielectric constant for the electromagnetic wave shielding target frequency, the thickness of the wall By substituting the measured transmission coefficient T and the predetermined thickness d into a relational expression (see the following equation (2)) between the d, the transmission coefficient T, and the dielectric constant ε, the dielectric constant ε of the mortar 1 or the concrete 2 is obtained. The thickness d of a wall and / or a slab that gives a desired transmission coefficient T to the radio wave of the shielding target frequency is calculated by substituting the dielectric constant ε into the relational expression, and the mortar 1 or the concrete 2 is calculated. With a thickness d Ri is made by forming a wall and / or slabs shielding building. Here, carbon is amorphous carbon having a specific gravity smaller than that of iron oxide, and for example, a carbon having a specific gravity of about 1.3 to 1.5.
[0009]
Preferably, the electromagnetic shielding mortar 1 used in the present invention, the iron oxide 4 and carbon 8 of 50 to 300% by weight relative to the cement 5, it is assumed that by kneading the water 6 of 30 to 70 wt%. Generally, mortar is a mixture of fine aggregate such as sand, cement, and water ("Architectural Term Dictionary (Second Edition)" (1995-4-10) Gihodo, "Cement Mortar"). In the present invention, iron oxide 4 and carbon 8 can be used as fine aggregate. However, if necessary, the electromagnetic shielding mortar 1 used in the present invention may be kneaded with fine aggregate such as sand in an amount sufficient to give flexibility to the cement at 100% by weight or less.
[0010]
Also preferably, the electromagnetic shielding concrete 2 used in the present invention is obtained by mixing 50 to 500% by weight of iron oxide 4 and carbon 8 with cement 5 and 30 to 500% by weight of fine aggregate and coarse aggregate 7 with respect to cement 5; 30 to 70% by weight of water 6 and those kneaded.
[0011]
The mixed powder 9 of the iron oxide 4 and the carbon 8 is, for example, a blast furnace secondary ash, a blast furnace dust collected dust, a blast furnace primary ash, or the like, which is a kind of dust generated in the iron making process (hereinafter referred to as iron making dust). be able to. Steelmaking dust is environmental dust that is collected by a dry or wet dust collector from dust and dust generated from each worksite of a steelworks.The characteristics and properties of components differ depending on the facility where the dust is generated. There is a name. The gas obtained by reducing iron ore and the like in the blast furnace is discharged as dust-containing gas (blast furnace gas), and the blast furnace secondary ash is dust collected during blast furnace gas cleaning, and is dry and wet dust collected. However, the iron oxide 4 and the carbon 8 of the present invention are not limited to blast furnace secondary ash and the like.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1A, blast furnace secondary ash was used as mixed powder 9 of iron oxide 4 and carbon 8, and the mixed powder 9, ordinary Portland cement 5 and water 6 were mixed at a weight ratio of 1: 1. : Kneading at a ratio of 0.5 by the same method as that of ordinary mortar to obtain an electromagnetic shielding mortar 1 used in the present invention, and a panel having a thickness d = 30 mm as shown in FIG. An experiment was conducted to produce the material 16 and confirm the shielding performance (electromagnetic wave attenuation) and the specific gravity. Further, for comparison, a panel material 16 was manufactured by a normal mortar (hereinafter, referred to as a comparative mortar) in which sand, normal Portland cement 5 and water 6 were kneaded at a weight ratio of 1: 1: 0.5, and the shielding thereof was performed. The performance and specific gravity were confirmed.
[0013]
The blast furnace secondary ash used in the experiment contained 35% by weight of Fe 2 O 3 and 25% by weight of carbon. However, the iron oxide kneaded in the electromagnetic shielding mortar 1 used in the present invention is not limited to Fe 2 O 3 , and may be another iron oxide such as FeO. Also, the ratio of carbon to iron oxide is not limited to this example. The cement used for the electromagnetic shielding mortar 1 can be any suitable cement other than ordinary Portland cement.
[0014]
In the experiment, the panel material 16 after 50 days had passed since the casting was used. The reason is that the permeability coefficient T of the mortar increases rapidly for about one month after the casting and is not stable. During this period, the hydration reaction in the mortar 1 progresses greatly, and it is considered that the decrease in the water content in the mortar 1 is the main cause of the increase in the permeability coefficient. The present inventor has experimentally confirmed that the permeability coefficient T is greatly reduced by increasing the water content of the mortar.
[0015]
As shown in FIG. 4, a device for measuring the shielding performance of the panel material 16 used a vector network analyzer (VNA) 24, a radio transmitter 25 and a receiver (horn antenna) 26. The transmitter 25 and the receiver 26 are arranged in the shield rooms 20a and 20b separated by the partition wall 22 so as to be opposed to predetermined positions of the partition wall 22, respectively. The mortar panel member 16 was fitted, and the mortar panel member 16 and the partition wall 22 were fixed in close contact with each other so that radio waves did not leak. By covering the inner surfaces of the shield rooms 20a and 20b and both surfaces of the partition wall 22 with a radio wave absorbing member, it is possible to prevent a radio wave entering from outside or a radio wave reflected by the inner surface of the shield room from being received by the receiver 26.
[0016]
Using a frequency band of 800 MHz to 4.2 GHz as a radio frequency, a radio wave is transmitted from the transmitter 25 so as to be perpendicular to the surface of the panel material 16, and a radio wave transmitted through the panel material 16 is received by the receiver 26. The amplitude of the transmitted radio wave was measured by the analyzer 24. Also, the panel member 16 is removed from the hole of the partition wall 22, the amplitude of the radio wave received through the hole of the hole is measured, and the shielding performance (electromagnetic wave attenuation) of the panel member 16 is determined from the ratio to the amplitude of the transmitted radio wave of the panel member 16. I asked. The experimental results are shown as a graph in FIG. Since the relationship between the shielding performance and the transmission coefficient T can be expressed by the following equation (1), the transmission coefficient T of the panel member 16 can be calculated based on the value of the shielding performance.
[0017]
(Equation 1)
Shielding performance = −20 · log (transmission coefficient T) (1)
[0018]
As can be seen from the graph of the blast furnace secondary ash in FIG. 5, the panel material 16 of the blast furnace secondary ash kneading mortar 1 having a thickness of 30 mm has a thickness of about 15 dB in the 1 GHz band, about 20 dB in the 2 GHz band, and about 25 dB in the 3 GHz band. The shielding performance was obtained. Further, as can be seen from the comparison between the graph of the comparative mortar and the graph of the secondary ash of the blast furnace in FIG. 5, the panel material 16 of the blast furnace secondary ash kneading mortar 1 is about 1 GHz band in comparison with the panel material 16 of the comparative mortar. A shielding performance of about 10 dB in the 6 dB and 2 GHz bands and about 15 dB in the 3 GHz band could be obtained.
[0019]
The reason why the electromagnetic shielding mortar 1 used in the present invention has a higher shielding performance than the comparative mortar is considered as follows. That is, as shown in FIG. 3, while the radio wave shield in comparison mortar only absorption loss at the time of reflection loss and mortar passage of mortar surface (the ▲ 1 ▼ 3), further the electromagnetic shielding mortar 1, Radio waves are shielded by the combined effect of the reflection and diffraction loss (2 in Fig. 3) due to the iron oxide solidified by the cement, and the absorption and reflection loss (3 in Fig. 3) due to the iron oxide and carbon. Because you do.
[0020]
Further, instead of the blast furnace secondary ash having the above composition, using a mortar obtained by kneading blast furnace dust collected as a kind of ironmaking dust, ordinary Portland cement 5 and water 6 at a weight ratio of 1: 1: 0.5, An experiment for confirming the shielding performance was performed in the same manner as described above. Blast furnace dust is provided in the gutters and openings from the taphole to the gutter tip and drop to prevent the generation of smoke and dust and improve the hot work atmosphere associated with tapping and slag discharge work. Dust collected via a duct from the cover and hood, and air curtains installed at the main places of dust and smoke. The composition of the blast furnace dust used in the experiment was as follows: 40% by weight of Fe 2 O 3 , 0.5% by weight of SiO 2 , 0.4% by weight of Al 2 O 3 , and 0.6% by weight of MgO. It does not contain carbon. The results of this experiment are also shown in FIG.
[0021]
As can be seen from the graph of the blast furnace dust collection dust in FIG. 5, the shielding performance of the panel material 16 of the blast furnace dust collection kneading mortar 1 is about 20 dB in the 1 GHz band, about 27 dB in the 2 GHz band, and about 35 dB in the 3 GHz band. The blast furnace secondary ash kneading mortar 1 has a greater shielding performance than the panel material 16. It is considered that this difference in the shielding performance is mainly due to the fact that the amount of metal oxide in the blast furnace dust is greater than the amount of metal oxide in the secondary ash of the blast furnace.
[0022]
Next, the strength and specific gravity of the panel material 16 of the electromagnetic shielding mortar 1 and the comparative mortar used in the experiment were measured. The strength and specific gravity of the panel material 16 of the blast furnace dust-mixed mortar 1 were also measured. The measurement results are shown in Table 1 below. As can be seen from Table 1, while the mortar containing blast furnace dust containing only metal oxides has a higher specific gravity than the comparative mortar, it contains 35% by weight of Fe 2 O 3 and 25% by weight of carbon. In the blast furnace secondary ash kneading mortar 1, the specific gravity can be made equal to or less than the comparative mortar while maintaining the strength at the same level as the comparative mortar.
[0023]
[Table 1]
Figure 0003564632
[0024]
That is, from the above experiments, by adjusting the kneading amount for the mortar material 5,6 of iron oxide 4 and carbon 8, it is possible to adjust the shield performance i.e. transmission coefficient T for a particular frequency of the electromagnetic shielding mortar 1, moreover electromagnetic It was confirmed that the specific gravity of the shielding mortar can be equal to or less than that of the comparative mortar. As a result of further experiments, the present inventor has found that by adjusting the kneading amount of the iron oxide 4 and the carbon 8 with respect to the mortar materials 5 and 6 and the thickness d of the panel member 16, a predetermined level T for a specific frequency is obtained. It was confirmed that the panel material 16 of the electromagnetic shielding mortar 1 giving a transmission coefficient of 0 can be manufactured. Further, the specific gravity of the panel material 16 of the electromagnetic shielding mortar 1 can be adjusted by adjusting the ratio of the kneading amount of the iron oxide 4 and the carbon 8, and the specific gravity of the panel material 16 can be adjusted when the mortar materials 5 and 6 are solidified. It was confirmed that the specific gravity could be reduced to below.
[0025]
Although the specific gravity and the permeability coefficient of the electromagnetic shielding mortar 1 have been described above, the specific gravity and the permeability coefficient of the electromagnetic shielding concrete 2 are also adjusted by adjusting the ratio of the iron oxide 4 to the carbon 8 in the mixed powder 9 and the concrete 2 By adjusting the kneading amount of the mixed powder 9 and the thickness d of the panel material 16, the adjustment can be performed in the same manner as in the case of the mortar 1. However, in the case of the electromagnetic shielding concrete 2, since the shielding performance decreases as the amount of aggregate mixed increases, the same shielding as the mortar 1 by the panel material 16 of the same thickness using the mixed powder 9 of the same composition. In order to obtain the performance, it is necessary to increase the kneading amount of the mixed powder 9 as compared with the case of the mortar 1.
[0026]
As shown in FIG. 2, when the transmission level T 0 of the wall 11 or the slab 13 to be cast on site is determined before the casting, the iron oxide 4 and the carbon 8 in the electromagnetic shielding mortar 1 or the concrete 2 are used. And the design of the casting thickness d of the wall 11 or the slab 13 are required. The inventor uses the complex permittivity ε = ε r j ε i (hereinafter, sometimes simply referred to as permittivity ε) of the electromagnetic shielding mortar 1 or concrete 2 for designing the casting thickness d . I found what I can do. According to the dielectric constant ε, the shielding performance per unit thickness of the electromagnetic shielding mortar 1 or the concrete 2 itself can be determined.
[0027]
That is, in general, the transmission coefficient T of a layer having a thickness d (single-layer model) having a uniform dielectric constant ε can be expressed by the following equation (2) ( IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION , VOL.44 , NO: .1, JANUARY 1996, pp.35-36, " Measurement of the Complex Refractive Index of Concrete at 57.5 GHz"). Here, a δ = (2 π d / λ ) (ε- sin 2 θ) 1/2, k 0 = 2 π / λ. Λ indicates the wavelength of the radio wave to be shielded, and θ indicates the incident angle of the radio wave to be shielded. The R 'of formula (2), the polarization of the shielding target radio substitutes R'p of R's or the following formula (4) of the following formula (3).
[0028]
For example, considering the panel material 16 having the thickness d used in the experiment of FIG. 5, the dielectric constant ε of the electromagnetic shielding mortar 1 or the concrete 2 is determined by the thickness d of the panel material 16 , the wavelength λ of the radio wave to be shielded, and the incident angle. Based on θ (vertical in FIG. 5), it can be estimated that the variance between the measured value of the transmission coefficient T and the equation (2) is minimized (hereinafter, to simplify the explanation, the equation (2) is used ) . Of the transmission coefficient T and the thickness d. From the measured values of the blast furnace 2 Tsugihai kneading mortar 1 of the drawing, 1, GHz permittivity epsilon = 17 - j7, the 3 GHz ε = 17 - j15, the 5 GHz epsilon = 17 - can be estimated to be J23. On the other hand, from the measured values of the comparative mortar in the same figure, it can be estimated that the dielectric constant ε = 8 j1 in the frequency band of 1 to 5 GHz . The size difference of the real part epsilon r and the imaginary part epsilon i permittivity epsilon corresponds to the difference in shielding performance of mortars 1 or concrete 2 itself.
[0029]
(Equation 2)
Figure 0003564632
[0030]
Thus, for example, using a blast furnace 2 Tsugihai kneading mortar 1 in FIG. 5, 3 To pouring a wall or slab of a building 10 to be given to GHz band permeability coefficient of Jo Tokoro level T 0 is, 3 GHz mortar 1 dielectric constant for the strip epsilon = 17 - from j15 and the predetermined level T 0 Prefecture, it is possible to calculate the thickness d of the wall or slab to be pouring based on the equation (2).
[0031]
In the present invention , since the walls and / or slabs of the building to be shielded are formed using the lightweight electromagnetic shielding mortar 1 or concrete 2 , the building body itself can have an electromagnetic shielding function. Since there is no need to provide a shielding member, the construction period of the electromagnetic shielding member can be shortened. Also, as a reinforcing material for a conventional electromagnetic shielding member, the electromagnetic shielding mortar 1 or concrete 2 of the present invention is cast on the outer wall portion, floor, or ceiling portion of a building, so that the conventional electromagnetic shielding member has a problem from a seam. Leakage of radio waves can be reduced. Moreover, since the specific gravity of the electromagnetic shielding mortar 1 or concrete 2 used in the present invention can be made equal to or less than that of ordinary mortar or concrete, an increase in the burden on the building structure can be suppressed.
[0032]
Thus, the object of the present invention, that is, the " electromagnetic shielding method for buildings capable of reducing leakage of radio wave shielding and reducing the weight load on the building structure " can be achieved.
[0033]
Ironmaking dust such as blast furnace secondary ash is inexpensive because it is produced in large quantities as a by-product of the ironmaking process of an ironmaking plant. Therefore, if the electromagnetic shielding mortar 1 or the concrete 2 is formed using blast furnace secondary ash or the like, the electromagnetic shielding cost can be reduced. However, not only the blast furnace secondary ash, etc., by using a mixed powder 9 containing iron oxide 4 and the carbon 9 in an appropriate ratio, and has a transmission coefficient of the predetermined level T 0 for a particular frequency The electromagnetic shielding mortar 1 or concrete 2 having a small specific gravity can be used.
[0034]
【Example】
1B and 2 show that the electromagnetic shielding mortar 1 or concrete 2 of the present invention is cast into a formwork (not shown) provided in a reinforced building 10 at a work site, and the walls 11 and 1 shows an embodiment of the invention for constructing a slab 13; Reference numeral 14 in FIG. 1B indicates a concrete mixer, and reference numeral 12 in FIG. 2 indicates a deck plate. If you pouring in this way work site, by adjusting the kneading amount and droplet設厚d of mixed powder 9 of the mortar 1 or concrete 2, a required transmission level T 0 to a wall 11 or slab 13 Can be granted.
[0035]
Further, the present inventor has compared the dielectric constant ε of the electromagnetic shielding mortar 1 or the concrete 2 with the shielding performance and found that it is effective to increase the imaginary part ε i of the dielectric constant ε in order to obtain a large shielding performance. I found something. Table 2 below shows that dielectric constants for two types of shielding target radio waves having frequencies f = 1.2 GHz and 2.4 GHz are assumed assuming that the thickness d = 20 cm and the incident angle θ of the shielding target radio wave is 0 ° (normal incidence). The calculation result of the relationship between the ratio ε and the shielding performance is shown. As shown in FIG. 5, the shielding performance of the comparative mortar for frequencies f = 1.2 GHz and 2.4 GHz is 6 dB and 10 dB, respectively.
[0036]
[Table 2]
Figure 0003564632
[0037]
As it can be seen from a comparison of the 6-9 column of Table 2, shield performance with a large real part epsilon r of the dielectric constant epsilon is not necessarily increased. On the other hand, as shown in the first to fourth columns of Table 1, by increasing the imaginary part ε i of the dielectric constant ε, the shielding performance can be increased and the transmission coefficient T can be reduced. From this, the kneading amount of the iron oxide 4 and the carbon 9 in the electromagnetic shielding mortar 1 or the concrete 2 is adjusted under the condition that the specific gravity is equal to or less than that of the comparative mortar or the concrete. It is preferable that the imaginary part ε i of the dielectric constant ε be selected to be large.
[0038]
As described above, an electromagnetic shielding mortar 1 or concrete 2 in which iron oxide 4 and carbon 8 are kneaded in an amount that gives a large dielectric constant ε to a radio wave to be shielded, and a thickness that gives a predetermined transmission level T 0 By driving with d, for example, the wall 11 and the slab 13 of the building 10 shown in FIG. 2 can have a necessary electromagnetic shielding function.
[0039]
Further, as shown in FIG. 1 (C), the electromagnetic shielding mortar 1 or concrete 2 to form an electromagnetic shielding panel member 16 of thickness d at a predetermined transmission level T 0, the outer wall 11 of a building 10 using the panel material 16 , The slab 13 and the partition wall may have a required electromagnetic shielding function. When using a panel material in which the electromagnetic shielding mortar 1 or concrete 2 and another building material are combined in a layer, a transmission coefficient of the panel material is obtained by using a multilayer dielectric model instead of the one-layer model shown in the equation (2). Is possible.
[0040]
Furthermore, for example, when the shielding performance of the walls and the slab is insufficient, as the interior material on the walls 11 and slab 13 is applied with a thickness d of the electromagnetic shielding mortar 1 or concrete 2 is a predetermined transmission level T 0 is obtained Thereby, it is also possible to reinforce the shielding function of a wall or a slab.
[0041]
The electromagnetic shielding mortar 1 or concrete 2 used in the present invention has a blackish brown or brownish color, and is not inferior to the conventional ordinary mortar or concrete from the viewpoint of the design color. The electromagnetic shielding mortar 1 or concrete 2 used in the present invention can be used as seawall concrete or a design block.
[0042]
【The invention's effect】
As described above in detail, the electromagnetic shielding method of building the present invention determines the permittivity of iron oxide and carbon for shielding target radio electromagnetic shielding mortar or concrete was kneaded, desired to shield the target radio wave The thickness of the wall and / or slab giving the transmission coefficient is determined based on the dielectric constant, and the wall or slab of the shielded building is formed by casting electromagnetic shielding mortar or concrete at the specified thickness. Has a remarkable effect.
[0043]
(A) By adjusting the kneading amount of iron oxide and carbon, it is possible to provide a mortar or concrete with a necessary permeation level.
(B) Since the building body itself can be provided with an electromagnetic shielding function, the work of installing an electromagnetic shielding member separately from the building body can be omitted, and the construction period can be shortened.
(C) Leakage of radio waves from the joint of the electromagnetic shielding member, which has conventionally been a problem, can be reduced, and the possibility of deterioration of the shielding function is small.
(D) Since the specific gravity can be about the same as that of the conventional mortar or concrete, it is possible to suppress an increase in load applied to the building structure during electromagnetic shielding.
(E) The use of iron-made dust can reduce manufacturing costs and contribute to the recycling of iron-made dust.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of one embodiment of the present invention.
FIG. 2 is an explanatory view of a wall and a slab of a reinforced building.
FIG. 3 is an explanatory diagram showing the principle of electromagnetic shielding according to the present invention.
FIG. 4 is an explanatory view of a measuring device of electromagnetic shielding performance.
FIG. 5 is a graph showing the electromagnetic shielding performance of the mortar of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic shielding mortar 2 ... Electromagnetic shielding concrete 4 ... Iron oxide 5 ... Cement 6 ... Water 7 ... Aggregate 8 ... Carbon 9 ... Mixed powder 10 ... Reinforced building 11 ... Building outer wall 12 ... Deck plate 13 ... Slab 14 ... Concrete mixer 16 ... Electromagnetic shielding panel material 20 ... Shield room 21 ... Electromagnetic wave absorbing member 22 ... Partition wall 24 ... Network analyzer 25 ... Transmitter 26 ... Receiver

Claims (7)

鉄酸化物粉体を混練すると共に該鉄酸化物粉体による比重の増加を混練前と同程度に抑える量のカーボン粉体を混練して遮蔽対象周波数の電波に対する誘電率を高めた所定厚さの電磁遮蔽モルタル又はコンクリート壁体の電波に対する透過係数を測定し、前記壁体の厚さと透過係数と誘電率の関係式へ前記測定した透過係数と前記所定厚さとを代入することにより前記モルタル又はコンクリートの誘電率を求め、前記遮蔽対象周波数の電波に対し所望の透過係数を与える壁及び/又はスラブの厚さを前記関係式への前記誘電率の代入により算出し、前記モルタル又はコンクリートを前記算出した厚さで打設することにより遮蔽建物の壁及び/又はスラブを形成してなる建物の電磁シールド方法。Predetermined thickness with increased dielectric constant for the radio waves kneaded to shielding target frequency of carbon powder in an amount to suppress an increase in specific gravity due to the iron oxide powder to the same extent as prior to the kneading with kneading the iron oxide powder the mortar by the permeability coefficient was measured for the radio waves of the electromagnetic shielding mortar or concrete wall, substituting thickness and permeability coefficient and dielectric constant of the relationship the measured transmission coefficients to equation of the wall and said predetermined thickness Or determine the dielectric constant of the concrete, calculate the thickness of the wall and / or slab that gives a desired transmission coefficient to the radio wave of the shielding target frequency by substituting the dielectric constant into the relational expression, the mortar or concrete An electromagnetic shielding method for a building in which a wall and / or a slab of a shielded building is formed by casting with the calculated thickness. 鉄酸化物粉体を混練すると共に該鉄酸化物粉体による比重の増加を混練前と同程度に抑える量のカーボン粉体を混練して遮蔽対象周波数の電波に対する誘電率を高めた所定厚さの電磁遮蔽モルタル又はコンクリート壁体の電波に対する透過係数を測定し、前記壁体の厚さと透過係数と誘電率の関係式へ前記測定した透過係数と前記所定厚さとを代入することにより前記モルタル又はコンクリートの誘電率を求め、前記遮蔽対象周波数の電波に対し所望の透過係数を与える壁及び/又はスラブの厚さを前記関係式への前記誘電率の代入により算出し、建物の壁及び/又はスラブの表面に前記モルタル又はコンクリートを前記算出した厚さで塗布することにより該建物に所望の遮蔽性能を与えてなる建物の電磁シールド方法。Predetermined thickness with increased dielectric constant for the radio waves kneaded to shielding target frequency of carbon powder in an amount to suppress an increase in specific gravity due to the iron oxide powder to the same extent as prior to the kneading with kneading the iron oxide powder the mortar by the permeability coefficient was measured for the radio waves of the electromagnetic shielding mortar or concrete wall, substituting thickness and permeability coefficient and dielectric constant of the relationship the measured transmission coefficients to equation of the wall and said predetermined thickness Alternatively, the dielectric constant of concrete is obtained, and the thickness of a wall and / or a slab that gives a desired transmission coefficient to the radio wave of the frequency to be shielded is calculated by substituting the dielectric constant into the relational expression. Alternatively, an electromagnetic shielding method for a building in which the mortar or concrete is applied to the surface of a slab at the calculated thickness to give a desired shielding performance to the building. 請求項1又は2の電磁シールド方法において、前記電磁遮蔽モルタルを、セメントに対して50〜300重量%の前記鉄酸化物粉体及びカーボン粉体と30〜70重量%の水とを混練したものとしてなる建物の電磁シールド方法。3. The electromagnetic shielding method according to claim 1, wherein said electromagnetic shielding mortar is obtained by kneading 50 to 300% by weight of said iron oxide powder and carbon powder and 30 to 70% by weight of water with respect to cement. The electromagnetic shielding method of the building that becomes. 請求項3の電磁シールド方法において、前記電磁遮蔽モルタルを、セメントに対し100重量%以下で柔軟性を与えるに足る量の細骨材を混練したものとしてなる建物の電磁シールド方法。4. The electromagnetic shielding method according to claim 3, wherein the electromagnetic shielding mortar is kneaded with fine aggregate in an amount sufficient to give flexibility to cement in an amount of 100% by weight or less. 請求項1又は2の電磁シールド方法において、前記鉄酸化物及びカーボンの混合粉体を製鉄工程で発生した35重量%のFe2O3と25重量%のカーボンとを含む高炉2次灰としてなる建物の電磁シールド方法。3. The electromagnetic shielding method according to claim 1, wherein the mixed powder of iron oxide and carbon is converted into a blast furnace secondary ash containing 35% by weight of Fe 2 O 3 and 25% by weight of carbon generated in the iron making process. Building electromagnetic shielding method. 請求項1又は2の電磁シールド方法において、前記電磁遮蔽コンクリートを、セメントに対して50〜500重量%の前記鉄酸化物粉体及びカーボン粉体と30〜500重量%の骨材と30〜70重量%の水とを混練したものとしてなる建物の電磁シールド方法。3. The electromagnetic shielding method according to claim 1, wherein said electromagnetic shielding concrete is prepared by adding 50 to 500% by weight of said iron oxide powder and carbon powder, 30 to 500% by weight of aggregate and 30 to 70% by weight to cement. An electromagnetic shielding method for buildings that is obtained by mixing water with water by weight. 請求項6の電磁シールド方法において、前記鉄酸化物及びカーボンの混合粉体を製鉄工程で発生した35重量%のFe2O3と25重量%のカーボンとを含む高炉2次灰としてなる建物の電磁シールド方法。7. The electromagnetic shielding method according to claim 6, wherein the mixed powder of iron oxide and carbon is used as secondary ash of a blast furnace containing 35% by weight of Fe 2 O 3 and 25% by weight of carbon generated in the iron making process. Electromagnetic shielding method.
JP4588799A 1999-02-24 1999-02-24 Building electromagnetic shielding method Expired - Fee Related JP3564632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4588799A JP3564632B2 (en) 1999-02-24 1999-02-24 Building electromagnetic shielding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4588799A JP3564632B2 (en) 1999-02-24 1999-02-24 Building electromagnetic shielding method

Publications (2)

Publication Number Publication Date
JP2000244179A JP2000244179A (en) 2000-09-08
JP3564632B2 true JP3564632B2 (en) 2004-09-15

Family

ID=12731764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4588799A Expired - Fee Related JP3564632B2 (en) 1999-02-24 1999-02-24 Building electromagnetic shielding method

Country Status (1)

Country Link
JP (1) JP3564632B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081011A (en) * 2000-06-28 2002-03-22 Tdk Corp Electronic wave absorber for road surface, method of manufacturing it, and method of executing it
JP2002138593A (en) * 2000-11-01 2002-05-14 Kajima Corp Construction method for electromagnetic shielding wall body
KR100622567B1 (en) * 2001-03-17 2006-09-12 주식회사 인트켐 Hydraulic composition for electromagnetic wave shielding and molding manufactured therewith
KR102217333B1 (en) * 2018-11-16 2021-02-18 성신양회(주) Concrete composition for electromagnetic wave shielding

Also Published As

Publication number Publication date
JP2000244179A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
WO2014210007A1 (en) Structural concrete mix for construction for electromagnetic wave/pulse shielding
JP3564632B2 (en) Building electromagnetic shielding method
JP3185980B2 (en) Building electromagnetic shielding method
CN102674771A (en) High iron slag power doped wave-absorbing foam concrete and preparation method thereof
CN101386507A (en) Electro-magnetism proof cement mortar material and preparation method thereof
JPH06209180A (en) Inner wall material for absorbing electromagnetic wave
JP2001288833A (en) Electromagnetic shield slab
JPH0766584A (en) Mortar or concrete lamination type radio wave absorber
JP2002138593A (en) Construction method for electromagnetic shielding wall body
KR200321612Y1 (en) Floor Structure for Buildings
Asp et al. Impact of different concrete types on radio propagation: Fundamentals and practical RF measurements
JP2002314287A (en) Electromagnetic shielding concrete and concrete panel
JP2735913B2 (en) Radio wave absorber for TV frequency band
JP3056858B2 (en) Radio wave absorber for TV frequency band
JPH01241199A (en) Dry-type radio wave absorbing panel
KR20050093265A (en) The shaking and noise preventive material makenuse of scrapped tire
JP4420263B2 (en) Electromagnetic shielding method
JPH08105188A (en) Wave absorbing tile for exterior wall
EP4383971A1 (en) Protection system against non-ionizing electromagnetic radiation using metamaterial, reinforced concrete with built-in steel ring microresonators, installing method and use
Cho et al. Electromagnetic transmission characteristics of eco-friendly foamed concrete wall
JPH09214168A (en) Radio wave absorptive wall and adjustment method of absorptive characteristic
JPH0447738B2 (en)
JPH03203397A (en) Wave absorbing body for tv frequency band
Oda Radio wave absorptive building materials for depressing multipath indoors
JPH03203396A (en) Wave absorbing body for tv frequency band

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees