JP2000242954A - Near-field optical system - Google Patents
Near-field optical systemInfo
- Publication number
- JP2000242954A JP2000242954A JP11038592A JP3859299A JP2000242954A JP 2000242954 A JP2000242954 A JP 2000242954A JP 11038592 A JP11038592 A JP 11038592A JP 3859299 A JP3859299 A JP 3859299A JP 2000242954 A JP2000242954 A JP 2000242954A
- Authority
- JP
- Japan
- Prior art keywords
- spheroid
- optical system
- light source
- field optical
- focal point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は近接場光学系に関わ
り、さらに詳しくは、光情報記録媒体の記録情報を高密
度で記録再生するための光学系であって、特に対物レン
ズと光ディスクの記録面との間隔が光の波長オーダー以
下であるいわゆる近接場光学系に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-field optical system, and more particularly, to an optical system for recording / reproducing information recorded on an optical information recording medium at a high density. The present invention relates to a so-called near-field optical system in which a distance from a surface is equal to or less than a wavelength of light.
【0002】[0002]
【従来の技術】従来より、対物レンズと光ディスクの記
録面との間隔が光の波長オーダー以下であるいわゆる近
接場光学系として、光ディスクなどを光情報記録媒体と
した高密度記録再生装置において、近接場光学系を用い
た光学系が知られている。例えば、米国特許51257
50号に技術開示されている。この技術内容は、屈折率
の均質な分離された2枚の対物レンズを用い、特に光デ
ィスク側のレンズに半球形状の球面レンズを用いた開口
数NAの大きい光学系となっている。なお、開口数NA
とは、開口角を2Uとし、物体側の媒体の屈折率nとし
てNA=n・sinUで与えれる値をいう。2. Description of the Related Art Conventionally, as a so-called near-field optical system in which an interval between an objective lens and a recording surface of an optical disk is smaller than or equal to a wavelength of light, a high-density recording / reproducing apparatus using an optical disk or the like as an optical information recording medium has been used. An optical system using a field optical system is known. For example, US Pat.
No. 50 discloses the technology. This technical content is an optical system having a large numerical aperture NA using two objective lenses having a uniform refractive index and separated, and in particular, using a hemispherical spherical lens as a lens on the optical disk side. The numerical aperture NA
Is a value given by NA = n · sinU as the refractive index n of the medium on the object side with an aperture angle of 2U.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記の
近接場光学系では、開口数NAの大きい精密な光学系を
2枚のレンズで構成しているため、レンズの芯出し等の
組立調整に多くの時間がかかるほか、微小レンズを研磨
などで生産するとコスト高となるという問題がある。However, in the above-mentioned near-field optical system, since a precise optical system having a large numerical aperture NA is constituted by two lenses, it is often used for assembling adjustment such as centering of the lens. In addition, it takes a long time, and there is a problem that the cost is increased if the microlenses are produced by polishing or the like.
【0004】本発明は、上記の課題に鑑みなされたもの
で、本発明の目的は、単純な光学系で良好な結像性能を
有し、組立調整も簡便な高密度光情報記録媒体の記録再
生のための近接場光学系を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a recording method for a high-density optical information recording medium having a simple optical system, having good imaging performance, and easy assembly adjustment. It is to provide a near-field optical system for reproduction.
【0005】[0005]
【課題を解決するための手段】上記の目的は下記のいず
れかにより達成できる。The above object can be achieved by any of the following.
【0006】(1)対物レンズと光情報記録媒体の記録
面との間隔が使用光源波長以下に配置される近接場光学
系であって、前記対物レンズは、少なくとも一部が楕円
の主軸で回転して形成された回転楕円体で構成され、前
記回転楕円体の前記主軸上に位置する2つの焦点のう
ち、一方の第1焦点の位置に設けた光源から出た光束が
前記回転楕円体の曲面で反射して他方の第2焦点の位置
に結像することを特徴とする近接場光学系。(1) A near-field optical system in which a distance between an objective lens and a recording surface of an optical information recording medium is arranged to be equal to or less than a wavelength of a light source to be used. The light flux emitted from the light source provided at the position of one of the first focal points of the two focal points located on the main axis of the spheroid is formed of the spheroid. A near-field optical system that reflects light on a curved surface and forms an image at the position of the other second focal point.
【0007】(2)対物レンズと光情報記録媒体の記録
面との間隔が使用光源波長以下に配置される近接場光学
系であって、前記対物レンズは、少なくとも一部が楕円
の主軸で回転して形成された回転楕円体で構成され、前
記回転楕円体の前記主軸上に位置する2つの焦点のう
ち、外部光源からの光束を一旦、一方の第1焦点の位置
に収束させ、前記第1焦点の位置を2次光源として、前
記2次光源から出た光束を前記回転楕円体の曲面で反射
して、他方の第2焦点の位置に結像する対物レンズを有
することを特徴とする近接場光学系。(2) A near-field optical system in which the distance between the objective lens and the recording surface of the optical information recording medium is arranged to be equal to or less than the wavelength of the light source used, wherein the objective lens is rotated at least partially about an elliptical principal axis. The light flux from the external light source is once converged to the position of one of the first focal points, among the two focal points located on the main axis of the spheroid, and An objective lens is provided, in which a position of one focal point is a secondary light source, and a light beam emitted from the secondary light source is reflected by the curved surface of the spheroid and forms an image at the position of the other second focal point. Near-field optics.
【0008】[0008]
【実施例】本発明の実施例の近接場光学系の一例を図面
を参照して説明するが、本発明は下記の実施例に限定さ
れるものではない。なお、この実施例で使用する符号は
下記の通りである。DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a near-field optical system according to an embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiment. The reference numerals used in this embodiment are as follows.
【0009】RX:主軸と垂直な軸である軸Xにおける
中心の曲率半径 RY:主軸と垂直な軸である軸Yにおける中心の曲率半
径 kX:軸X断面での円錐定数 kY:軸Y断面での円錐定数 d:面間隔 n:屈折率 f:焦点距離 NA:開口数 h:主光線の軸Zからの軸Y方向の高さ hO:主光線の軸ZOからの軸Y方向の高さ ここで、軸Yを回転軸とする回転楕円体の回転楕円面
(光学設計においてbiconical−surfac
eとも呼ばれる面)の関数は「数1」である。R X : radius of curvature of the center on axis X which is perpendicular to the main axis R Y : radius of curvature of the center on axis Y which is perpendicular to the main axis k X : conic constant k Y in the cross section of the axis X k Y : Conic constant at axis Y cross section d: Surface interval n: Refractive index f: Focal length NA: Numerical aperture h: Height of principal ray from axis Z in axis Y direction h O : Axis of principal ray from axis Z O Here, the height in the Y direction Here, the spheroidal surface of the spheroid with the axis Y as the rotation axis (in the optical design, a biological-surfac
The function of the plane (also called e) is “Equation 1”.
【0010】[0010]
【数1】 (Equation 1)
【0011】なお、第1焦点F1、第2焦点F2は軸Y
上にあり、楕円が主軸(軸Y、軸Z)を切る長径をa、
短径をbとして、座標原点の中心Oからの距離は「数
2」である。The first focus F1 and the second focus F2 are on the axis Y.
The major axis of the ellipse that cuts the main axis (axis Y, axis Z) is a,
Assuming that the minor axis is b, the distance from the center O of the coordinate origin is “Equation 2”.
【0012】[0012]
【数2】 (Equation 2)
【0013】(第1の実施例)第1の実施例の近接場光
学系斜視図を図1に、また、第1の実施例の軸Yと軸Z
を含む平面での近接場光学系断面図を図2に示す。さら
に第1の実施例のレンズデータを「表1」に示す。(First Embodiment) FIG. 1 is a perspective view of a near-field optical system according to a first embodiment, and axes Y and Z according to the first embodiment.
FIG. 2 shows a cross-sectional view of the near-field optical system in a plane including. Further, Table 1 shows lens data of the first example.
【0014】[0014]
【表1】 [Table 1]
【0015】図1、2に示す如く、近接場光学系の対物
レンズL1は、軸Yを回転軸とする回転楕円体を軸Yに
沿って半分に切った形状の半回転楕円体である。対物レ
ンズL1は2つの焦点を有し、第1焦点F1は物体とし
ての光源であり、第2焦点F2は結像点となっている。
なお、11は光ディスクの記録面の一部である。また、
半回転楕円体の表面の曲面は鏡面蒸着Cされており、半
回転楕円体の表面の内面は反射面となっている。また、
近接場光学系の屈折率nはn>1.4以上となってい
る。なお、図2に示す実線の光線が表1に示す主光線で
ある。As shown in FIGS. 1 and 2, the objective lens L1 of the near-field optical system is a semi-spheroid having a shape obtained by cutting a spheroid having the axis Y as a rotation axis in half along the axis Y. The objective lens L1 has two focal points, the first focal point F1 is a light source as an object, and the second focal point F2 is an image forming point.
In addition, 11 is a part of the recording surface of the optical disk. Also,
The curved surface of the surface of the spheroid is mirror-deposited C, and the inner surface of the surface of the spheroid is a reflection surface. Also,
The refractive index n of the near-field optical system is n> 1.4 or more. Note that the solid light beam shown in FIG. 2 is the principal light beam shown in Table 1.
【0016】ここでレンズ作用を説明すると、第1焦点
F1の光源より球面波の発散光束を出し、回転楕円体の
表面の内側で反射し、収束光となって、第2焦点F2に
結像する。The function of the lens will now be described. A divergent light beam of a spherical wave is emitted from the light source at the first focal point F1, reflected inside the surface of the spheroid, becomes convergent light, and forms an image at the second focal point F2. I do.
【0017】以上により、回転楕円体において、2つの
焦点の内、第1焦点に物体(点物体)、若しくは光源
(点光源)を置くことにより、物体若しくは光源より出
た球面波の発散光束が回転楕円体の表面の内面で反射
し、収束光となって、軸Yに沿って切断した平面部にあ
る第2焦点F2に結像するので、前記平面部と光ディス
ク記録面とを波長オーダー以下に接近させることによ
り、平面部に結像した点像の状態を光ディスクの記録面
に対してもほぼ維持することができる。As described above, by placing an object (point object) or a light source (point light source) at the first of the two focal points in the spheroid, the divergent light flux of the spherical wave emitted from the object or the light source is obtained. Since the light is reflected by the inner surface of the spheroid and becomes convergent light and forms an image at the second focal point F2 in the plane section cut along the axis Y, the plane section and the recording surface of the optical disk are not more than the wavelength order. , It is possible to substantially maintain the state of the point image formed on the flat portion even on the recording surface of the optical disc.
【0018】対物レンズL1は、ガラスまたはプラスチ
ック等の屈折率がn>1.4以上の物質で構成するの
で、開口数NAが1.0に近いレンズ、若しくはNAが
1.0を超えるような光学系を無収差で得ることができ
る。Since the objective lens L1 is made of a material having a refractive index of n> 1.4 or more, such as glass or plastic, a lens having a numerical aperture NA close to 1.0 or a lens having a numerical aperture NA exceeding 1.0 is used. The optical system can be obtained without aberration.
【0019】この光学系が無収差となる根拠は、平面系
では楕円、立体系では回転楕円体において、第1焦点F
1を出発点とし、楕円もしくは回転楕円体の円周部の任
意の点Pで反射した光は、必ず第2焦点F2を通過す
る。この時、線分F1Pと線分F2Pの合計値はP点位
置にかかわらず一定であり、これが光である場合、光路
長F1Pと光路長F2Pの合計光路長が一定である。光
路長が一定の光束は、無収差で結像することと等価であ
るため、回転楕円体の第1焦点の光源は第2焦点に無収
差で結像することになる。The reason that this optical system has no aberration is that the first focal point F is an ellipse in a planar system and a spheroid in a three-dimensional system.
The light reflected at an arbitrary point P on the circumference of the ellipse or spheroid starting from 1 always passes through the second focal point F2. At this time, the total value of the line segment F1P and the line segment F2P is constant irrespective of the position of the point P, and when this is light, the total optical path length of the optical path length F1P and the optical path length F2P is constant. Since a light beam having a constant optical path length is equivalent to image formation with no aberration, the light source at the first focal point of the spheroid forms an image with no aberration at the second focal point.
【0020】また、開口数NAが大きくできる理由とし
て、開口角2Uが大きくなっても前述のように無収差で
結像すると共に、開口数NA=n・sinUと屈折率n
のファクターがつくため、特に、高屈折率の光学材料を
用いると開口数NAを大きくできる。The reason why the numerical aperture NA can be increased is that, even if the aperture angle 2U increases, an image is formed with no aberration as described above, and the numerical aperture NA = n · sinU and the refractive index n
In particular, when an optical material having a high refractive index is used, the numerical aperture NA can be increased.
【0021】(第2の実施例)第2の実施例の軸Yと軸
Zを含む平面での近接場光学系断面図を図3に示す。ま
た、第2の実施例のレンズデータを「表2」に示す。(Second Embodiment) FIG. 3 is a sectional view of a near-field optical system in a plane including the axis Y and the axis Z according to the second embodiment. Table 2 shows lens data of the second example.
【0022】[0022]
【表2】 [Table 2]
【0023】この近接場光学系は第1の実施例の変形例
であり、対物レンズL2は軸Yを回転軸とする回転楕円
体を軸Yに沿って半分に切った形状の半回転楕円体であ
り、さらに軸Yと回転楕円体面との交点近傍で、面の一
部L2aを切り取ったレンズである。第1焦点F1は光
源位置であり、第2焦点は結像位置である。半回転楕円
体の表面の曲面は鏡面蒸着Cされており、半回転楕円体
の表面の内面は反射面となっている。なお、図3に示す
実線の光線は表2に示す主光線である。なお、11は光
ディスクの記録面の一部である。This near-field optical system is a modification of the first embodiment. The objective lens L2 is a semi-spheroid having a shape obtained by cutting a spheroid having the axis Y as a rotation axis in half along the axis Y. In addition, the lens is obtained by cutting out a part L2a of the surface near the intersection of the axis Y and the spheroidal surface. The first focus F1 is a light source position, and the second focus is an imaging position. The curved surface of the surface of the spheroid is mirror-deposited C, and the inner surface of the surface of the spheroid is a reflection surface. The solid-line light beam shown in FIG. 3 is the principal light beam shown in Table 2. In addition, 11 is a part of the recording surface of the optical disk.
【0024】第2の実施例では、第1の実施例と比較し
て、高屈折率の光学材料を用いることにより、開口数N
Aを大きくすることができる。なお、切り取った形状に
よって、その部分から漏出する光線が再び対物レンズに
入射しないようにその部分の表面あるいは光学系を適宜
構成することが望ましい。In the second embodiment, the numerical aperture N is increased by using an optical material having a higher refractive index as compared with the first embodiment.
A can be increased. It is desirable to appropriately configure the surface of the portion or the optical system so that the light leaking from the portion does not enter the objective lens again depending on the cut shape.
【0025】(第3の実施例)第3の実施例の近接場光
学系斜視図を図4に、また、第3の実施例の軸Yと軸Z
を含む平面での近接場光学系断面図を図5に示す。さら
に、第3の実施例のレンズデータを「表3」に示す。(Third Embodiment) FIG. 4 is a perspective view of a near-field optical system according to a third embodiment, and axes Y and Z according to the third embodiment.
FIG. 5 shows a cross-sectional view of the near-field optical system in a plane including. Further, Table 3 shows lens data of the third example.
【0026】[0026]
【表3】 [Table 3]
【0027】この対物レンズL3は、軸Yを回転軸とす
る回転楕円体を軸Yに沿って半分に切った形状の半回転
楕円体であり、軸Yと回転楕円体の表面との交点に半円
柱形状の端面部L3aがある半回転楕円体レンズL31
と、半球の形状をした球面レンズL32とが一体に組み
合わされたレンズである。なお、端面部L3aは半円柱
に限定されるものではなく、例えば角柱でもよい。The objective lens L3 is a semi-spheroid obtained by cutting a spheroid having the axis Y as a rotation axis in half along the axis Y, and is provided at an intersection between the axis Y and the surface of the spheroid. A semi-spheroidal lens L31 having a semi-cylindrical end face L3a
And a spherical lens L32 having a hemispherical shape. Note that the end face portion L3a is not limited to a semicircular column, and may be, for example, a prism.
【0028】半回転楕円体レンズL31は第1焦点F1
が第2光源であり、第2焦点F2が結像位置である。半
回転楕円体の表面の曲面は鏡面蒸着Cされており、半回
転楕円体レンズL31の表面の内面は反射面となってい
る。また、球面レンズL32は、中心が軸Zと平行する
軸ZO上にあり、収束光線が球面に対し垂直入射となる
ように球面Rが設定されている。なお、Sは軸Zと軸Z
Oの間隔を示す。図5の実線の光線が表3に示す主光線
である。なお、11は光ディスクの記録面の一部であ
る。The semi-spheroidal lens L31 has a first focal point F1.
Is a second light source, and the second focal point F2 is an image forming position. The curved surface of the surface of the semi-spheroid is subjected to mirror surface deposition C, and the inner surface of the surface of the semi-spheroid lens L31 is a reflection surface. The spherical lens L32 has a center on the axis Z O parallel to the axis Z, and the spherical surface R is set so that the convergent ray is perpendicularly incident on the spherical surface. S is the axis Z and the axis Z
Indicates the interval of O. 5 are the principal rays shown in Table 3. In addition, 11 is a part of the recording surface of the optical disk.
【0029】ここで、レンズの作用を説明すると、外部
光学系より球面レンズL32に、球面波の収束光線が球
面に対し垂直入射させ、入射した光束は球面レンズL3
2内で、そのまま球面の中心位置に結像する。そして、
再び2次光源となって、球面波の発散光束に変わる。こ
の2次光源位置を、回転楕円体の第1焦点に一致させて
おく。この2次光源から出た光束が回転楕円体の表面の
内面で反射して、回転楕円体のもう一方の第2焦点F2
に、無収差で結像する。Here, the function of the lens will be described. The convergent ray of the spherical wave is made to enter the spherical lens L32 perpendicularly to the spherical surface from the external optical system, and the incident light beam is converted to the spherical lens L3.
In 2, an image is formed at the center position of the spherical surface as it is. And
It again becomes a secondary light source and changes to a divergent light beam of a spherical wave. This secondary light source position is made to coincide with the first focal point of the spheroid. The light beam emitted from the secondary light source is reflected by the inner surface of the surface of the spheroid, and the other second focal point F2 of the spheroid is obtained.
Then, an image is formed without aberration.
【0030】(第4の実施例)第4の実施例の近接場光
学系斜視図を図6に、また、第4の実施例の軸Yと軸Z
を含む平面での近接場光学系断面図を図7に示す。さら
に、第4の実施例のレンズデータを「表4」に示す。(Fourth Embodiment) FIG. 6 is a perspective view of a near-field optical system according to a fourth embodiment, and axes Y and Z according to the fourth embodiment.
FIG. 7 shows a cross-sectional view of the near-field optical system in a plane including. Further, Table 4 shows lens data of the fourth example.
【0031】[0031]
【表4】 [Table 4]
【0032】図6、7に示す如く、対物レンズL4は、
軸Yを回転軸とする回転楕円体を軸Yに沿って半分に切
った形状の半回転楕円体であり、軸Yと垂直に片側の頭
が切られた半回転楕円体レンズL41と、球の4分の1
形状を有する球面レンズL42とが一体に組み合わされ
たレンズである。半回転楕円体レンズL41には第1焦
点F1が第2光源であり、第2焦点F2が結像位置であ
る。半回転楕円体の表面の曲面は鏡面蒸着Cされてお
り、半回転楕円体の表面の内面は反射面となっている。
また、球面レンズL42は軸Zと平行な軸ZO上に中心
があり、収束光線が球面に対し垂直入射となるように、
球面半径Rが設定されている。Sは軸Zと軸ZOの間隔
を示す。図7に示す実線の光線が表4の主光線である。
なお、11は光ディスクの記録面の一部であり、10は
反射光学部材である。As shown in FIGS. 6 and 7, the objective lens L4 is
A semi-spheroid having a shape obtained by cutting a spheroid having the axis Y as a rotation axis in half along the axis Y, and a semi-spheroid lens L41 having one side cut off perpendicularly to the axis Y; A quarter of
This is a lens in which a spherical lens L42 having a shape is integrally combined. In the semi-spheroidal lens L41, the first focal point F1 is a second light source, and the second focal point F2 is an imaging position. The curved surface of the surface of the spheroid is mirror-deposited C, and the inner surface of the surface of the spheroid is a reflection surface.
Also, the spherical lens L42 has its center on an axis Z O parallel to the axis Z, and a convergent ray is perpendicularly incident on the spherical surface.
A spherical radius R is set. S indicates the interval between the axis Z and the axis Z O. The solid-line light beam shown in FIG.
Reference numeral 11 denotes a part of the recording surface of the optical disk, and reference numeral 10 denotes a reflection optical member.
【0033】ここで、レンズ作用を説明する。外部光学
系より、球面レンズL42の球面に垂直入射した球面波
の光束は、そのまま球面の球の中心位置で結像する。そ
して、この結像位置において、光線は反射光学部材10
により平面反射され、再び、2次光源となって球面波の
発散光束に変わるが、この2次光源位置を、前記第1焦
点F1に一致させておく。それを2次光源として、2次
光源から出た光束が回転楕円体の表面の内面で反射し
て、回転楕円体の第2焦点F2に、無収差で結像する。Here, the function of the lens will be described. The luminous flux of the spherical wave perpendicularly incident on the spherical surface of the spherical lens L42 from the external optical system forms an image as it is at the center position of the spherical sphere. At this image forming position, the light beam is reflected by the reflection optical member 10.
, And again becomes a secondary light source and changes into a divergent light beam of a spherical wave. The position of the secondary light source is made to coincide with the first focal point F1. Using this as a secondary light source, a light beam emitted from the secondary light source is reflected by the inner surface of the surface of the spheroid and forms an image at the second focal point F2 of the spheroid without aberration.
【0034】なお、実施例において、2次光源の位置と
最終的な像の位置は必ずしも、同じ平面上にある必要は
なく、この対物レンズとディスクの光記録面との距離が
微小である部分は、最終的な結像位置付近のみとし、2
次光源に当たる部分は、充分なワーキング間隔を取れる
ように段差を設け、反射面込みで、回転楕円体の焦点に
相当する位置に2次光源ができるようにしてもよい。ま
た、第3及び第4の実施例において、一体的に組み合わ
せたレンズは一体成形により形成することが好ましい。In the embodiment, the position of the secondary light source and the position of the final image are not necessarily required to be on the same plane, and a portion where the distance between the objective lens and the optical recording surface of the disk is very small. Is only around the final imaging position.
A portion corresponding to the secondary light source may be provided with a step so as to have a sufficient working interval, and a secondary light source may be formed at a position corresponding to the focal point of the spheroid, including the reflection surface. In the third and fourth embodiments, it is preferable that the integrally combined lens is formed by integral molding.
【0035】[0035]
【発明の効果】以上のように構成したので下記のような
効果を奏する。請求項1、2に記載の発明によれば、単
純な光学系で良好な結像性能を有し、組立て調整も簡便
な高密度光情報記録媒体の記録再生のための近接場光学
系となる。According to the above configuration, the following effects can be obtained. According to the first and second aspects of the present invention, a near-field optical system for recording / reproducing a high-density optical information recording medium which has good imaging performance with a simple optical system and easy assembly and adjustment is provided. .
【0036】請求項3に記載の発明によれば、対物レン
ズの位置決めがし易く、成形加工がし易くなる。According to the third aspect of the present invention, the positioning of the objective lens is facilitated, and the molding process is facilitated.
【0037】請求項4に記載の発明によれば、高屈折率
の光学材料を用いることにより、開口数NAを大きくで
きる。According to the fourth aspect of the present invention, the numerical aperture NA can be increased by using an optical material having a high refractive index.
【0038】請求項5に記載の発明によれば、開口数N
Aが1.0に近いレンズ、若しくは開口数NAが1.0
を超えるような光学系を無収差で得ることができる。According to the fifth aspect of the present invention, the numerical aperture N
A is a lens close to 1.0, or a numerical aperture NA is 1.0
Can be obtained with no aberration.
【0039】請求項6に記載の発明によれば、対物レン
ズの半回転楕円体の表面が鏡面蒸着されているので、第
1焦点の光源発散光を第2焦点に収束できる。According to the sixth aspect of the present invention, since the surface of the semi-spheroid of the objective lens is mirror-deposited, the divergent light at the first focal point can be converged on the second focal point.
【0040】請求項7に記載の発明によれば、外部光源
からでた光を球レンズに垂直入射させたので、無収差で
第1焦点に収束して結像できる。According to the seventh aspect of the present invention, since the light emitted from the external light source is perpendicularly incident on the spherical lens, it is possible to converge on the first focal point without aberration and form an image.
【0041】請求項8に記載の発明によれば、球面レン
ズと半回転楕円体を一体の光学部品としたので、2つの
光学部品間の調整が不要となり、コスト安となる。According to the eighth aspect of the present invention, since the spherical lens and the half-spheroid are integrated optical components, there is no need to adjust between the two optical components, and the cost is reduced.
【図1】第1の実施例の近接場光学系の斜視図である。FIG. 1 is a perspective view of a near-field optical system according to a first embodiment.
【図2】第1の実施例の軸Yと軸Zを含む平面での近接
場光学系断面図である。FIG. 2 is a cross-sectional view of a near-field optical system on a plane including an axis Y and an axis Z according to the first embodiment.
【図3】第2の実施例の軸Yと軸Zを含む平面での近接
場光学系断面図である。FIG. 3 is a sectional view of a near-field optical system in a plane including an axis Y and an axis Z according to the second embodiment.
【図4】第3の実施例の近接場光学系の斜視図である。FIG. 4 is a perspective view of a near-field optical system according to a third embodiment.
【図5】第3の実施例の軸Yと軸Zを含む平面での近接
場光学系断面図である。FIG. 5 is a sectional view of a near-field optical system in a plane including an axis Y and an axis Z according to a third embodiment.
【図6】第4の実施例の近接場光学系の斜視図である。FIG. 6 is a perspective view of a near-field optical system according to a fourth embodiment.
【図7】第4の実施例の軸Yと軸Zを含む平面での近接
場光学系断面図である。FIG. 7 is a sectional view of a near-field optical system in a plane including an axis Y and an axis Z according to a fourth embodiment.
L1、L2、L3、L4 対物レンズ L32、L42 球面レンズ C 鏡面蒸着 O 中心 X、Y、Z、ZO 軸 S 間隔 F1 第1焦点 F2 第2焦点L1, L2, L3, L4 objective lens L32, L42 spherical lens C specular deposited O center X, Y, Z, Z O axis S length F1 first focal point F2 second focal point
Claims (8)
の間隔が使用光源波長以下に配置される近接場光学系で
あって、前記対物レンズは、少なくとも一部が楕円の主
軸で回転して形成された回転楕円体で構成され、前記回
転楕円体の前記主軸上に位置する2つの焦点のうち、一
方の第1焦点の位置に設けた光源から出た光束が前記回
転楕円体の曲面で反射して他方の第2焦点の位置に結像
することを特徴とする近接場光学系。1. A near-field optical system in which a distance between an objective lens and a recording surface of an optical information recording medium is arranged to be equal to or less than a wavelength of a light source to be used, wherein the objective lens rotates at least partially about an elliptical main axis. Of two spheroids formed on the main axis of the spheroid, a light beam emitted from a light source provided at one of the first focal points is a curved surface of the spheroid. A near-field optical system that reflects light at a second focal point and forms an image at the position of the other second focal point.
の間隔が使用光源波長以下に配置される近接場光学系で
あって、前記対物レンズは、少なくとも一部が楕円の主
軸で回転して形成された回転楕円体で構成され、前記回
転楕円体の前記主軸上に位置する2つの焦点のうち、外
部光源からの光束を一旦、一方の第1焦点の位置に収束
させ、前記第1焦点の位置を2次光源として、前記2次
光源から出た光束を前記回転楕円体の曲面で反射して、
他方の第2焦点の位置に結像する対物レンズを有するこ
とを特徴とする近接場光学系。2. A near-field optical system in which an interval between an objective lens and a recording surface of an optical information recording medium is arranged to be equal to or less than a wavelength of a light source to be used. The luminous flux from the external light source is once converged to the position of one first focal point among the two focal points located on the main axis of the spheroid and formed by the first spheroid. With the position of the focal point as a secondary light source, the light flux emitted from the secondary light source is reflected by the curved surface of the spheroid,
A near-field optical system having an objective lens that forms an image at the position of the other second focal point.
記主軸を通る平面で切り取った略半分の形状であること
を特徴とする請求項1又は2に記載の近接場光学系。3. The near-field optical system according to claim 1, wherein the objective lens has a substantially half shape cut by a plane passing through the main axis of the spheroid.
楕円体の表面との交点近傍で、前記回転楕円体表面の一
部を切り取った形状、若しくは前記回転楕円体表面の一
部を切り取った形状の部分に端面を付加した形状を有し
ていることを特徴とする請求項1、2又は3に記載の近
接場光学系。4. The object lens has a shape obtained by cutting a part of the surface of the spheroid or a part of the surface of the spheroid near the intersection of the main axis and the surface of the spheroid. The near-field optical system according to claim 1, wherein the near-field optical system has a shape obtained by adding an end face to the shape portion.
ズの屈折率をnとしたとき、下記の条件を満足すること
を特徴とする請求項1から4のいずれか1項に記載の近
接場光学系。 n>1.45. The near-field optical system according to claim 1, wherein the following condition is satisfied, where n is a refractive index of the objective lens with respect to a light source wavelength to be used. . n> 1.4
面が鏡面蒸着され、前記表面の内面が反射面となってい
ることを特徴とする請求項1から5のいずれか1項に記
載の近接場光学系。6. The objective lens according to claim 1, wherein a surface of the spheroid is mirror-deposited, and an inner surface of the surface is a reflection surface. Near-field optics.
位置に収束して結像させるように、球面レンズを配置し
たことを特徴とする請求項2に記載の近接場光学系。7. The near-field optical system according to claim 2, wherein a spherical lens is arranged so as to converge a light beam from an external light source at the position of the first focal point and form an image.
体の光学部品であることを特徴とする請求項7に記載の
近接場光学系。8. The near-field optical system according to claim 7, wherein the spherical lens and the spheroid are integrated optical components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11038592A JP2000242954A (en) | 1999-02-17 | 1999-02-17 | Near-field optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11038592A JP2000242954A (en) | 1999-02-17 | 1999-02-17 | Near-field optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000242954A true JP2000242954A (en) | 2000-09-08 |
Family
ID=12529579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11038592A Pending JP2000242954A (en) | 1999-02-17 | 1999-02-17 | Near-field optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000242954A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100400543B1 (en) * | 2001-03-17 | 2003-10-08 | 엘지전자 주식회사 | Lens for optical recording and reproducing system |
-
1999
- 1999-02-17 JP JP11038592A patent/JP2000242954A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100400543B1 (en) * | 2001-03-17 | 2003-10-08 | 엘지전자 주식회사 | Lens for optical recording and reproducing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6236514B1 (en) | Optical head device and near-field light emitting device | |
KR960013802B1 (en) | Lens | |
JP3077937B2 (en) | Prism type objective lens for pick-up head of optical disk drive which has drive capability of two kinds of optical disks | |
US6940803B2 (en) | Optical head, recording and reproducing apparatus and solid immersion lens | |
US6114689A (en) | Optical pickup device | |
US7489617B2 (en) | Optical head and optical head device | |
JP3918331B2 (en) | Reflective micro-optical system | |
US6791755B2 (en) | Optical device for making light converge | |
JP2000242954A (en) | Near-field optical system | |
JP2001034998A (en) | Optical head and its manufacture | |
US6078431A (en) | Object lens system | |
JP4121213B2 (en) | Coupling lens and optical pickup | |
JPH0536767B2 (en) | ||
JP2000019389A (en) | Optical system for optical disk | |
KR100366154B1 (en) | Optical pickup apparatus for read/write heads in high density optical storages | |
JPH11203708A (en) | Optical recording and reproducing device and method thereof | |
JPH01244421A (en) | Anamorphic single lens and optical disk device | |
JPH0827968B2 (en) | Beam shaping device and optical head device | |
JP4427986B2 (en) | Catadioptric objective lens | |
KR20040085458A (en) | Optical pickup apparatus | |
JPS593724B2 (en) | Inhomogeneous refractive index lens | |
JP2005321474A (en) | Objective lens and optical head device using it | |
JPH01244420A (en) | Optical beam scanner | |
JPH11203712A (en) | Lens capable of generating evanescent wave | |
KR100562338B1 (en) | Optical pickup apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051011 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060221 |