JPH11203712A - Lens capable of generating evanescent wave - Google Patents

Lens capable of generating evanescent wave

Info

Publication number
JPH11203712A
JPH11203712A JP10003114A JP311498A JPH11203712A JP H11203712 A JPH11203712 A JP H11203712A JP 10003114 A JP10003114 A JP 10003114A JP 311498 A JP311498 A JP 311498A JP H11203712 A JPH11203712 A JP H11203712A
Authority
JP
Japan
Prior art keywords
lens
equation
shape
light
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10003114A
Other languages
Japanese (ja)
Inventor
Masatoshi Hirono
野 方 敏 廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10003114A priority Critical patent/JPH11203712A/en
Publication of JPH11203712A publication Critical patent/JPH11203712A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lens in a shape for hardly receiving the influence of spherical aberration and not being out of focus by determining the shape of the lens so as to make the coordinates of a lens surface satisfy specified relation at the time of defining the vertex of the lens as the origin of the coordinates, setting an X axis in a direction to be in contact with the vertex and setting a Z axis in the optical axis direction of the lens. SOLUTION: The shape of this lens is determined so as to satisfy the relation of an expression. The coordinates of the lens surface is defined as (X, Z), the radius of the incident range of light is defined as X0 , a numerical aperture is defined as NA, the refractive index of the lens is defined as (n) and a distance on an optical axis from the surface of the lens to a focus position is defined as T. Parallel light is made incident on an immersion lens 1 for which an objective lens and the lens capable of generating evanescent waves are integrated, however, since it is formed of the medium of a light refractive index higher than that of air, the incident light is refracted on the surface of the lens 1 and image-formed on a lens bottom surface. A recording medium is provided near the bottom surface of the lens 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エバネッセント波
を発生可能なレンズに関する。
The present invention relates to a lens capable of generating an evanescent wave.

【0002】[0002]

【従来の技術】エバネッセント波を発生可能なレンズ内
での光の全反射により発生されるエバネッセント波を利
用して、信号の記録/再生を行う光記録装置や光再生装
置が提案されている。エバネッセント波発生用レンズ
は、光の結像位置での光スポット径を十分に小さくでき
るため、光ディスクなどの記録媒体の記録密度を高める
ことができる。
2. Description of the Related Art An optical recording apparatus and an optical reproducing apparatus for recording / reproducing a signal using an evanescent wave generated by total reflection of light in a lens capable of generating an evanescent wave have been proposed. The evanescent wave generation lens can sufficiently reduce the diameter of a light spot at a light image forming position, and thus can increase the recording density of a recording medium such as an optical disk.

【0003】図4はエバネッセント波を発生可能なレン
ズを用いた従来の光記録/再生装置の概略構成を示す図
であり、エバネッセント波を発生可能なレンズとして球
面状のSIL(Solid Immersion Lens)を用いる例を示し
ている。
FIG. 4 is a diagram showing a schematic configuration of a conventional optical recording / reproducing apparatus using a lens capable of generating an evanescent wave. A spherical SIL (Solid Immersion Lens) is used as a lens capable of generating an evanescent wave. An example of use is shown.

【0004】図4において、対物レンズ11に入射した
光は、対物レンズ11で集光された後にSIL12に入
射し、SIL12でさらに集光されてSIL12の底面
に結像する。SIL12の底面近傍に光ディスク13の
記録面を配置すれば、SIL12の底面から漏れ出たエ
バネッセント波により、SIL12の底面とほぼ同じ解
像度で信号を記録することができる。
[0004] In FIG. 4, light incident on an objective lens 11 is condensed by the objective lens 11, then incident on the SIL 12, further condensed by the SIL 12, and forms an image on the bottom surface of the SIL 12. If the recording surface of the optical disc 13 is arranged near the bottom surface of the SIL 12, a signal can be recorded at substantially the same resolution as the bottom surface of the SIL 12 due to the evanescent wave leaking from the bottom surface of the SIL 12.

【0005】[0005]

【発明が解決しようとする課題】図4の装置に用いられ
るSIL12は、一般に略球面形状であり、また、記録
/再生の精度を一定に維持するためには、対物レンズ1
1とSIL12との相対位置を常に一定にする必要があ
る。このため、光ディスク13の回転に伴ってSIL1
2が上下すると、それに合わせて対物レンズ11も移動
させなければならず、対物レンズ11を移動させる制御
系の構成が複雑になるという問題があった。
The SIL 12 used in the apparatus shown in FIG. 4 has a generally spherical shape, and the objective lens 1 is required to maintain a constant recording / reproducing accuracy.
It is necessary to keep the relative position between SIL 1 and SIL 12 constant. For this reason, SIL1
When 2 moves up and down, the objective lens 11 must also be moved in accordance with that, and there is a problem that the configuration of a control system for moving the objective lens 11 becomes complicated.

【0006】一方、対物レンズ11の移動制御を不要と
するため、対物レンズ11とSIL12を一体化した例
も提案されている(例えば、米国5,497,359号明細
書)。この公報には、対物レンズとSILを一体化した
非球面レンズに光線を入射する例が開示されている。し
かしながら、レンズの形状については、非球面形状であ
ると記載されているのみで、具体的な形状については明
らかにされていない。
On the other hand, there has been proposed an example in which the objective lens 11 and the SIL 12 are integrated in order to make the movement control of the objective lens 11 unnecessary (for example, US Pat. No. 5,497,359). This publication discloses an example in which a light beam is incident on an aspheric lens in which an objective lens and an SIL are integrated. However, only the shape of the lens is described as being an aspherical shape, but the specific shape is not disclosed.

【0007】ところが、レンズの形状を正確に定めなけ
れば、球面収差等により焦点がぼけてしまい、光ディス
クのような記録密度の高い記録/再生装置には使用でき
ない。
However, if the shape of the lens is not accurately determined, the focus will be defocused due to spherical aberration or the like, and it cannot be used for a recording / reproducing apparatus having a high recording density such as an optical disk.

【0008】本発明は、このような点に鑑みてなされた
ものであり、その目的は、球面収差等の影響を受けづら
く、焦点がぼけないようなレンズ形状を有するエバネッ
セント波を発生可能なレンズを提供することにある。
The present invention has been made in view of such a point, and an object of the present invention is to provide a lens capable of generating an evanescent wave having a lens shape that is hardly affected by spherical aberration and the like and is not defocused. Is to provide.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ために、請求項1の発明は、空気よりも屈折率の高い媒
体で形成され、この媒体に光を入射して前記媒体内で結
像させ、この結像面からエバネッセント波を発生可能な
レンズであって、光の入射範囲の半径をx0、開口数を
NA(ただし、NA=sinθで、θはレンズに入射され
る端光線の入射角度)、レンズの屈折率をnとし、レン
ズの頂点を座標の原点として、前記頂点に接する方向に
X軸を設定し、レンズの光軸方向にZ軸を設定したとき
に、レンズ表面の座標(x,z)が前記(1)式の関係
を満たすようにレンズ形状を定めたものである。
In order to solve the above-mentioned problems, the invention according to claim 1 is formed of a medium having a refractive index higher than that of air. A lens capable of generating an evanescent wave from this image forming surface, wherein the radius of the light incident range is x0, the numerical aperture is NA (where NA = sin θ, and θ is the end ray incident on the lens) Incident angle), the refractive index of the lens is n, the vertex of the lens is the origin of coordinates, the X axis is set in a direction contacting the vertex, and the Z axis is set in the optical axis direction of the lens. The lens shape is determined so that the coordinate (x, z) satisfies the relationship of the above equation (1).

【0010】[0010]

【発明の実施の形態】以下、本発明に係るエバネッセン
ト波を発生可能なレンズについて、図面を参照しながら
具体的に説明する。本実施形態は、対物レンズとエバネ
ッセント波を発生可能なレンズとを一体化したレンズ
(以下、イマージョンレンズと呼ぶ)1を対象とする。
本実施形態のレンズは、光ディスク等の記録媒体への情
報の記録/再生に用いられるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A lens capable of generating an evanescent wave according to the present invention will be specifically described below with reference to the drawings. The present embodiment is directed to a lens (hereinafter, referred to as an immersion lens) 1 in which an objective lens and a lens capable of generating an evanescent wave are integrated.
The lens of the present embodiment is used for recording / reproducing information on a recording medium such as an optical disk.

【0011】図1は一実施形態のイマージョンレンズ1
の外形を示す図である。図示のように、イマージョンレ
ンズ1には平行光が入射する。イマージョンレンズ1
は、空気よりも光屈折率の高い媒体で形成されているた
め、入射した光は、イマージョンレンズ1の表面で屈折
してレンズ底面に結像される。レンズの底面近傍には、
図4の従来例に示したものと同様に記録媒体が設けられ
る。
FIG. 1 shows an immersion lens 1 according to an embodiment.
FIG. As shown, parallel light enters the immersion lens 1. Immersion lens 1
Is formed of a medium having a higher light refractive index than air, the incident light is refracted on the surface of the immersion lens 1 and forms an image on the bottom surface of the lens. Near the bottom of the lens,
A recording medium is provided in the same manner as that shown in the conventional example of FIG.

【0012】図2は図1のイマージョンレンズ1の形状
を具体的に説明する図である。図2では、イマージョン
レンズ1の頂点を座標の原点とし、この頂点に接する方
向にX軸を設定し、光軸方向にZ軸を設定している。イ
マージョンレンズ1の屈折率n1は、上述したように、
n1>1である。
FIG. 2 is a diagram specifically illustrating the shape of the immersion lens 1 of FIG. In FIG. 2, the vertex of the immersion lens 1 is set as the origin of the coordinates, the X axis is set in a direction in contact with the vertex, and the Z axis is set in the optical axis direction. The refractive index n1 of the immersion lens 1 is, as described above,
n1> 1.

【0013】一般に、平行光をレンズに入射したとき
に、この光が収差を全く起こさずにレンズ内で集光する
には、図1,2のような略楕円体のイマージョンレンズ
1を使用すればよいことが一般に知られている。この場
合の二次曲面のサジッタz(サジッタとは、図1に示す
ように、レンズの頂点に接する平面からレンズ表面まで
の距離zをいう)は、この平面内の所定の方向に図2の
ようなX軸を設定し、このX軸方向の距離をx、曲率を
c、円錐定数をk(離心率をeとすると、k=−e2
とすると、(3)式で表される。
In general, when parallel light is incident on a lens, the light is condensed in the lens without causing any aberration at all, by using a substantially ellipsoidal immersion lens 1 as shown in FIGS. It is generally known that what is needed is. In this case, the sagittal z of the quadratic surface (the sagitter refers to the distance z from the plane contacting the vertex of the lens to the lens surface as shown in FIG. 1) in a predetermined direction in this plane in FIG. Such an X-axis is set, the distance in the X-axis direction is x, the curvature is c, and the conic constant is k (where eccentricity is e, k = −e 2 ).
Then, it is expressed by equation (3).

【0014】[0014]

【数3】 図2において、入射光のビーム径は(2×x0)、イマ
ージョンレンズ1の屈折率はn1、イマージョンレンズ
1内での開口数はNA(NA=sinψでψはレンズに入
射される端光線の入射角度)で表され、これら3つのパ
ラメータで(3)式に示すサジッタを表現できれば、イ
マージョンレンズ1の形状を特定することができる。
(Equation 3) In FIG. 2, the beam diameter of the incident light is (2 × x0), the refractive index of the immersion lens 1 is n 1, and the numerical aperture in the immersion lens 1 is NA (NA = sinψ). If the three parameters can express the sagittar expressed by equation (3), the shape of the immersion lens 1 can be specified.

【0015】まず、開口数NAについて検討する。スネ
ルの法則により、(4)式の関係が成り立つ。ただし、
θ0は入射角、θ1は屈折角、n0は空気の屈折率(n0=
1)、n1はレンズ内の屈折率である。
First, the numerical aperture NA will be discussed. According to Snell's law, the relationship of equation (4) holds. However,
θ0 is the incident angle, θ1 is the refraction angle, n0 is the refractive index of air (n0 =
1), n1 is the refractive index in the lens.

【0016】n0sinθ0=n1sinθ1 … (4) (4)式より、入射角度が大きいほど、出射角度が大き
いことがわかる。したがって、屈折率n1の楕円体レン
ズ1に平行光を入射して集光させる場合、レンズの縁に
接する光線(図2のxmaxを通過する光線)の開口数N
Aが最も大きくなり、レンズの最大開口数NAmaxは、
NAmax=cosθ1maxで表される。同様に、入射光のビー
ム径が(2×x0)の場合には、レンズの開口数NA
は、NA=cosθ1になる。
N0 sin θ0 = n1 sin θ1 (4) From equation (4), it can be seen that the larger the incident angle, the larger the outgoing angle. Therefore, when parallel light is incident on and condensed on the ellipsoidal lens 1 having the refractive index n1, the numerical aperture N of the light beam (light beam passing through xmax in FIG. 2) in contact with the edge of the lens
A is the largest, and the maximum numerical aperture NAmax of the lens is
NAmax = cosθ1max. Similarly, when the beam diameter of the incident light is (2 × x0), the numerical aperture NA of the lens
Becomes NA = cos θ1.

【0017】ここで、(4)式に、n0=1、θ0=90°
を代入すると、(5)式が得られる。
Here, in equation (4), n0 = 1 and θ0 = 90 °
By substituting, the equation (5) is obtained.

【0018】1=n1sinθ1 … (5) (5)式を用いると、開口数NAの最大値は、(6)式
のようになる。
1 = n1sin θ1 (5) Using the expression (5), the maximum value of the numerical aperture NA is as shown in the expression (6).

【0019】[0019]

【数4】 次に、円錐係数kの演算方法を説明する。まず、図2か
ら、(7)式の関係が成り立つ。
(Equation 4) Next, a method of calculating the cone coefficient k will be described. First, from FIG. 2, the relationship of equation (7) holds.

【0020】[0020]

【数5】 また、図2より、(8)式の関係が成り立つ。(Equation 5) Also, from FIG. 2, the relationship of equation (8) holds.

【0021】θ0=90°−α … (8) (8)式を(4)式に代入すると、(9)式の関係が得
られる。
Θ0 = 90 ° −α (8) When the equation (8) is substituted into the equation (4), the relation of the equation (9) is obtained.

【0022】[0022]

【数6】 また、図2より、以下の(10)〜(12)式の関係が
成り立つ。
(Equation 6) Also, from FIG. 2, the following equations (10) to (12) hold.

【0023】ξ=α+θ1 … (10) zT=z0+x0・tanξ … (11)Ξ = α + θ1 (10) zT = z0 + x0 · tanξ (11)

【0024】[0024]

【数7】 ここで、光軸(x=0)を通過する光線の光路長と、光
軸以外(x=x0)を通過する光線の光路長とは等しい
ため、(13)式の関係が成り立つ。
(Equation 7) Here, since the optical path length of the light beam passing through the optical axis (x = 0) is equal to the optical path length of the light beam passing through other than the optical axis (x = x0), the relationship of the expression (13) is established.

【0025】n1・zT=z0+n1・L … (13) (13)式に、(7)〜(12)式を代入して、式を整
理すると、(14)式の関係が得られる。
N1 · zT = z0 + n1 · L (13) By substituting the equations (7) to (12) into the equation (13) and rearranging the equations, the relation of the equation (14) is obtained.

【0026】[0026]

【数8】 次に、レンズ内の焦点位置zTの演算方法を説明する。
上述したように、x=xmaxの光線は、イマージョンレ
ンズ1に接するため、x=xmaxのときには、(15)
式の関係が成り立つ。
(Equation 8) Next, a method of calculating the focal position zT in the lens will be described.
As described above, the light beam of x = xmax comes into contact with the immersion lens 1, so that when x = xmax, (15)
The relationship of the expression holds.

【0027】dz/dx=∞ … (15) (3)式を微分して、(15)式の関係が成り立つよう
に式を変形すると、(16)式の関係が得られる。
Dz / dx = ∞ (15) By differentiating the equation (3) and transforming the equation so that the relation of the equation (15) holds, the relation of the equation (16) is obtained.

【0028】[0028]

【数9】 (16)式を(3)式に代入すると、(17)式が得ら
れる。
(Equation 9) By substituting equation (16) into equation (3), equation (17) is obtained.

【0029】[0029]

【数10】 上述した(5),(16),(17)式より、光軸上で
の焦点位置zTは、(18)式のようになる。
(Equation 10) From the above equations (5), (16) and (17), the focal position zT on the optical axis is as shown in equation (18).

【0030】 zT=zmax+xmax・tanθ1=n/{c(n−1)} … (18) 次に、楕円体レンズ1の曲率cの演算方法を説明する。
上述したように、NA=cosθ1であるため、以下の(1
9)式の関係が成り立つ。
ZT = zmax + xmax · tan θ1 = n / {c (n−1)} (18) Next, a method of calculating the curvature c of the ellipsoidal lens 1 will be described.
As described above, since NA = cos θ1, the following (1)
The relationship of the expression 9) is established.

【0031】 (19)式のα,θ1に、(5),(7)式を代入する
と、(20)式の関係が得られる。
[0031] By substituting the equations (5) and (7) for α and θ1 in the equation (19), the relation of the equation (20) is obtained.

【0032】[0032]

【数11】 (14)式および(20)式を(3)式に代入すると、
(21)式のように、x座標におけるサジッタzが、レ
ンズの開口数NA、レンズの屈折率n、および入射光の
半径x0で表される。
[Equation 11] Substituting equations (14) and (20) into equation (3) gives
As in Expression (21), the sagittal z at the x coordinate is represented by the numerical aperture NA of the lens, the refractive index n of the lens, and the radius x0 of the incident light.

【0033】[0033]

【数12】 ここで、(21)式の右辺第2項は、レンズ形状の許容
可能な誤差範囲を示している。第2項の分母の「100」
は概略値であり、この数値を大きくするほどレンズ形状
は正確になるが、それだけ製造条件は厳しくなる。
(Equation 12) Here, the second term on the right side of the equation (21) indicates an allowable error range of the lens shape. "100" in the denominator of the second term
Are approximate values, and the larger the value, the more accurate the lens shape, but the more severe the manufacturing conditions.

【0034】一方、図2のイマージョンレンズ1の表面
から焦点位置までの光軸上の距離T(=zT)は、(1
8)式に(14)式および(20)式を代入すると、
(22)式で表される。
On the other hand, the distance T (= zT) on the optical axis from the surface of the immersion lens 1 to the focal position in FIG.
Substituting equations (14) and (20) into equation 8),
It is expressed by equation (22).

【0035】[0035]

【数13】 一例として、イマージョンレンズ1の屈折率nをn=1.
8943、開口数NAをNA=0.70、座標xをx0=10とす
ると、レンズ表面の形状は、(23)式のようになる。
(Equation 13) As an example, the refractive index n of the immersion lens 1 is set to n = 1.
Assuming that 8943, the numerical aperture NA is NA = 0.70, and the coordinate x is x0 = 10, the shape of the lens surface is as shown in equation (23).

【0036】[0036]

【数14】 また、レンズの中央部の厚みは、T=18.8518±0.10に
なる。
[Equation 14] In addition, the thickness of the central portion of the lens is T = 18.8518 ± 0.10.

【0037】実際には、図1のイマージョンレンズ1の
底面付近には、図3に示すように、レンズの傷つきを防
止するための膜2が形成される。この膜2は例えば、ポ
リカーボネイトで形成される。より厳密には、膜2は、
イマージョンレンズ1自体を保護する膜や、記録/再生
を行う記録媒体上の保護膜が考えられ、また、イマージ
ョンレンズ1と記録媒体との間の空気も、膜の一部とし
て取り扱ってもよい。この場合、膜2の光軸方向の厚み
が十分に薄いか、あるいは、膜2の屈折率がイマージョ
ンレンズ1に最も多用される材質の屈折率とほぼ同じで
あれば、レンズ表面の形状は、上述した(20),(2
3)式と同様の式で表される。
Actually, as shown in FIG. 3, a film 2 for preventing the lens from being damaged is formed near the bottom surface of the immersion lens 1 in FIG. This film 2 is formed of, for example, polycarbonate. More precisely, membrane 2 is
A film that protects the immersion lens 1 itself or a protective film on a recording medium that performs recording / reproduction is conceivable, and air between the immersion lens 1 and the recording medium may be treated as a part of the film. In this case, if the thickness of the film 2 in the optical axis direction is sufficiently small, or if the refractive index of the film 2 is almost the same as the refractive index of the material most frequently used for the immersion lens 1, the shape of the lens surface becomes (20), (2)
3) It is expressed by an equation similar to the equation.

【0038】また、図3のような膜2を結像位置の前に
2層以上設けた場合も、これら媒体の厚みが十分に薄い
か、これら媒体の屈折率がイマージョンレンズ1に最も
多用されている材質の屈折率とほぼ同じであれば、レン
ズの表面の形状は、上述した(20),(23)式と同
様の式で表される。
When two or more films 2 as shown in FIG. 3 are provided in front of the image forming position, the thickness of these media is sufficiently small or the refractive index of these media is most frequently used for the immersion lens 1. If the refractive index of the material is almost the same, the shape of the surface of the lens is expressed by the same equation as the above-mentioned equations (20) and (23).

【0039】このように、本実施形態では、イマージョ
ンレンズ1に略平行な光を入射したときに、入射光が一
点に集光するようにレンズ形状を定めたため、球面収差
等の影響を回避でき、レンズの焦点位置に微小な光スポ
ットを形成できる。また、レンズ形状の誤差範囲を予め
設定したため、製造ばらつきによるレンズ特性の相違を
一定範囲内に抑えることができる。
As described above, in the present embodiment, when substantially parallel light is incident on the immersion lens 1, the lens shape is determined so that the incident light is condensed at one point, so that the influence of spherical aberration and the like can be avoided. A minute light spot can be formed at the focal position of the lens. Further, since the error range of the lens shape is set in advance, it is possible to suppress a difference in lens characteristics due to manufacturing variations within a certain range.

【0040】また、上述した(21),(22)式の関
係を満たすような形状のイマージョンレンズ1を用いて
光記録/再生装置を構成する場合には、イマージョンレ
ンズ1の底面近傍に光ディスクを配置して、記録データ
に応じた光信号をイマージョンレンズ1に平行入射すれ
ばよい。これにより、イマージョンレンズ1の底面に微
小な光スポットが形成され、イマージョンレンズ1から
漏れ出たエバネッセント波により光ディスク上にピット
列を形成できる。
When an optical recording / reproducing apparatus is configured using the immersion lens 1 having a shape satisfying the above-mentioned relations (21) and (22), an optical disk is placed near the bottom of the immersion lens 1. In this case, the optical signal corresponding to the recording data may be incident on the immersion lens 1 in parallel. As a result, a minute light spot is formed on the bottom surface of the immersion lens 1, and a pit row can be formed on the optical disk by the evanescent wave leaking from the immersion lens 1.

【0041】このような構成にすることにより、光記録
/再生装置内に別途対物レンズを設ける等の必要がなく
なり、光学系の構成を簡略化できる。
By adopting such a configuration, it is not necessary to separately provide an objective lens in the optical recording / reproducing apparatus, and the configuration of the optical system can be simplified.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明によ
れば、対物レンズとエバネッセント波を発生可能なレン
ズとを一体化し、レンズの形状を所定の形状に定めたた
め、球面収差等の影響を受けづらく、焦点がぼけないレ
ンズが得られる。
As described above in detail, according to the present invention, the objective lens and the lens capable of generating an evanescent wave are integrated, and the lens shape is determined to a predetermined shape. A lens that is hard to receive light and is not out of focus is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施形態のイマージョンレンズ1の外形を示
す図。
FIG. 1 is a diagram showing an outer shape of an immersion lens 1 according to an embodiment.

【図2】図1のイマージョンレンズ1の形状を具体的に
説明する図。
FIG. 2 is a diagram specifically illustrating the shape of the immersion lens 1 of FIG.

【図3】イマージョンレンズの底面付近にレンズの傷つ
きを防止する膜を形成した図。
FIG. 3 is a diagram in which a film for preventing damage to the lens is formed near the bottom surface of the immersion lens.

【図4】エバネッセント波を発生可能なレンズを用いた
従来の光記録/再生装置の概略構成を示す図。
FIG. 4 is a diagram showing a schematic configuration of a conventional optical recording / reproducing apparatus using a lens capable of generating an evanescent wave.

【符号の説明】[Explanation of symbols]

1 エバネッセント波を発生可能なレンズ(イマージョ
ンレンズ) 2 膜
1 Lens capable of generating evanescent waves (immersion lens) 2 Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】空気よりも屈折率の高い媒体で形成され、
この媒体に光を入射して前記媒体内で結像させ、この結
像面からエバネッセント波を発生可能なレンズであっ
て、 光の入射範囲の半径をx0、開口数をNA、レンズの屈
折率をnとし、レンズの頂点を座標の原点として、前記
頂点を通る接線方向にX軸を設定し、レンズの光軸方向
にZ軸を設定したときに、レンズ表面の座標(x,z)
が(1)式の関係を満たすようにレンズ形状を定めたこ
とを特徴とするエバネッセント波を発生可能なレンズ。 【数1】
(1) The medium is formed of a medium having a higher refractive index than air.
A lens capable of emitting light to this medium to form an image in the medium and generating an evanescent wave from the image forming surface, wherein a radius of a light incident range is x0, a numerical aperture is NA, and a refractive index of the lens. Let n be the vertex of the lens and the X axis set in the tangential direction passing through the vertex, and the Z axis set in the optical axis direction of the lens.
A lens capable of generating an evanescent wave, wherein the lens shape is determined so as to satisfy the relationship of equation (1). (Equation 1)
【請求項2】レンズの頂点とレンズの底面との距離Tが
(2)式で表されるようにレンズ形状を定めたことを特
徴とする請求項1に記載のエバネッセント波を発生可能
なレンズ。 【数2】
2. A lens capable of generating an evanescent wave according to claim 1, wherein the lens shape is determined so that a distance T between a vertex of the lens and a bottom surface of the lens is expressed by the following equation (2). . (Equation 2)
JP10003114A 1998-01-09 1998-01-09 Lens capable of generating evanescent wave Pending JPH11203712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003114A JPH11203712A (en) 1998-01-09 1998-01-09 Lens capable of generating evanescent wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10003114A JPH11203712A (en) 1998-01-09 1998-01-09 Lens capable of generating evanescent wave

Publications (1)

Publication Number Publication Date
JPH11203712A true JPH11203712A (en) 1999-07-30

Family

ID=11548335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003114A Pending JPH11203712A (en) 1998-01-09 1998-01-09 Lens capable of generating evanescent wave

Country Status (1)

Country Link
JP (1) JPH11203712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366154B1 (en) * 2000-11-15 2002-12-31 송태선 Optical pickup apparatus for read/write heads in high density optical storages
KR100652562B1 (en) * 1999-12-01 2006-12-01 엘지전자 주식회사 Near-field recording and reproducing system and recording media
CN109932764A (en) * 2018-09-03 2019-06-25 杨兆强 A kind of function surface lens of energy vernier focusing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652562B1 (en) * 1999-12-01 2006-12-01 엘지전자 주식회사 Near-field recording and reproducing system and recording media
KR100366154B1 (en) * 2000-11-15 2002-12-31 송태선 Optical pickup apparatus for read/write heads in high density optical storages
CN109932764A (en) * 2018-09-03 2019-06-25 杨兆强 A kind of function surface lens of energy vernier focusing

Similar Documents

Publication Publication Date Title
US6236514B1 (en) Optical head device and near-field light emitting device
JPH08315404A (en) Optical pickup device
JP3209980B2 (en) Optical pickup device
JP3608333B2 (en) Optical pickup and method of assembling objective lens for optical pickup
JP2001194582A (en) Objective lens for high-density light focusing and optical pickup device adopting the same, and optical disk suitable for the same
US6940803B2 (en) Optical head, recording and reproducing apparatus and solid immersion lens
JPH0614135B2 (en) Single lens and optical information reading and / or writing device
JPWO2005098838A1 (en) Objective lens, optical head, and optical pickup device
JP2005508560A (en) Optical scanning device
JP3380223B2 (en) Objective lens for high-density light focusing and optical pickup device employing the same
JP3704833B2 (en) Objective lens and recording / reproducing apparatus
JP2002522809A (en) Optical scanning device and optical apparatus for reading and / or writing information on an information surface equipped with such a device
JP3918331B2 (en) Reflective micro-optical system
TWI229745B (en) Objective lens for optical pick-up
JPH11203712A (en) Lens capable of generating evanescent wave
JP2004523053A (en) Optical pickup device for high-density optical recording and reproduction
US6730896B1 (en) Optical pickup device
JP2005535063A (en) Scanning device including an objective lens formed of two kinds of materials
JP2001034998A (en) Optical head and its manufacture
JP2001155369A (en) Optical system for optical information recording and reproducing device
JP2003140036A (en) Objective for optical recording medium and optical pickup device using the same
JP4364328B2 (en) Objective lens for high-density optical recording media
JP2004251924A (en) Beam expander and optical head using the same
KR100366154B1 (en) Optical pickup apparatus for read/write heads in high density optical storages
KR100297765B1 (en) Optical pickup for high density recording/playback