JP2000241659A - Method and device for combining light radiated from multi-mode laser diode - Google Patents

Method and device for combining light radiated from multi-mode laser diode

Info

Publication number
JP2000241659A
JP2000241659A JP11042578A JP4257899A JP2000241659A JP 2000241659 A JP2000241659 A JP 2000241659A JP 11042578 A JP11042578 A JP 11042578A JP 4257899 A JP4257899 A JP 4257899A JP 2000241659 A JP2000241659 A JP 2000241659A
Authority
JP
Japan
Prior art keywords
light
cylindrical lens
beams
prism
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11042578A
Other languages
Japanese (ja)
Inventor
Hideo Tsujikawa
秀雄 辻河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOOA JAPAN KK
Original Assignee
BOOA JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOOA JAPAN KK filed Critical BOOA JAPAN KK
Priority to JP11042578A priority Critical patent/JP2000241659A/en
Publication of JP2000241659A publication Critical patent/JP2000241659A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase energy density per unit area, by collecting and shaping light radiated from a multi-mode semiconductor laser with a cylindrical lens, reflecting it with a total reflection mirror or a prism, making a dense arrangement substantially in parallel, and collecting and combining the outputted light. SOLUTION: A multi-mode semiconductor laser 2 is loaded on a heat sink 1, and is mounted to a caing with a heat radiation effect. A fast direction of laser light emitted from an emitter is first collected and shaped by a placed cylindrical lens 3, and next, its slow axis direction is collected and shaped by a cylindrical lens 4 whose emitted side is flat and opposite side is circular. The beams are reflected orthogonally by a total reflection mirror or a prism 5. In this case, the position of the mirror or the prism 5 is determined so that the reflected light is substantially parallel. A beam shape 9 on a glass surface at a glass window of the casing comes into a dense arrangement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は多モード半導体レーザ
ー出力の結合方法に関するものである。さらに詳しく
は、この発明は低出力のレーザー装置であってもその出
力の増強を図ることができるレーザー出力の結合方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coupling the output of a multimode semiconductor laser. More particularly, the present invention relates to a laser output coupling method capable of enhancing the output of a low-power laser device.

【0002】[0002]

【従来の技術】レーザー光の高出力化への要求を満たす
ため、各種のレーザー光源の高出力化が進められてい
る。中でも注目されているのものとして半導体レーザー
である。これまでの高出力を得るための方法として知ら
れているレーザー光の出力結合方法としては、主として
次の二つの方法がある。
2. Description of the Related Art In order to satisfy the demand for higher output of laser light, higher output of various laser light sources has been promoted. Among them, a semiconductor laser has attracted attention. There are mainly the following two methods for coupling the output of laser light known as a method for obtaining a high output so far.

【0003】「偏光結合法」この方法は、図1に例示し
たように、相互に光の偏光面が直交する一組の直線偏光
であるレーザー光(101)(102)を、偏光結合器
(103)によって結合する方法である。
"Polarization Coupling Method" As shown in FIG. 1, in this method, a pair of linearly polarized laser beams (101) and (102) whose light polarization planes are orthogonal to each other are combined with a polarization coupler ( 103).

【0004】この方法により一組のレーザー光(10
1)(102)は結合されるが、得られるレーザー光は
位相差はランダムで時間的に変化するため結合された光
も一般に楕円偏光となり、この方法の場合は二組以上の
レーザー光を結合できない。またこの集光装置において
は光学部品の製作・組立てが著しく難しく高価になる。
「ファイバー結合法」一方、ファイバーを用いたレーザ
ー光結合法も知られている。この方法は、図2に示した
ように、レ−ザー光をたとえば100ミクロン径程度の
光ファイバー(104)に入射し、この光ファイバ(1
04)を複数個まとめて出力を合成するものである。
According to this method, a set of laser beams (10
1) Although (102) is combined, the obtained laser light has a random phase difference and changes with time, so the combined light is also generally elliptically polarized light. In this method, two or more sets of laser light are combined. Can not. Further, in this light collecting device, it is extremely difficult and expensive to manufacture and assemble optical components.
"Fiber coupling method" On the other hand, a laser light coupling method using a fiber is also known. In this method, as shown in FIG. 2, laser light is incident on an optical fiber (104) having a diameter of, for example, about 100 microns, and this optical fiber (1) is used.
04) are combined to combine the outputs.

【0005】この方法は多数のレーザー光の出力を結合
できるという特徴を有しているものの、ファイバーから
の最終出力の形状が複数個となる。また、単位面積あた
りのエネルギー密度も高めることができなく、多数のレ
ーザー光の出力を合成できるという特徴が生かされな
い。
[0005] Although this method has the feature that the outputs of a large number of laser beams can be combined, the shape of the final output from the fiber is plural. In addition, the energy density per unit area cannot be increased, and the feature that many laser light outputs can be combined cannot be utilized.

【0006】[0006]

【発明が解決しようとする課題】多数の低出力の多モー
ド半導体レーザーから放射される光を結合し、従来法で
は難しい単位面積あたりのエネルギー密度の増加を可能
にし、かつその結合装置については光学的調節を著しく
簡単にしかつ安価にする。
SUMMARY OF THE INVENTION The light emitted from a large number of low-power multimode semiconductor lasers is combined to increase the energy density per unit area, which is difficult with the conventional method, and the coupling device is an optical device. Significantly simplifying and reducing costs.

【0007】[0007]

【課題を解決するための手段】各低出力の多モード半導
体レーザーから放射される光をシリンドリカルレンズで
集光・整形し、全反射ミラーあるいはプリズムで反射さ
せ、それらのビームをできるだけ密にかつ略平行に配置
し出力を集光し、結合する。このように合成された光
は、略平行なビームを形成するため、集光レンズを配置
してマルチモード光ファイバーに集光する。このため、
単位面積あたりのエネルギー密度も増加する。
The light emitted from each low-power multimode semiconductor laser is condensed and shaped by a cylindrical lens, reflected by a total reflection mirror or a prism, and the beams are made as dense and nearly as possible. The outputs are collected in parallel and combined. The light thus combined forms a substantially parallel beam and is condensed on a multimode optical fiber by disposing a condenser lens. For this reason,
The energy density per unit area also increases.

【0008】[0008]

【実施例1】エミッターサイズが1ミクロンx100ミ
クロン、ファースト軸方向広がり半値角47度、スロー
軸方向広がり半値角12度で2ワットの発光出力がある
多モード半導体レーザー(2)をヒートシンク(1)に
搭載し、それを放熱効果のある筐体(6)に取り付け
る。エミッターから放出されるレーザー光をまずファー
スト軸方向をシリンドリカルレンズ(3)を配置して集
光・整形し、つぎスロー軸方向をエミッター側をフラッ
トでその反対側が円柱状の平―シリンドリカルレンズ
(4)を配置し集光・整形する。たとえば、シリンドリ
カルレンズ(3)は直径0.5mm―焦点距離0.2m
m、平―シリンドリカルレンズ(4)はレンズ径2mm
―焦点距離8mmが望ましい。そのビームを全反射ミラ
ーあるはプリズム(5)で直角方向(8)に反射させ
る。1から5と同じ構成を持つ構成物この実施例では4
個スロー軸方向に一列に並べる。5のミラーあるいは、
プリズムの位置は、その反射光が略平行になるように配
置する。この筐体(6)は石英あるいはサファイアのガ
ラス(7)で、気密性の高い状態に製作される。このガラ
ス窓でのガラス面上のビーム形状(9)は密集して配置
された状態になる。各ビームの形状は、0.5mmx
2.0mmとなり、これが密に配置され合成されたビー
ムは、2.0mmx2.0mmとなる。このビームの光
軸上に集光レンズ(11)を配置し、多モード光ファイ
バー(13)をその焦点部に位置するように配置し集光
する。筐体(14)は集光レンズ(11)と多モード光
ファイバーの位置を正確に固定するコネクター(12)
を配置している。集光レンズ(11)は焦点距離4.5
mmでNAが略0.22のコア径が60ミクロンの多モ
ード光ファイバーに結合される。この多モード光ファイ
バーの出射部では5―6ワットのレーザー光が得られ
る。
Embodiment 1 A multi-mode semiconductor laser (2) having an emission size of 2 watts with an emitter size of 1 μm × 100 μm, a FWHM of 47 ° in a fast axis direction and a FWHM of 12 ° in a slow axis direction is used as a heat sink (1). And attach it to the housing (6) having a heat radiation effect. First, a laser beam emitted from the emitter is condensed and shaped by arranging a cylindrical lens (3) in the first axis direction, and then a flat-cylindrical lens (4) in which the slow axis direction is flat on the emitter side and the opposite side is cylindrical. ) And focus and shape. For example, the cylindrical lens (3) has a diameter of 0.5 mm and a focal length of 0.2 m
m, flat-cylindrical lens (4) has a lens diameter of 2 mm
-A focal length of 8 mm is desirable. The beam is reflected at right angles (8) by a total reflection mirror or prism (5). A component having the same configuration as 1 to 5 is 4 in this embodiment.
The pieces are arranged in a line in the direction of the slow axis. 5 mirrors or
The position of the prism is arranged such that the reflected light is substantially parallel. This housing (6) is made of quartz or sapphire glass (7) and is manufactured in a highly airtight state. The beam shape (9) on the glass surface in the glass window is densely arranged. The shape of each beam is 0.5mmx
2.0 mm, and the densely arranged and combined beam is 2.0 mm × 2.0 mm. A condensing lens (11) is arranged on the optical axis of this beam, and a multimode optical fiber (13) is arranged so as to be located at the focal point and condensed. The housing (14) is a connector (12) for accurately fixing the positions of the condenser lens (11) and the multimode optical fiber.
Has been arranged. The condenser lens (11) has a focal length of 4.5.
It is coupled to a multimode optical fiber having a core diameter of 60 microns and a NA of about 0.22 mm. A laser beam of 5 to 6 watts is obtained from the emission section of the multimode optical fiber.

【0009】[0009]

【発明の効果】低出力多モード半導体レーザーから出射
される光を略平行なビームの状態でかつ高い密度で、た
とえばビームがほとんど重なり合うほどに配置するため
集光レンズで小さいNAでビームを集光することができ
る。この結果、たとえばNA=0.2で60ミクロン径
の多モード光ファイバーに5−6ワット、あるいは、6
00ミクロン径では90ワット程度のレーザー光を集光
できる。このような良質なレーザー光は、医療分野に
も、単結晶レーザーの励起用にも大きな用途が期待でき
る。
According to the present invention, the light emitted from the low-power multimode semiconductor laser is arranged in a substantially parallel beam state and at a high density, for example, so that the beams almost overlap each other. can do. As a result, for example, 5 to 6 watts or 6 to 6
With a diameter of 00 microns, a laser beam of about 90 watts can be collected. Such high-quality laser light can be expected to have great applications both in the medical field and for exciting single crystal lasers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来型の偏光結合法。FIG. 1 shows a conventional polarization coupling method.

【図2】従来型のファイバー結合法。FIG. 2 shows a conventional fiber coupling method.

【図3】実施例1FIG. 3 is a first embodiment.

【符号の説明】[Explanation of symbols]

1 、ヒートシンク 2 、多モード半導体レーザー 3 、ファースト軸シリンドリカルレンズ 4 、スロー軸シリンドリカルレンズ 5 、全反射ミラー(またはプリズム) 6 、筐体 7 、サファイアガラス 8 、集光・整形・反射後のレーザービーム 9 、サフィアガラス面のビーム形状 11、集光レンズ 12、コネクター 13、多モード光ファイバー 14、筐体 101、レーザー光 102、レーザー光 103、偏光結合器 104、光ファイバー Reference Signs List 1, heat sink 2, multi-mode semiconductor laser 3, fast-axis cylindrical lens 4, slow-axis cylindrical lens 5, total reflection mirror (or prism) 6, housing 7, sapphire glass 8, laser beam after condensing, shaping and reflection 9, beam shape on sapphire glass surface 11, condenser lens 12, connector 13, multimode optical fiber 14, housing 101, laser light 102, laser light 103, polarization coupler 104, optical fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の多モード半導体レーザーから発射
された光を結合する装置であって、各多モード半導体レ
ーザーの発光領域のファースト軸方向、スロー軸方向の
順に別々に集光・整形されたビームを全反射ミラーを配
置し略平行かつ重ならない程度に密集するように反射さ
せ結合する装置。
1. An apparatus for combining light emitted from a plurality of multimode semiconductor lasers, wherein the light is separately focused and shaped in the first axis direction and the slow axis direction of a light emitting region of each multimode semiconductor laser. A device that reflects and combines the beams so that they are closely parallel and dense so that they do not overlap with each other by placing a total reflection mirror.
【請求項2】 前記請求項1の結合装置において、略平
行でかつ重ならない程度に密集したビームの光軸上に各
ビームを一括結合する集光レンズを配置し、多モード光
ファイバーに集光する装置。
2. The coupling device according to claim 1, further comprising a condensing lens that collectively couples the beams on the optical axis of the beams that are substantially parallel and dense so as not to overlap, and condenses the light to a multimode optical fiber. apparatus.
【請求項3】 前記請求項1の集光装置において、略平
行でかつ重ならない程度に密集したビームの光軸上に各
ビームを一括集光する集光レンズを配置しスポット上に
結合する装置。
3. A condensing device according to claim 1, wherein a condensing lens for collectively condensing each beam is arranged on an optical axis of the beams which are substantially parallel and dense so as not to overlap, and are combined on a spot. .
JP11042578A 1999-02-22 1999-02-22 Method and device for combining light radiated from multi-mode laser diode Pending JP2000241659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11042578A JP2000241659A (en) 1999-02-22 1999-02-22 Method and device for combining light radiated from multi-mode laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042578A JP2000241659A (en) 1999-02-22 1999-02-22 Method and device for combining light radiated from multi-mode laser diode

Publications (1)

Publication Number Publication Date
JP2000241659A true JP2000241659A (en) 2000-09-08

Family

ID=12639962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042578A Pending JP2000241659A (en) 1999-02-22 1999-02-22 Method and device for combining light radiated from multi-mode laser diode

Country Status (1)

Country Link
JP (1) JP2000241659A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501144A (en) * 2004-06-01 2008-01-17 トルンプ フォトニクス,インコーポレイテッド Optimal matching of the output of a two-dimensional laser array stack to an optical fiber
EP2908517A1 (en) 2014-02-14 2015-08-19 Mitsubishi Electric Corporation Laser beam-combining optical invention
WO2016039481A1 (en) * 2014-09-12 2016-03-17 株式会社フジクラ Ld module
JP2016157971A (en) * 2016-04-21 2016-09-01 株式会社フジクラ Ld module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501144A (en) * 2004-06-01 2008-01-17 トルンプ フォトニクス,インコーポレイテッド Optimal matching of the output of a two-dimensional laser array stack to an optical fiber
EP2908517A1 (en) 2014-02-14 2015-08-19 Mitsubishi Electric Corporation Laser beam-combining optical invention
US9431795B2 (en) 2014-02-14 2016-08-30 Mitsubishi Electric Corporation Laser beam-combining optical device
WO2016039481A1 (en) * 2014-09-12 2016-03-17 株式会社フジクラ Ld module
JP2016062918A (en) * 2014-09-12 2016-04-25 株式会社フジクラ LD module
US10116117B2 (en) 2014-09-12 2018-10-30 Fujikura Ltd. LD module
JP2016157971A (en) * 2016-04-21 2016-09-01 株式会社フジクラ Ld module

Similar Documents

Publication Publication Date Title
TWI274199B (en) Optically coupling into highly uniform waveguides
US5359622A (en) Radial polarization laser resonator
KR101354322B1 (en) Laser light source device
JP2000019362A (en) Optical coupling device for array type semiconductor laser and solid-state laser device using this array type semiconductor laser
JP2000241659A (en) Method and device for combining light radiated from multi-mode laser diode
JP4347467B2 (en) Concentrator
JP2003309309A (en) High-density and high-output laser device
TW200425602A (en) Laser light coupler device
US6829256B2 (en) Fiber laser apparatus as well as optical multi/demultiplexer and image display apparatus therefor
JP3761708B2 (en) Semiconductor laser light source and solid-state laser device
JP2725648B2 (en) Solid-state laser excitation method and solid-state laser device
WO2003088435A1 (en) Laser oscillator and optical amplifier
KR20190040545A (en) High-power laser diode module using parabolic mirror
JP3060986B2 (en) Semiconductor laser beam shaping optical system and semiconductor laser pumped solid-state laser device
JP2956152B2 (en) Laser light source
JP4402048B2 (en) Solid-state laser excitation module and laser oscillator
JP4850591B2 (en) Optical coupling device, solid-state laser device, and fiber laser device
JP2009168846A (en) Light condensing device and light condensing method
JPH0747891Y2 (en) Solid-state laser device
JP2001185792A (en) Optical element for laser
JPH08146250A (en) Condenser lens and its production
WO2023108834A1 (en) Solid laser and solid laser system
JP3003172B2 (en) Solid state laser oscillator
JPH04320383A (en) Semiconductor laser-excited solid state laser
JP2004354898A (en) Optical module, optical fiber laser instrument and image display device