JP2000239885A - Anode for electrolytic refining of copper and its production - Google Patents

Anode for electrolytic refining of copper and its production

Info

Publication number
JP2000239885A
JP2000239885A JP11040534A JP4053499A JP2000239885A JP 2000239885 A JP2000239885 A JP 2000239885A JP 11040534 A JP11040534 A JP 11040534A JP 4053499 A JP4053499 A JP 4053499A JP 2000239885 A JP2000239885 A JP 2000239885A
Authority
JP
Japan
Prior art keywords
mass
ppm
copper
anode
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11040534A
Other languages
Japanese (ja)
Inventor
Koji Noda
晃次 乃田
Noboru Nakamura
登 中村
Gunshi Ishii
軍志 石井
Kazuyuki Kawabata
和之 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP11040534A priority Critical patent/JP2000239885A/en
Publication of JP2000239885A publication Critical patent/JP2000239885A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To produce an anode for the electrolytic refining of copper capable of reliably preventing the inclusion of Bi into electrolytic copper though Bi is contained in the anode by a simple method and apparatus excellent in economical efficiency. SOLUTION: The anode for the electrolytic refining of copper has a lead content satisfying the conditions (1) 260 (mass-ppm)<=hPb <=600 (mass-ppm) in the case of Bi<40 (mass-ppm), (2) 260 (mass-ppm)<=Pb<=[50.0×Bi-1,400] (mass-ppm) in the case of 40 (mass-ppm)<=Bi<46 (mass-ppm), (3) [50.4×Bi-2,058] (mass-ppm)<=Pb<=[50.0×Bi-1,400] (mass-ppm) in the case of 46 (mass-ppm)<=Bi<71 (mass-ppm) and (4) 1,520 (mass-ppm)<=Pb<=2,150 (mass-ppm) in the case of Bi >=71 (mass-ppm). Metal lead is added to a refining furnace in the dry refining of copper and/or metal lead is added to crude copper aftermelt refining in an anode casting step to produce the objective anode for the electrolytic refining of copper.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅製錬における電
解精製に用いられる銅電解精製用アノードおよびその製
造方法に関し、特に、電解液中に浮遊する不純物金属イ
オンであるビスマス(Bi)の製品電気銅への混入を防止す
ることが可能な銅電解精製用アノードおよびその製造方
法に関する。
The present invention relates to an anode for electrolytic copper refining used in electrolytic refining in copper smelting and a method for producing the same. The present invention relates to a copper electrolytic refining anode capable of preventing contamination with copper and a method for producing the same.

【0002】[0002]

【従来の技術】銅製錬における電気銅は、下記の工程に
よって製造される。すなわち、先ず、銅鉱石を溶解、酸
化して得た粗銅を精製炉において精製し、得られた純度
98〜99wt%の精製粗銅を銅電解精製用の陽極板(以下、
銅電解精製用アノードまたはアノードと記す)として鋳
造する。
2. Description of the Related Art Electrolytic copper in copper smelting is manufactured by the following steps. That is, first, crude copper obtained by dissolving and oxidizing copper ore is purified in a purification furnace, and the obtained purity is obtained.
98-99wt% refined crude copper is converted to an anode plate for copper electrolytic refining (hereinafter referred to as
(Referred to as copper electrolytic refining anode or anode).

【0003】次に、鋳造して得られた銅電解精製用アノ
ードおよび陰極板(以下、カソードと記す)を、硫酸銅
溶液である電解液を入れた電解槽内に交互に一定間隔で
配置し、電流密度:200 〜270A/m2 もしくはそれ以上の
電流が通電された条件下で、精製粗銅であるアノードか
ら電解液中に溶出した銅イオンをカソードに電着せし
め、極めて高純度の銅(電気銅)が製造される。
Next, an anode and a cathode plate (hereinafter, referred to as a cathode) for copper electrorefining obtained by casting are alternately arranged at regular intervals in an electrolytic tank containing an electrolytic solution which is a copper sulfate solution. , Current density: under conditions where a current of 200 to 270 A / m 2 or more is applied, copper ions eluted from the anode, which is purified crude copper, into the electrolytic solution are electrodeposited on the cathode, and extremely high-purity copper ( Electrolytic copper) is manufactured.

【0004】一方、精製粗銅であるアノード中には微量
ながら不純物が含まれ、上記した電解の進行によってB
i、Sb、As、Feなどの不純物金属イオンが電解液中に溶
出する。これらの不純物金属イオンの電解液中の濃度が
一定値以上になると、電着銅の純度低下、電流効率の低
下および導電率の低下をもたらすため、不純物金属イオ
ンの除去のための浄液処理が必要となっている。
[0004] On the other hand, the anode, which is purified crude copper, contains a small amount of impurities.
Impurity metal ions such as i, Sb, As, and Fe elute into the electrolyte. If the concentration of these impurity metal ions in the electrolyte exceeds a certain value, the purity of the electrodeposited copper decreases, the current efficiency decreases, and the conductivity decreases. Is needed.

【0005】特に、Biは、電解液中で浮遊スライムとな
ってカソード表面に付着して製品(:電気銅)の品質を
下げ、電着銅の表面にツブを発生し易く、さらにBiは融
点が低いことから、粒界に存在するBiが、電気銅の線材
加工などにおける熱間加工時に溶けて加工品を切断、破
断させるなどの悪影響を及ぼす。このため、電気銅中の
Biの含有量は通常1mass-ppm以下に制限する必要があ
る。
[0005] In particular, Bi forms floating slime in the electrolytic solution and adheres to the surface of the cathode to lower the quality of the product (electrolytic copper), and tends to cause bumps on the surface of the electrodeposited copper. , Bi present in the grain boundaries has an adverse effect such as melting at the time of hot working in wire processing of electrolytic copper and cutting or breaking the processed product. For this reason,
It is usually necessary to limit the Bi content to 1 mass-ppm or less.

【0006】また、上記した銅製品に及ぼすBiの影響を
最小限にするためには、電解液中に浮遊するBiの濃度を
100mg/l 以下に抑える必要がある。電解液中のBiを除去
する方法として、特開昭55−154595号公報、特公昭58−
10995 号公報において、電解液中に薬剤を添加する方法
が開示されている。しかし、上記したこれらの方法は、
電解液中に炭酸バリウムを添加して生成する硫酸バリウ
ムとBi、Sbを共沈させる方法、または電解液中にバリウ
ム、ストロンチウムまたは鉛の炭酸塩を添加しBiを共沈
させる方法であり、下記の問題点があった。
In order to minimize the influence of Bi on the above copper products, the concentration of Bi suspended in the electrolyte must be reduced.
It must be kept below 100mg / l. As a method for removing Bi from the electrolyte, JP-A-55-154595 and JP-B-58-154595 have been disclosed.
No. 10995 discloses a method of adding a drug to an electrolytic solution. However, these methods described above,
A method of co-precipitating Bi, Sb with barium sulfate generated by adding barium carbonate to the electrolyte, or a method of co-precipitating Bi by adding carbonate of barium, strontium or lead in the electrolyte, There was a problem.

【0007】すなわち、上記したBiの除去方法は、いず
れも電解液中に炭酸バリウム、炭酸ストロンチウム、炭
酸鉛などの薬剤を添加するものであり、高価な薬剤が必
要となる上、所定量の薬剤を添加してもBiの電気銅への
混入を防止できない問題点があった。また、電解液中の
Biを除去する他の方法として、特開昭60−211091号公報
において、電解液を特定のキレート樹脂と接触せしめて
電解液中のBi、Sbなどの不純物を除去する方法が開示さ
れている。
[0007] That is, the above-mentioned methods for removing Bi all involve adding a chemical such as barium carbonate, strontium carbonate, or lead carbonate to the electrolytic solution, which requires an expensive chemical and a predetermined amount of the chemical. However, there is a problem in that Bi cannot be prevented from being mixed into the electrolytic copper even if is added. Also, in the electrolyte
As another method of removing Bi, JP-A-60-211091 discloses a method of removing impurities such as Bi and Sb in an electrolytic solution by bringing the electrolytic solution into contact with a specific chelating resin.

【0008】しかし、上記した方法は少なくとも吸着、
脱着のために2塔式の吸着塔が必要であり、また劣化し
たキレート樹脂の取扱が問題となる。
[0008] However, the above-mentioned method at least involves adsorption,
A two-column adsorption tower is required for desorption, and handling of the deteriorated chelate resin becomes a problem.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、前記
した従来技術の問題点を解消し、電解精製工程に薬剤添
加もしくは吸着剤による浄液工程を付加することなく、
簡易で経済性に優れた方法、装置で、銅電解精製用アノ
ード中のBiの電気銅への混入を確実に防止することが可
能な銅電解精製用アノードおよびその製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to add a chemical addition step or a liquid purification step using an adsorbent to the electrolytic refining step,
It is an object of the present invention to provide a copper electrolytic refining anode capable of reliably preventing Bi in a copper electrolytic refining anode from being mixed into electrolytic copper by a simple and economical method and apparatus, and a method for producing the same. And

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記した
従来技術の問題点を解決するために鋭意検討した結果、
銅電解精製用アノードに予め金属鉛を添加しておくこと
によって、電解液中のBiの電気銅への混入を確実に防止
することが可能であることを見出し、本発明に到った。
The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, and
The present inventors have found that it is possible to reliably prevent Bi in an electrolytic solution from being mixed into electrolytic copper by adding metal lead to a copper electrolytic refining anode in advance, and have arrived at the present invention.

【0011】すなわち、第1の発明は、銅製錬における
電解精製に用いられる銅電解精製用アノードであって、
該アノード中の鉛の含有量が次の条件(1) 〜(4) を満足
することを特徴とする銅電解精製用アノードである。 (1) Bi<40(mass-ppm)の時: 260(mass-ppm) ≦Pb≦600(mass-ppm) (2) 40(mass-ppm)≦Bi<46(mass-ppm)の時: 260(mass-ppm) ≦Pb≦〔50.0×Bi−1400〕(mass-ppm) (3) 46(mass-ppm)≦Bi<71(mass-ppm)の時: 〔50.4×Bi−2058〕(mass-ppm)≦Pb≦〔50.0×Bi−140
0〕(mass-ppm) (4) 71(mass-ppm)≦Biの時: 1520(mass-ppm)≦Pb≦2150(mass-ppm) なお、上記条件(1) 〜(4) の式中、Bi、Pbの単位は、い
ずれもmass-ppmを示す。
That is, a first invention is an anode for copper electrolytic refining used for electrolytic refining in copper smelting,
An anode for copper electrolytic refining, characterized in that the lead content in the anode satisfies the following conditions (1) to (4). (1) When Bi <40 (mass-ppm): 260 (mass-ppm) ≦ Pb ≦ 600 (mass-ppm) (2) When 40 (mass-ppm) ≦ Bi <46 (mass-ppm): 260 (mass-ppm) ≤ Pb ≤ [50.0 x Bi-1400] (mass-ppm) (3) When 46 (mass-ppm) ≤ Bi <71 (mass-ppm): (50.4 x Bi-2058) ( mass-ppm) ≦ Pb ≦ (50.0 × Bi-140
0] (mass-ppm) (4) When 71 (mass-ppm) ≤ Bi: 1520 (mass-ppm) ≤ Pb ≤ 2150 (mass-ppm) In the above formulas (1) to (4), , Bi, and Pb all indicate mass-ppm.

【0012】第2の発明は、銅製錬における電解精製に
用いられる銅電解精製用アノードの製造方法であって、
銅の乾式製錬における精製炉および/または前記アノー
ドの鋳造工程において、溶融精製粗銅中に金属鉛を添加
することを特徴とする銅電解精製用アノードの製造方法
である。
A second invention is a method for producing an anode for electrolytic copper refining used for electrolytic refining in copper smelting,
A method for producing an anode for electrolytic copper refining, comprising adding metal lead to molten refined crude copper in a refining furnace and / or a casting step of the anode in copper dry smelting.

【0013】[0013]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。前記したように、銅製錬の最終段階としての電解
精製は、電気銅の銅源となる精製粗銅である板状のアノ
ードと、該アノードから電解液中に溶出する銅イオンを
金属銅として電着するカソードを交互に配置して行な
う。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. As described above, the electrolytic refining as the final stage of copper smelting is performed by electrodepositing a plate-shaped anode, which is purified crude copper serving as a copper source of electrolytic copper, and copper ions eluted from the anode into the electrolytic solution as metallic copper. The cathodes are alternately arranged.

【0014】また、上記したアノードとしては、精製炉
で得られた精製粗銅を鋳造し、電解精製用のアノード形
状に成形したものが用いられる。本発明における銅電解
精製用アノードは、精製粗銅中のBi含有量に対応して、
精製粗銅中に金属鉛を添加したアノードである。精製粗
銅への金属鉛の添加は、銅の乾式製錬における精製炉、
もしくは銅電解精製用アノードの鋳造時、すなわち溶銅
を鋳型に注湯する際、もしくはその両者において行なう
ことが可能である。
As the above-mentioned anode, one obtained by casting purified crude copper obtained in a refining furnace and shaping it into an anode shape for electrolytic refining is used. The anode for copper electrolytic refining in the present invention corresponds to the Bi content in the purified crude copper,
This is an anode obtained by adding metallic lead to purified crude copper. The addition of metallic lead to purified blister copper is carried out in a refining furnace in the dry smelting of copper,
Alternatively, it can be carried out at the time of casting an anode for copper electrolytic refining, that is, at the time of pouring molten copper into a mold, or at both.

【0015】本発明においては、好ましくは精製炉で精
製中の溶銅に金属鉛を添加することが好ましく、さらに
は精製炉での還元処理終了後の溶銅に金属鉛(以下Pbと
も記す)を添加することが、より好ましい。これは、上
記した方法を用いることによって、下記(1) 〜(3) の効
果が得られるためである。
In the present invention, it is preferable to add metallic lead to molten copper which is being refined in a refining furnace, and moreover, metallic lead (hereinafter also referred to as Pb) is added to the molten copper after completion of the reduction treatment in the refining furnace. Is more preferably added. This is because the following effects (1) to (3) can be obtained by using the above method.

【0016】(1)簡易な方法かつ高い歩留りで所定量のP
bを銅電解精製用アノードに添加できる。 (2)アノード中に均一にPbを分布せしめることが可能と
なる。 (3)上記した(1) 、(2) によって、電解精製時に、アノ
ードから溶出するBiと、溶出するPbによって生成するPb
SO4 との共沈を、迅速かつ十分に行うことが可能とな
る。
(1) Predetermined amount of P by simple method and high yield
b can be added to the copper electrorefining anode. (2) Pb can be uniformly distributed in the anode. (3) According to the above (1) and (2), at the time of electrolytic purification, Bi eluted from the anode and Pb generated from the eluted Pb
Coprecipitation with SO 4 can be performed quickly and sufficiently.

【0017】金属鉛の添加量は、精製粗銅中のBiの含有
量、すなわちBi品位に対応して調整することが好まし
い。図1に、本発明者らが見出した銅電解精製用アノー
ド中のBi含有量とPb含有量の好適な関係を示す。図1に
示されるように、本発明における銅電解精製用アノード
中のPb含有量は、該アノード中のBi含有量に対応して、
下記条件(1) 〜(4) を満足することが好ましい。
It is preferable to adjust the amount of metallic lead to be added in accordance with the Bi content in the purified crude copper, ie, the Bi quality. FIG. 1 shows a preferred relationship between the Bi content and the Pb content in the anode for copper electrolytic refining discovered by the present inventors. As shown in FIG. 1, the Pb content in the anode for copper electrolytic refining in the present invention corresponds to the Bi content in the anode,
It is preferable to satisfy the following conditions (1) to (4).

【0018】(1) Bi<40(mass-ppm)の時:260(mass-pp
m) ≦Pb≦600(mass-ppm) (2) 40(mass-ppm)≦Bi<46(mass-ppm)の時:260(mass-p
pm) ≦Pb≦〔50.0×Bi−1400〕(mass-ppm) (3) 46(mass-ppm)≦Bi<71(mass-ppm)の時:〔50.4×Bi
−2058〕(mass-ppm)≦Pb≦〔50.0×Bi−1400〕(mass-pp
m) (4) 71(mass-ppm)≦Biの時:1520(mass-ppm)≦Pb≦2150
(mass-ppm) なお、上記条件(1) 〜(4) 中、Bi、Pbの単位は、いずれ
もmass-ppmを示す。
(1) When Bi <40 (mass-ppm): 260 (mass-pp)
m) ≤ Pb ≤ 600 (mass-ppm) (2) When 40 (mass-ppm) ≤ Bi <46 (mass-ppm): 260 (mass-p
pm) ≤ Pb ≤ [50.0 x Bi-1400] (mass-ppm) (3) When 46 (mass-ppm) ≤ Bi <71 (mass-ppm): (50.4 x Bi
−2058) (mass-ppm) ≦ Pb ≦ (50.0 × Bi-1400) (mass-pp
m) (4) When 71 (mass-ppm) ≤ Bi: 1520 (mass-ppm) ≤ Pb ≤ 2150
(mass-ppm) In the above conditions (1) to (4), the unit of Bi and Pb indicates mass-ppm.

【0019】銅電解精製用アノード中のPb含有量が、該
アノード中のBi含有量に対応して上記した条件(1) 〜
(4) の下限値以上である場合、製品である電気銅中への
Biの混入を防止できる。また、Bi<71(mass-ppm)の範囲
において、Pb含有量が上記した条件(1) 〜(3)の上限値
を超える場合、Biの混入防止効果が実質的に飽和し、経
済的でなく、71(mass-ppm)≦Biの範囲において、Pb含有
量が上記した条件(4) の上限値を超える場合、電気銅中
へのPbの混入が生じ、電流効率も低下する。
The Pb content in the copper electrolytic refining anode is adjusted according to the above-mentioned conditions (1) to (iv) in accordance with the Bi content in the anode.
If it is not less than the lower limit of (4),
Bi contamination can be prevented. Further, when the Pb content exceeds the upper limit of the above-mentioned conditions (1) to (3) in the range of Bi <71 (mass-ppm), the effect of preventing the incorporation of Bi is substantially saturated, and economical and economical. When the Pb content exceeds the upper limit of the above condition (4) in the range of 71 (mass-ppm) ≦ Bi, Pb is mixed into the electrolytic copper, and the current efficiency also decreases.

【0020】さらに、本発明においては、製品である電
気銅中へのBiの混入防止のために、銅電解精製用アノー
ド中のPbの含有量は、該アノード中のBiの含有量に対応
して、下記条件(5) 〜(8) を満足することが、より好ま
しい。 (5) Bi<40(mass-ppm)の時:300(mass-ppm) ≦Pb≦600
(mass-ppm) (6) 40(mass-ppm)≦Bi<45(mass-ppm)の時:300(mass-p
pm) ≦Pb≦〔52.0×Bi−2040〕(mass-ppm) (7) 45(mass-ppm)≦Bi<71(mass-ppm)の時:〔52.0×Bi
−2040〕(mass-ppm)≦Pb≦〔50.0×Bi−1400〕(mass-pp
m) (8) 71(mass-ppm)≦Biの時:1600(mass-ppm)≦Pb≦2150
(mass-ppm) なお、上記条件(5) 〜(8) 中、Bi、Pbの単位は、いずれ
もmass-ppmを示す。
Further, in the present invention, the content of Pb in the anode for electrolytic copper refining corresponds to the content of Bi in the anode in order to prevent Bi from being mixed into the electrolytic copper product. It is more preferable to satisfy the following conditions (5) to (8). (5) When Bi <40 (mass-ppm): 300 (mass-ppm) ≤ Pb ≤ 600
(mass-ppm) (6) When 40 (mass-ppm) ≤ Bi <45 (mass-ppm): 300 (mass-p
pm) ≦ Pb ≦ [52.0 × Bi-2040] (mass-ppm) (7) When 45 (mass-ppm) ≦ Bi <71 (mass-ppm): [52.0 × Bi
−2040) (mass-ppm) ≦ Pb ≦ (50.0 × Bi-1400) (mass-pp
m) (8) When 71 (mass-ppm) ≤ Bi: 1600 (mass-ppm) ≤ Pb ≤ 2150
(mass-ppm) In the above conditions (5) to (8), the unit of Bi and Pb indicates mass-ppm.

【0021】前記した本発明によれば、アノードの製造
段階において精製粗銅中のBi含有量に対応してPbの含有
量を調整することによって、Biの電気銅への混入を安定
して確実に防止することが可能となった。これは、下記
理由によるものと考えられる。すなわち、銅の電解精製
においては、電解槽内において、通常20〜50枚程度のア
ノードを、それぞれ電気銅電着用のカソードと相対して
配置する。
According to the present invention described above, by adjusting the Pb content in accordance with the Bi content in the purified crude copper in the anode production stage, Bi can be stably and reliably incorporated into electrolytic copper. It became possible to prevent. This is considered to be due to the following reason. That is, in the electrolytic refining of copper, usually about 20 to 50 anodes are arranged in the electrolytic cell, respectively, in opposition to the cathode for electrolytic copper electrodeposition.

【0022】また、電解槽内の液の攪拌は、スライムの
分散、カソード電着銅への巻き込みをもたらすため自ず
から制約がある。この結果、従来技術のように薬剤添加
によってBiの電気銅への混入を防止する場合、電解液の
循環条件下においても、電解液中における薬剤の濃度分
布の形成を避けることができない。
Further, the stirring of the liquid in the electrolytic cell is naturally limited since it causes dispersion of the slime and entrainment in the electrodeposited copper. As a result, when Bi is prevented from being mixed into electrolytic copper by adding a chemical as in the related art, formation of a concentration distribution of the chemical in the electrolytic solution cannot be avoided even under the circulating condition of the electrolytic solution.

【0023】これに対して、本発明によれば、各アノー
ド中に所定量のPbを添加、含有せしめるため、アノード
から溶出するBiが、同一アノードから溶出するPbによっ
て生成する所定量のPbSO4 と迅速に接触し、共沈する。
この結果、Biの電気銅への混入を安定して防止すること
が可能となる。また、本発明によれば、アノード中のBi
含有量に対応してPbの含有量を調整することによって、
電解槽内の各電気銅の全てについて、Biの電気銅への混
入を極めて効果的に防止することができる。
On the other hand, according to the present invention, a predetermined amount of Pb is added to and contained in each anode, so that Bi eluted from the anode is replaced with a predetermined amount of PbSO 4 generated by Pb eluted from the same anode. And quickly co-precipitate.
As a result, it is possible to stably prevent Bi from being mixed into the electrolytic copper. Also, according to the present invention, Bi in the anode
By adjusting the content of Pb according to the content,
Bi can be extremely effectively prevented from being mixed into the electrolytic copper for all of the electrolytic copper in the electrolytic cell.

【0024】さらに、本発明によれば、金属鉛を精製炉
内の溶銅中に添加するだけでよく、またアノード鋳造工
程で金属鉛を添加する場合は、金属鉛の添加装置を配設
するのみでよく、簡易で経済性に優れた方法、装置で、
銅電解精製用アノード中のBiの電気銅への混入を防止す
ることが可能となった。
Further, according to the present invention, it is only necessary to add metallic lead to molten copper in a refining furnace, and when metallic lead is added in the anode casting step, an apparatus for adding metallic lead is provided. Only with simple, economical methods and equipment,
It has become possible to prevent Bi in the anode for copper electrolytic refining from being mixed into electrolytic copper.

【0025】[0025]

【実施例】以下、本発明を実施例に基づきさらに具体的
に説明する。 (実施例)銅の乾式製錬における精製炉で精製中の精製
粗銅のBi、Pbの含有量を分析した。
The present invention will be described more specifically below with reference to examples. (Example) The contents of Bi and Pb in refined crude copper being refined in a refining furnace in dry smelting of copper were analyzed.

【0026】次に、得られた分析結果に基づき、精製粗
銅のPbの含有量が前記した条件(1)〜(4) のPb含有量を
満足するように、酸化・還元処理終了後の溶融精製粗銅
に金属鉛を添加し、得られた溶融精製粗銅を鋳型に注湯
し、銅電解精製用陽極板:アノードA(本発明例1)、
アノードB(本発明例2)を製造した。各アノードにつ
いて、金属鉛添加前の精製粗銅中のPb含有量、Bi含有量
および金属鉛添加後のアノード中のPb含有量、Bi含有量
を表1に示す。
Next, based on the obtained analysis results, the melting after the oxidation / reduction treatment is completed so that the Pb content of the purified crude copper satisfies the Pb content of the above-mentioned conditions (1) to (4). Metal lead is added to purified blister copper, and the obtained molten purified blister copper is poured into a mold, and an anode plate for copper electrolytic refining: anode A (Example 1 of the present invention);
Anode B (Inventive Example 2) was produced. Table 1 shows the Pb content and Bi content in the purified crude copper before the addition of metal lead and the Pb content and Bi content in the anode after the addition of metal lead for each anode.

【0027】金属鉛を添加して得られたアノードA、ア
ノードB中のPb含有量は、金属鉛の添加量から計算され
る含有量と一致し、添加後短時間の内に鋳造することに
よって金属鉛の添加歩留りを向上することができた。
The Pb content in the anode A and the anode B obtained by adding the metal lead coincides with the content calculated from the addition amount of the metal lead. The addition yield of metal lead was able to be improved.

【0028】[0028]

【表1】 [Table 1]

【0029】次に、製造した各アノードとカソードを、
同一電解槽内において交互に一定間隔で配置し、下記条
件下で精製粗銅の電解精製実験を行った。 〔電解精製条件〕 電解液:硫酸銅水溶液(Cu:45g/l 、H2SO4 :200g/l) 陰極電流密度:250A/m2 浴温:60℃ 電着時間:24h 電解精製後に、カソードに電着した電気銅を剥離、回収
し、アノードA、アノードBに対応する各電気銅中のBi
含有量を分析した結果、Bi含有量は、それぞれ、0.1mas
s-ppm 未満および0.2mass-ppm であり、Bi含有量の低い
高純度の電気銅を製造することができた。
Next, each of the produced anodes and cathodes was
An electrolytic refining experiment of purified crude copper was performed under the following conditions by alternately arranging the same in the same electrolytic cell. [Electrolysis refining conditions] Electrolyte: Copper sulfate aqueous solution (Cu: 45 g / l, H 2 SO 4 : 200 g / l) Cathode current density: 250 A / m 2 Bath temperature: 60 ° C Electrodeposition time: 24 h After electrolytic refining, cathode The electrodeposited copper is peeled off and collected, and the Bi in each copper corresponding to the anode A and the anode B is removed.
As a result of analyzing the content, the Bi content was 0.1 mas, respectively.
Less than s-ppm and less than 0.2 mass-ppm, high purity copper with low Bi content could be produced.

【0030】また、いずれの電気銅の表面にもツブの発
生は見られず、電気銅の線材加工時の切断は生じなかっ
た。 (比較例)前記した実施例において、酸化・還元処理終
了後の溶融精製粗銅に金属鉛を添加しなかった以外は実
施例と同様にしてアノードCを製造した。
No bump was observed on the surface of any electrolytic copper, and no cutting occurred during the processing of the electrolytic copper wire. (Comparative Example) An anode C was manufactured in the same manner as in the above-described Example except that no metallic lead was added to the refined crude copper after the completion of the oxidation / reduction treatment.

【0031】精製粗銅中のPb含有量、Bi含有量を表1に
示す。次に、前記した実施例と同一の条件下で精製粗銅
の電解精製実験を行った。電解精製後に、カソードに電
着した電気銅を剥離、回収し、表面を観察すると共に電
気銅中のBi含有量を分析した結果、電気銅の表面にツブ
の発生が見られ、また、Bi含有量は、1.2mass-ppm であ
り許容範囲を超えていた。
Table 1 shows the Pb content and Bi content in the purified crude copper. Next, an electrolytic refining experiment of the purified crude copper was performed under the same conditions as in the above-described example. After the electrolytic refining, the copper electrodeposited on the cathode was peeled off and collected, and the surface was observed and the Bi content in the copper was analyzed.As a result, the occurrence of bumps on the surface of the copper was observed. The amount was 1.2 mass-ppm, which was outside the allowable range.

【0032】[0032]

【発明の効果】本発明によれば、極めて簡易な方法、装
置で電気銅中へのBiの混入を確実に防止することが可能
となった。
According to the present invention, it is possible to reliably prevent Bi from being mixed into electrolytic copper by an extremely simple method and apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】銅電解精製用アノード中のBi含有量とPb含有量
の好適な関係を示すグラフである。
FIG. 1 is a graph showing a preferable relationship between a Bi content and a Pb content in an anode for copper electrolytic refining.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 軍志 岡山県玉野市日比6−1−1 三井金属鉱 業株式会社日比製煉所内 (72)発明者 川端 和之 岡山県玉野市日比6−1−1 三井金属鉱 業株式会社日比製煉所内 Fターム(参考) 4K001 AA09 BA23 DA05 GA13 4K058 AA11 BA21 BB03 EC04  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Gunshi Ishii 6-1-1 Hibi, Tamano-shi, Okayama Mitsui Mining & Smelting Co., Ltd.Hibi Smelter Co., Ltd. (72) Inventor Kazuyuki Kawabata Hino, Tamano-shi, Okayama 6-1-1 Mitsui Kinzoku Mining Co., Ltd. Hibiki Smelter F-term (reference) 4K001 AA09 BA23 DA05 GA13 4K058 AA11 BA21 BB03 EC04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅製錬における電解精製に用いられる銅
電解精製用アノードであって、該アノード中の鉛の含有
量が次の条件(1) 〜(4) を満足することを特徴とする銅
電解精製用アノード。 (1) Bi<40(mass-ppm)の時: 260(mass-ppm) ≦Pb≦600(mass-ppm) (2) 40(mass-ppm)≦Bi<46(mass-ppm)の時: 260(mass-ppm) ≦Pb≦〔50.0×Bi−1400〕(mass-ppm) (3) 46(mass-ppm)≦Bi<71(mass-ppm)の時: 〔50.4×Bi−2058〕(mass-ppm)≦Pb≦〔50.0×Bi−140
0〕(mass-ppm) (4) 71(mass-ppm)≦Biの時: 1520(mass-ppm)≦Pb≦2150(mass-ppm) なお、上記条件(1) 〜(4) の式中、Bi、Pbの単位は、い
ずれもmass-ppmを示す。
An anode for copper electrorefining used in electrolytic refining in copper smelting, wherein the content of lead in the anode satisfies the following conditions (1) to (4): Anode for electrolytic refining. (1) When Bi <40 (mass-ppm): 260 (mass-ppm) ≦ Pb ≦ 600 (mass-ppm) (2) When 40 (mass-ppm) ≦ Bi <46 (mass-ppm): 260 (mass-ppm) ≤ Pb ≤ [50.0 x Bi-1400] (mass-ppm) (3) When 46 (mass-ppm) ≤ Bi <71 (mass-ppm): (50.4 x Bi-2058) ( mass-ppm) ≦ Pb ≦ (50.0 × Bi-140
0] (mass-ppm) (4) When 71 (mass-ppm) ≤ Bi: 1520 (mass-ppm) ≤ Pb ≤ 2150 (mass-ppm) In the above formulas (1) to (4), , Bi, and Pb all indicate mass-ppm.
【請求項2】 銅製錬における電解精製に用いられる銅
電解精製用アノードの製造方法であって、銅の乾式製錬
における精製炉および/または前記アノードの鋳造工程
において、溶融精製粗銅中に金属鉛を添加することを特
徴とする銅電解精製用アノードの製造方法。
2. A method for producing an anode for copper electrorefining used in electrolytic refining in copper smelting, wherein metal lead is contained in molten refined crude copper in a refining furnace and / or a casting step of the anode in dry smelting of copper. A method for producing an anode for electrolytic refining of copper, characterized by adding:
JP11040534A 1999-02-18 1999-02-18 Anode for electrolytic refining of copper and its production Pending JP2000239885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040534A JP2000239885A (en) 1999-02-18 1999-02-18 Anode for electrolytic refining of copper and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11040534A JP2000239885A (en) 1999-02-18 1999-02-18 Anode for electrolytic refining of copper and its production

Publications (1)

Publication Number Publication Date
JP2000239885A true JP2000239885A (en) 2000-09-05

Family

ID=12583135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040534A Pending JP2000239885A (en) 1999-02-18 1999-02-18 Anode for electrolytic refining of copper and its production

Country Status (1)

Country Link
JP (1) JP2000239885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093628A (en) * 2019-04-30 2019-08-06 云南铜业股份有限公司西南铜业分公司 A kind of copper electrolyzing refining method generating core-shell structure copper anode mud

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093628A (en) * 2019-04-30 2019-08-06 云南铜业股份有限公司西南铜业分公司 A kind of copper electrolyzing refining method generating core-shell structure copper anode mud
CN110093628B (en) * 2019-04-30 2021-06-08 云南铜业股份有限公司西南铜业分公司 Copper electrolytic refining method for generating core-shell structure copper anode mud

Similar Documents

Publication Publication Date Title
JP4298712B2 (en) Method for electrolytic purification of copper
CN106757179B (en) A kind of process of cupric electrolysis tail washings purification decopper(ing) removal of impurities
EP3794166B1 (en) Improvement in copper electrorefining
TWI577836B (en) High purity tin manufacturing methods, high purity tin electrolytic refining devices and high purity tin
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP2007270243A (en) Dry type refining method for copper
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
JP4041590B2 (en) Method for producing high-purity bismuth having a purity of 5N or more
JPS6184389A (en) Manufacture of high purity electrolytic copper
JP2000239885A (en) Anode for electrolytic refining of copper and its production
JP2561862B2 (en) Purification and electrolysis method for obtaining ultra high purity copper
JPH04191340A (en) Production of high purity tin
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
JP6127938B2 (en) Removal of tellurium from sulfuric acid leachate of copper electrolytic slime
US3755112A (en) Electrowinning of copper
JP4787951B2 (en) Method for electrolytic purification of silver
JP2000054181A (en) Method for electrolytically refining copper
JP7271917B2 (en) Copper electrolytic refining method
JP3875548B2 (en) Electrolyte purification method
KR101931520B1 (en) Concentrating method of precious metal by adjusting the composition of an collecting alloy
CN115198309A (en) Electrolysis method for purifying low-silver low-sulfur ultra-high-purity copper
JP2012167318A (en) Method for electrorefining copper, and method for producing electrolytic copper
JP6453743B2 (en) Method for electrolytic purification of lead using sulfamic acid bath
WO2020050418A1 (en) Method for producing electrolytic copper
JP2022524364A (en) Copper electrowinning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209