JP2012167318A - Method for electrorefining copper, and method for producing electrolytic copper - Google Patents

Method for electrorefining copper, and method for producing electrolytic copper Download PDF

Info

Publication number
JP2012167318A
JP2012167318A JP2011028633A JP2011028633A JP2012167318A JP 2012167318 A JP2012167318 A JP 2012167318A JP 2011028633 A JP2011028633 A JP 2011028633A JP 2011028633 A JP2011028633 A JP 2011028633A JP 2012167318 A JP2012167318 A JP 2012167318A
Authority
JP
Japan
Prior art keywords
copper
electrolytic
electrode plate
anode electrode
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011028633A
Other languages
Japanese (ja)
Inventor
Fumio Hashiuchi
文生 橋内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2011028633A priority Critical patent/JP2012167318A/en
Publication of JP2012167318A publication Critical patent/JP2012167318A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for electrorefining copper which can suppress the production of suspended solids without damaging safety on an operation, and also, can improve electrolytic efficiency, and a method for producing electrolytic copper.SOLUTION: In the method for electrorefining copper using an anode electrode plate comprising crude copper, arsenic and antimony, electrorefining is performed at a current density of ≥290 A/musing the anode electrode plate controlled in such a manner that antimony is comprised by ≥50 ppm, and the mass ratio of arsenic/antimony reaches ≥5.0.

Description

本発明は、銅の電解精製方法及び電気銅の製造方法に関する。   The present invention relates to a method for electrolytic purification of copper and a method for producing electrolytic copper.

従来より、一般的に、銅の電解精製時における電解液中の浮遊固体(Suspended Solid:SS)の存在が、電流効率、ショート率等の電解成績の低下の要因の1つとされてきたが、浮遊固体の発生メカニズムは、これまであまり詳しく解明されてこなかった。   Conventionally, the presence of suspended solids (SS) in the electrolytic solution at the time of electrolytic refining of copper has been considered as one of the causes of degradation of electrolytic performance such as current efficiency and short-circuit rate. The generation mechanism of suspended solids has not been elucidated so far.

浮遊固体の発生メカニズムの解明例として、例えば、特開2008−121066号公報(特許文献1)では、銅電解精製時の浮遊スライムの主成分がアンチモン(Sb)であり、電解液中の溶存酸素とSbとが反応して五酸化二アンチモン(Sb25)となり、Sb25が砒素(As)やビスマス(Bi)を巻き込むことで浮遊スライムが形成され、浮遊スライムが電気銅表面に溶着して電気銅の品位を低下させることが記載されている。特許文献1では、浮遊スライム生成を抑制するために、2.8〜5.0A/dm2の高電流密度の電解処理を行い、カソード上から水素を発生させ、発生した水素を電解液中の酸素と反応させることで電解液中の溶存酸素濃度を低減させ、Sb25の生成を抑制し、電気銅の品位を向上させることを試みている。 As an elucidating example of the generation mechanism of floating solids, for example, in Japanese Patent Application Laid-Open No. 2008-121066 (Patent Document 1), the main component of floating slime at the time of copper electrolytic purification is antimony (Sb), and dissolved oxygen in the electrolytic solution And Sb react to form diantimony pentoxide (Sb 2 O 5 ), and when Sb 2 O 5 entraps arsenic (As) and bismuth (Bi), a floating slime is formed. It is described that the quality of electrolytic copper is reduced by welding. In Patent Document 1, in order to suppress the formation of floating slime, electrolytic treatment at a high current density of 2.8 to 5.0 A / dm 2 is performed to generate hydrogen from the cathode, and the generated hydrogen is contained in the electrolyte solution. Attempts have been made to reduce the dissolved oxygen concentration in the electrolyte by reacting with oxygen, to suppress the formation of Sb 2 O 5 and to improve the quality of electrolytic copper.

特開2008−121066号公報JP 2008-121066 A

しかしながら、電解精製中の電解液中には水素イオンが存在することが事実であるにしても、本発明者らのこれまでの知見から、電流密度が2.8〜5.0A/dm2程度の条件で銅の電解精製を行い、その電解精製によって新たに水素が生成することは考えにくい。もし、高電流密度の電解精製によって水素が新たに生成されるのであれば、電解液中の砒素と反応して有害ガスであるヒ酸化水素が発生し、操業時の安全性を損なう場合も考えられる。 However, even though it is a fact that hydrogen ions are present in the electrolytic solution during electrolytic purification, the current density is about 2.8 to 5.0 A / dm 2 from the present inventors' previous knowledge. It is unlikely that copper is subjected to electrolytic purification under the above conditions, and hydrogen is newly generated by the electrolytic purification. If hydrogen is newly generated by electrolytic refining at a high current density, it may react with arsenic in the electrolytic solution to generate hydrogen arsenide, which is a harmful gas, which may impair safety during operation. It is done.

上記課題を鑑み、本発明は、操業時の安全性を損なうことなく浮遊固体の生成を抑制でき、且つ電解効率を向上可能な銅の電解精製方法及び電気銅の製造方法を提供する。   In view of the above problems, the present invention provides a method for electrolytic purification of copper and a method for producing electrolytic copper that can suppress the generation of floating solids without impairing safety during operation and that can improve electrolytic efficiency.

本発明者は上記課題を解決するために鋭意検討した結果、高電流密度下における浮遊固体の生成機構は、特許文献1のように電解液中の溶存酸素濃度とアンチモンとの反応が支配的であるというよりも、むしろアノード電極板中のアンチモンと砒素の存在比率が、浮遊固体の生成と電解効率に影響を及ぼすという知見を得た。   As a result of intensive studies to solve the above problems, the present inventor has a dominant mechanism for the formation of floating solids under high current density, as in Patent Document 1, the reaction between dissolved oxygen concentration in the electrolyte and antimony is dominant. Rather, it was found that the presence ratio of antimony and arsenic in the anode electrode plate affects the formation of floating solids and the electrolysis efficiency.

以下の説明によって本発明が制限されるものではないが、アノード電極板中のアンチモンと砒素の存在比率と電解精製時の浮遊固体の発生頻度の関係は、以下のような機構によるものと考えられる。電解精製時、アノード反応(酸化反応)により銅イオンと共にアノード電極板の界面から砒素、アンチモン等の不純物が電解液中へと溶出していく。この際アノード界面においてアノード電極板から溶出した砒素は、アンチモンよりも酸素との親和性が大きいため、アンチモンよりも優先的にアノード電極板界面付近の溶存酸素と反応して酸化物を生成する。砒素が優先的に酸化物を形成することで、浮遊固体の主成分であるアンチモン酸化物の生成が抑制されるというものである。即ち、本発明では、アンチモンよりも酸素との親和性の高い元素である砒素をアノード電極板中に積極的に混入させ、且つその存在比率を適正な範囲に制御することで、電解精製時の浮遊固体の発生を効果的に抑制させることを試みたものである。   Although the present invention is not limited by the following explanation, it is considered that the relationship between the ratio of antimony and arsenic in the anode electrode plate and the frequency of occurrence of suspended solids during electrolytic purification is due to the following mechanism. . At the time of electrolytic purification, impurities such as arsenic and antimony are eluted into the electrolytic solution from the interface of the anode electrode plate together with copper ions by the anode reaction (oxidation reaction). At this time, since arsenic eluted from the anode electrode plate at the anode interface has a higher affinity for oxygen than antimony, it reacts with dissolved oxygen near the anode electrode plate interface in preference to antimony to produce an oxide. Arsenic preferentially forms an oxide, thereby suppressing the generation of antimony oxide, which is the main component of the floating solid. That is, in the present invention, arsenic, which is an element having a higher affinity for oxygen than antimony, is positively mixed in the anode electrode plate, and the abundance ratio is controlled within an appropriate range, so that it can be used during electrolytic purification. This is an attempt to effectively suppress the generation of floating solids.

本来、砒素は毒物として扱われ、銅製錬工程では、不純物としてできるだけ除去しなければならない元素とされてきた。そのため、このような毒性を有する砒素を、電解精製に使用するアノード電極板に対して積極的に添加するような報告例はこれまでに無く、また、電解精製における浮遊固体の発生抑制に寄与し得るとの報告もされていない。   Originally, arsenic has been treated as a poison and has been regarded as an element that must be removed as much as possible in the copper smelting process. For this reason, there has never been a report of positively adding such toxic arsenic to the anode electrode plate used for electrolytic purification, and it has contributed to the suppression of the generation of floating solids in electrolytic purification. There is no report that you will get.

以上の知見を基礎として完成した本発明は一側面において、粗銅と砒素とアンチモンを含むアノード電極板を用いた銅の電解精製方法において、アンチモンを50ppm以上含み、砒素/アンチモンの質量比が5.0以上となるように制御したアノード電極板を用いて、電流密度290A/m2以上で電解精製を行うことを含む銅の電解精製方法である。 The present invention completed on the basis of the above knowledge is, in one aspect, a copper electrolytic purification method using an anode electrode plate containing crude copper, arsenic and antimony, containing 50 ppm or more of antimony and an arsenic / antimony mass ratio of 5. This is a copper electrolytic purification method including performing electrolytic purification at a current density of 290 A / m 2 or more using an anode electrode plate controlled to be 0 or more.

本発明に係る銅の電解精製方法は一実施態様において、アノード電極板が、アンチモンを50ppm以上200ppm未満含む。   In one embodiment of the copper electrolytic purification method according to the present invention, the anode electrode plate contains 50 ppm or more and less than 200 ppm of antimony.

本発明に係る銅の電解精製方法は別の一実施態様において、アノード電極板が、砒素を700ppm〜1200ppm含む。   In another embodiment of the copper electrolytic purification method according to the present invention, the anode electrode plate contains 700 ppm to 1200 ppm of arsenic.

本発明に係る銅の電解精製方法は更に別の一実施態様において、アノード電極板が浸漬された電解液の一部を循環させ、ろ過することを含む。   In yet another embodiment, the copper electrolytic purification method according to the present invention includes circulating and filtering a part of the electrolytic solution in which the anode electrode plate is immersed.

本発明に係る銅の電解精製方法は更に別の一実施態様において、電解液の一部を限外濾過膜でろ過することを含む。   In yet another embodiment, the copper electrolytic purification method according to the present invention includes filtering a part of the electrolytic solution with an ultrafiltration membrane.

本発明に係る銅の電解精製方法は更に別の一実施態様において、電解液中の浮遊固体濃度を0.6mg/L以下に保持して電解精製を行うことを含む。   In yet another embodiment, the copper electrolytic purification method according to the present invention includes performing electrolytic purification while maintaining the suspended solid concentration in the electrolytic solution at 0.6 mg / L or less.

本発明は別の一側面において、粗銅と砒素と50ppm以上のアンチモンとを含み、砒素/アンチモンの質量比が5.0以上となるように制御したアノード電極板を製造する工程と、アノード電極板を用いて電流密度290A/m2以上で電解精製を行う工程とを含む電気銅の製造方法である。 According to another aspect of the present invention, there is provided a step of manufacturing an anode electrode plate containing crude copper, arsenic, and 50 ppm or more of antimony, and controlled to have an arsenic / antimony mass ratio of 5.0 or more, and an anode electrode plate And a step of performing electrolytic purification at a current density of 290 A / m 2 or more using a copper.

本発明の電気銅の製造方法は一実施態様において、アノード電極板を製造する工程が、粗銅溶湯中に砒素を添加して砒素/アンチモンの質量比を制御することを含む。   In one embodiment of the method for producing electrolytic copper of the present invention, the step of producing the anode electrode plate includes adding arsenic to the molten copper and controlling the mass ratio of arsenic / antimony.

本発明によれば、操業時の安全性を損なうことなく浮遊固体の生成を抑制でき、且つ電解効率を向上可能な銅の電解精製方法及び電気銅の製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the production | generation of floating solid can be suppressed without impairing the safety | security at the time of operation, and the electrolytic refining method of copper and the manufacturing method of electrolytic copper which can improve electrolytic efficiency can be provided.

As/Sb比が電解液中のSS濃度(SS発生量)に与える影響の例を表すグラフである。It is a graph showing the example of the influence which As / Sb ratio has on SS density | concentration (SS generation amount) in electrolyte solution. As/Sb比と電流効率との関係の例を表すグラフである。It is a graph showing the example of the relationship between As / Sb ratio and current efficiency. 図3(a)は、電解液の一部をバッチで抽出し、抽出した電解液をろ過し、ろ過後の電解液を電解液に戻しながら電解精製を行った場合の電流効率の推移を表すグラフである。図3(b)は、図3(a)の工程における電解液中のSS濃度の推移を表すグラフである。FIG. 3A shows a transition of current efficiency when a part of the electrolytic solution is extracted in a batch, the extracted electrolytic solution is filtered, and electrolytic purification is performed while returning the filtered electrolytic solution to the electrolytic solution. It is a graph. FIG.3 (b) is a graph showing transition of SS density | concentration in electrolyte solution in the process of Fig.3 (a).

本発明の実施の形態に係る銅の電解精製方法は、粗銅と砒素とアンチモンを含むアノード電極板を用いた銅の電解精製方法において、アンチモンを50ppm以上含み、砒素/アンチモンの質量比が5.0以上となるように制御したアノード電極板を用いて、電流密度290A/m2以上で電解精製を行う。 The copper electrolytic purification method according to an embodiment of the present invention is a copper electrolytic purification method using an anode electrode plate containing crude copper, arsenic and antimony, containing 50 ppm or more of antimony and an arsenic / antimony mass ratio of 5. Using an anode electrode plate controlled to be 0 or more, electrolytic purification is performed at a current density of 290 A / m 2 or more.

アノード電極板中の砒素/アンチモンの質量比を5.0以上に制御することで、アノード電極板の界面近傍で生じるアノード反応を制御できる。即ち、電解精製における浮遊固体の発生は、電解液の成分よりもアノード電極板近傍でのアノード反応に影響を受ける。そのため、アノード電極板の質量比を制御し、アノード反応を適切に制御することで電解液中の浮遊固体(SS)濃度を低減でき、電流効率を94%以上、場合によっては96%又は98%以上に向上できる。As/Sbの質量比を5.0より小さくした場合、アノード反応によって砒素よりもアンチモンが優先的に電解液中の溶存酸素と結合して酸化物を生成する場合があるため、電解液中のSS濃度が高くなり、生成される電気銅の表面にSS分が付着して、コブの発生又は銅品位の低下が生じ、電流効率を高く保つことが困難になる。   By controlling the arsenic / antimony mass ratio in the anode electrode plate to 5.0 or more, the anode reaction occurring in the vicinity of the interface of the anode electrode plate can be controlled. That is, the generation of floating solids in electrolytic purification is affected by the anode reaction near the anode electrode plate rather than the components of the electrolytic solution. Therefore, by controlling the mass ratio of the anode electrode plate and appropriately controlling the anode reaction, the suspended solid (SS) concentration in the electrolyte can be reduced, and the current efficiency is 94% or more, depending on the case, 96% or 98%. This can be improved. When the mass ratio of As / Sb is made smaller than 5.0, antimony may preferentially combine with dissolved oxygen in the electrolytic solution rather than arsenic due to the anodic reaction, thereby generating an oxide. The SS concentration becomes high, and the SS component adheres to the surface of the produced electric copper. As a result, bumps are generated or the copper quality is lowered, and it is difficult to keep the current efficiency high.

アノード電極板としては、例えば約104×91cm2の電極板が用いられ、粗銅、アンチモン(Sb)、砒素(As)の他に、ビスマス(Bi)、ニッケル(Ni)、鉛(Pb)、鉄(Fe)等の不純物元素を含んでいてもよい。以下に制限されるものではないが、本実施形態に使用するアノード電極板としては、As/Sbの質量比が5.0以上、より好ましくは5.5以上となるように調整したアノード電極板を用いることが好ましい。As/Sbの質量比の上限値に特に制限はないが、銅の電解精製に用いられるアノード電極板の製品特性上、As/Sbの質量比の上限値は、約24.0、より好ましくは14.0、更に好ましくは8.0程度となる。なお、電流密度290A/m2以上の高電流密度域では、アノード電極板中のSbが150ppm以上の一般的に高濃度状態のときにSSが生成しやすくなるため、As/Sbの質量比の制御がSS低減に特に有効である。また、アノード電極板中のSb含有量が多すぎるとSSの発生が顕著になるため、アノード電極板中に含まれるSbは200ppm未満であるのが好ましい。この際、アノード電極板中の砒素は、少なくとも700ppm以上含有すれば所望の効果を得ることができ、700ppmより少ない場合はSSの発生を低減する効果が小さくなる。砒素含有量の上限に特に制限はないが、砒素含有量が多すぎると電解操業の安全性に問題が生じる場合があるため、一般には1200ppm程度である。なお、アノード電極板中のSb濃度が150ppm以下の場合、アノード電極板中にAsが700ppm以上含んでいれば、SSの発生には影響しない。カソード電極板の材料に特に制限はなく、ステンレス製等の一般的な材料が用いられる。 As the anode electrode plate, for example, an electrode plate of about 104 × 91 cm 2 is used. In addition to crude copper, antimony (Sb), and arsenic (As), bismuth (Bi), nickel (Ni), lead (Pb), iron An impurity element such as (Fe) may be included. Although not limited to the following, as the anode electrode plate used in the present embodiment, the anode electrode plate adjusted so that the mass ratio of As / Sb is 5.0 or more, more preferably 5.5 or more. Is preferably used. The upper limit value of the mass ratio of As / Sb is not particularly limited, but the upper limit value of the mass ratio of As / Sb is preferably about 24.0, more preferably, due to the product characteristics of the anode electrode plate used for copper electrolytic purification. 14.0, more preferably about 8.0. In a high current density region where the current density is 290 A / m 2 or more, SS tends to be generated when the Sb in the anode electrode plate is generally in a high concentration state of 150 ppm or more, so the mass ratio of As / Sb Control is particularly effective for SS reduction. Moreover, since generation | occurrence | production of SS will become remarkable when there is too much Sb content in an anode electrode plate, it is preferable that Sb contained in an anode electrode plate is less than 200 ppm. At this time, if arsenic in the anode electrode plate is contained at least 700 ppm or more, a desired effect can be obtained, and if it is less than 700 ppm, the effect of reducing the generation of SS becomes small. The upper limit of the arsenic content is not particularly limited. However, if the arsenic content is too large, there may be a problem in the safety of electrolytic operation. When the Sb concentration in the anode electrode plate is 150 ppm or less, the generation of SS is not affected if As is contained in the anode electrode plate at 700 ppm or more. The material of the cathode electrode plate is not particularly limited, and a general material such as stainless steel is used.

アノード電極板のAs/Sbの質量比を5.0以上に制御する方法としては、銅製錬工程での処理原料の調整が好適である。具体的には、粗銅を精製炉に装入し、装入した粗銅のAs、Sbの濃度値に基づいて、As/Sbの質量比が5.0以上となるように調整する。粗銅中のAs/Sbの質量比が5.0に満たない場合は、金属砒素(灰色ヒ素)を精製炉に投入して制御する。   As a method for controlling the As / Sb mass ratio of the anode electrode plate to 5.0 or more, adjustment of the raw material for the treatment in the copper smelting process is suitable. Specifically, crude copper is charged into a refining furnace, and based on the concentration values of As and Sb of the charged crude copper, the mass ratio of As / Sb is adjusted to be 5.0 or more. When the mass ratio of As / Sb in crude copper is less than 5.0, metal arsenic (gray arsenic) is charged into the refining furnace and controlled.

電解精製操業中の電流密度に特に制限はないが、電流密度290A/m2より小さい操業では、アノード電極板-カソード電極板間の物質の移動速度が小さく、浮遊固体がカソード電極板に電着するまでに比重の重い鉛、銀等の他の金属と化合物を形成し沈降するため、カソード電極板上に電着する電着銅の品質に影響は少ないが、電着速度の低下のため、生産性が低下するという問題が生じる。一方、電流密度350A/m2以上とする高電流密度下では、電解精製により発生する浮遊固体の電着銅表面へ巻き込みにより電着銅の品質が劣化する場合がある。よって、電流密度は290A/m2以上であることが好ましく、例えば、300〜340A/m2、より好ましくは310〜330A/m2である。 There is no particular restriction on the current density during the electrolytic refining operation, but in the operation smaller than the current density of 290 A / m 2 , the moving speed of the substance between the anode electrode plate and the cathode electrode plate is low, and the floating solid is electrodeposited on the cathode electrode plate. Since it forms and precipitates with other metals such as lead and silver, which have heavy specific gravity, the quality of the electrodeposited copper electrodeposited on the cathode electrode plate is less affected. There arises a problem that productivity decreases. On the other hand, under a high current density of 350 A / m 2 or more, the quality of the electrodeposited copper may be deteriorated by entrainment of the floating solid electrodeposited copper surface generated by electrolytic purification. Therefore, the current density is preferably 290 A / m 2 or more, for example, 300 to 340 A / m 2 , more preferably 310 to 330 A / m 2 .

電解精製操業中の電解液中に沈殿するSS等を取り除くために、アノード電極板が浸漬された電解液の一部(循環液)を循環させてろ過することが好ましい。電解液の一部を循環させてその循環液をろ過する場合は、電解液の一部を常に抽出して循環させる連続式システムであっても良いし、所定の時間毎に電解液の一部を抽出して循環させるバッチ式システムであっても構わない。通常は、電解精製が進行するにつれて、アノード電極板中に含まれる不純物元素が電解液中に溶出し、電解液中の不純物濃度が高くなっていくが、電解液を循環させることにより、電解液中の不純物濃度を所定の範囲内に制御し易くなる。   In order to remove SS and the like that are precipitated in the electrolytic solution during the electrolytic purification operation, it is preferable to circulate and filter part of the electrolytic solution in which the anode electrode plate is immersed (circulated solution). When a part of the electrolytic solution is circulated and the circulating liquid is filtered, a continuous system in which a part of the electrolytic solution is always extracted and circulated may be used, or a part of the electrolytic solution may be circulated every predetermined time. It may be a batch system that extracts and circulates. Normally, as electrolytic purification progresses, impurity elements contained in the anode electrode plate are eluted into the electrolytic solution, and the impurity concentration in the electrolytic solution increases. However, by circulating the electrolytic solution, the electrolytic solution It becomes easy to control the impurity concentration within the predetermined range.

循環経路内に取り付けられるろ過装置としては、逆浸透(RO)膜、限外ろ過膜(UF)膜、精密ろ過膜(MF)膜等の様々な膜を用いたろ過を行うことができるが、本実施形態では、UF膜を用いることが好ましい。UF膜を用いることで、As、Sb等の不純物元素とともに電解液中に浮遊するSSも効率的に除去できるため、SSの付着又は巻き込みによる電解精製時の電気銅の汚染が抑制される。本発明の実施の形態では、ろ過装置としてUF膜を使用しているが、UF膜の補修粒径は5〜10μmφ程度であり、電解液中に浮遊するSS成分の回収に最も適している。さらに5μm以下の微細な粒径のSSを回収するために、より微細な補修粒径のフィルタを使用することも考えられるが、電解液の通液時の抵抗が大きくなり、ろ過の処理時間が長時間となることや、電解液のろ過処理量が低下し、操業に適さなくなる。   As a filtration device attached in the circulation path, filtration using various membranes such as reverse osmosis (RO) membrane, ultrafiltration membrane (UF) membrane, microfiltration membrane (MF) membrane can be performed. In this embodiment, it is preferable to use a UF membrane. By using the UF film, SS floating in the electrolytic solution together with impurity elements such as As and Sb can be efficiently removed, and therefore, contamination of electrolytic copper during electrolytic purification due to adhesion or entrainment of SS is suppressed. In the embodiment of the present invention, a UF membrane is used as a filtration device, but the repair particle size of the UF membrane is about 5 to 10 μmφ, which is most suitable for the recovery of the SS component floating in the electrolytic solution. Furthermore, in order to recover SS with a fine particle size of 5 μm or less, it is conceivable to use a filter with a finer repair particle size, but the resistance when the electrolyte is passed increases, and the filtration processing time is increased. It becomes a long time, and the amount of filtration of the electrolytic solution decreases, making it unsuitable for operation.

また、ろ過能力を向上させるために、ろ過装置は複数設け、ろ過処理率(ろ過能力)を一定以上に高めることも有効と考えられ、処理能力と設備コスト、設置される許容空間との兼ね合いで最適な条件が決定される。   In order to improve the filtration capacity, it is considered effective to install multiple filtration devices and increase the filtration rate (filtration capacity) to a certain level. Optimal conditions are determined.

本発明者らの知見によれば、電解液中のSS濃度を低く保ち、電流効率を向上させて高品位の電気銅を製造するためには、ろ過処理率が60%以上であることが好ましく、より好ましくは70%以上であることが分かった。ろ過処理率が60%より低い場合には、SSの除去が十分に行われず、電流効率の低下を招くか、或いは電流効率を一定以上に維持できない場合がある。   According to the knowledge of the present inventors, in order to keep the SS concentration in the electrolyte solution low and improve the current efficiency to produce high quality electrolytic copper, the filtration rate is preferably 60% or more. More preferably, it was found to be 70% or more. If the filtration rate is lower than 60%, SS may not be sufficiently removed, resulting in a decrease in current efficiency, or current efficiency may not be maintained above a certain level.

ろ過処理率を60%以上とすることにより、電解液中の浮遊固体濃度は、所定レベル以下に低減される。具体的には、電解液中の浮遊固体濃度は、0.6mg/以下、より好ましくは0.1mg/以下に保持できる。その結果、電解精製時の電流効率が94%以上に維持できるようになる。なお、本実施形態における「ろ過処理率」とは「ろ過処理率[%]=(ろ過処理量/循環液量)×100」で定義される。   By setting the filtration rate to 60% or more, the suspended solid concentration in the electrolytic solution is reduced to a predetermined level or less. Specifically, the suspended solid concentration in the electrolytic solution can be maintained at 0.6 mg / less, more preferably at 0.1 mg / less. As a result, the current efficiency during electrolytic purification can be maintained at 94% or more. The “filtration rate” in this embodiment is defined as “filtration rate [%] = (filtration amount / circulating fluid amount) × 100”.

電解精製操業中、電解液中の成分濃度をモニタリングしても構わない。例えば、電解液中の濃度を常時監視できるような検出器を電解精製システム内に配置してもよいし、一定期間毎に電解液を抽出し、分析装置を用いて電解液の成分を測定するような態様であっても構わない。   During the electrolytic purification operation, the component concentration in the electrolytic solution may be monitored. For example, a detector that can constantly monitor the concentration in the electrolytic solution may be arranged in the electrolytic purification system, or the electrolytic solution is extracted at regular intervals and the components of the electrolytic solution are measured using an analyzer. Such a mode may be used.

このように、本実施形態に係る銅の電解精製方法及び電気銅の製造方法によれば、アノード電極板のAs/Sb比を制御することで、電解精製時のアノード反応を適切に制御することができるため、有毒ガスの発生原因となり得る水素を発生させることなく、操業時の安全性を損なうことなく浮遊固体の生成を抑制し、且つ電解効率が向上可能となる。   As described above, according to the copper electrolytic purification method and the electrolytic copper manufacturing method according to the present embodiment, the anode reaction during the electrolytic purification can be appropriately controlled by controlling the As / Sb ratio of the anode electrode plate. Therefore, the generation of floating solids can be suppressed and the electrolysis efficiency can be improved without deteriorating the safety during operation without generating hydrogen that can cause toxic gas generation.

以下に本発明の実施例を示すが、以下の実施例に本発明が限定されることを意図するものではない。   Examples of the present invention are shown below, but the present invention is not intended to be limited to the following examples.

(As/Sb比の影響)
表1に示すように、不純物元素の組成が異なるアノード電極板(No.1〜12)を使用し、アノード電極板中のAs/Sb比が電解液中のSS濃度(SS発生量)に与える影響を評価した。表面積20,380cm2のアノード電極板50枚とカソード電極板(SUS316L)49枚を交互にアノード・カソード電極板間距離27mmで設置した電解槽中に、Cu:40〜50g/L、H2SO4:165〜185g/Lの硫酸系電解液を入れ、電解液温度60〜70℃、カソード電極板の電流密度が290A/m2となるように調整し、9時間、電解精製を行った。SS発生量は電子秤により測定した。結果を図1に示す。図1に示すように、As/Sb比が大きくなるほどSS発生量が小さくなり、As/Sb比が5.0以上ではSS発生量を250ppm以下に安定的に低減できていることが分かる。これは、As/Sb比が高くなると、Sbと酸素の生成物よりも砒素と酸素の生成物が優先的に生成されてSb25の生成が抑制され、SSが生じにくくなるためと考えられる。
(Influence of As / Sb ratio)
As shown in Table 1, anode electrode plates (Nos. 1 to 12) having different impurity element compositions are used, and the As / Sb ratio in the anode electrode plate gives the SS concentration (SS generation amount) in the electrolytic solution. The impact was evaluated. Cu: 40-50 g / L, H 2 SO in an electrolytic cell in which 50 anode electrode plates with a surface area of 20,380 cm 2 and 49 cathode electrode plates (SUS316L) were alternately installed at a distance of 27 mm between the anode and cathode electrode plates. 4 : A 165 to 185 g / L sulfuric acid electrolyte solution was added, the electrolyte temperature was adjusted to 60 to 70 ° C., and the current density of the cathode electrode plate was adjusted to 290 A / m 2, and electrolytic purification was performed for 9 hours. The amount of SS generated was measured with an electronic balance. The results are shown in FIG. As shown in FIG. 1, it can be seen that as the As / Sb ratio increases, the SS generation amount decreases, and when the As / Sb ratio is 5.0 or more, the SS generation amount can be stably reduced to 250 ppm or less. This is considered to be because when the As / Sb ratio is increased, the arsenic and oxygen products are preferentially generated over the Sb and oxygen products, the generation of Sb 2 O 5 is suppressed, and SS is less likely to occur. It is done.

(As/Sb比と電流効率との関係)
図2は、電解精製に使用したアノード中のAs/Sb比と操業時の電流効率の関係をまとめたものである。図2に示すように、As/Sb比が5.0より小さい場合は、98%以上の電流効率を維持することが難しかった。一方、As/Sb比を5.0以上とした場合には、電流効率を98%以上に向上できた。
(Relation between As / Sb ratio and current efficiency)
FIG. 2 summarizes the relationship between the As / Sb ratio in the anode used for electrolytic purification and the current efficiency during operation. As shown in FIG. 2, when the As / Sb ratio is smaller than 5.0, it was difficult to maintain a current efficiency of 98% or more. On the other hand, when the As / Sb ratio was 5.0 or more, the current efficiency could be improved to 98% or more.

(電解液循環による電流効率とSS濃度の関係)
電解精製工程中の電流効率の推移とSS濃度の関係を図3(a)及び図3(b)に示す。図3(b)に示すように、循環液中のSS濃度が上昇すると、図3(a)に示すように電流効率は低下する傾向にあることがわかる。また、SS濃度が0.6mg/L以下となる場合には、電流効率を96%以上の高効率で操業できることがわかり、逆にSS濃度が高くなった場合には、電流効率が85%程度にまで落ち込んでいることが分かる。
(Relationship between current efficiency due to electrolyte circulation and SS concentration)
FIG. 3A and FIG. 3B show the relationship between the transition of current efficiency and the SS concentration during the electrolytic purification process. As shown in FIG. 3B, it can be seen that when the SS concentration in the circulating fluid increases, the current efficiency tends to decrease as shown in FIG. In addition, when the SS concentration is 0.6 mg / L or less, it can be seen that the current efficiency can be operated at a high efficiency of 96% or more. Conversely, when the SS concentration is high, the current efficiency is about 85%. It can be seen that it is depressed.

Claims (8)

粗銅と砒素とアンチモンを含むアノード電極板を用いた銅の電解精製方法において、
アンチモンを50ppm以上含み、砒素/アンチモンの質量比が5.0以上となるように制御したアノード電極板を用いて電流密度290A/m2以上で電解精製を行うことを含む銅の電解精製方法。
In the method for electrolytic purification of copper using an anode electrode plate containing crude copper, arsenic and antimony,
A copper electrolytic purification method comprising electrolytic purification at an electric current density of 290 A / m 2 or more using an anode electrode plate containing 50 ppm or more of antimony and controlled to have an arsenic / antimony mass ratio of 5.0 or more.
前記アノード電極板が、アンチモンを50ppm以上200ppm未満含む請求項1に記載の銅の電解精製方法。   The copper electrolytic purification method according to claim 1, wherein the anode electrode plate contains 50 ppm or more and less than 200 ppm of antimony. 前記アノード電極板が、砒素を700ppm〜1200ppm含む請求項1又は2に記載の銅の電解精製方法。   The copper electrolytic purification method according to claim 1 or 2, wherein the anode electrode plate contains 700 ppm to 1200 ppm of arsenic. 前記アノード電極板が浸漬された電解液の一部を循環させ、ろ過することを含む請求項1〜3のいずれか1項に記載の銅の電解精製方法。   The method for electrolytic purification of copper according to any one of claims 1 to 3, comprising circulating and filtering a part of the electrolytic solution in which the anode electrode plate is immersed. 前記電解液の一部を限外濾過膜でろ過することを含む請求項4に記載の銅の電解精製方法。   The method for electrolytic purification of copper according to claim 4, comprising filtering a part of the electrolytic solution with an ultrafiltration membrane. 電解液中の浮遊固体濃度を0.6mg/L以下に保持して電解精製を行うことを含む請求項1〜5のいずれか1項に記載の銅の電解精製方法。   The method for electrolytic purification of copper according to any one of claims 1 to 5, comprising carrying out electrolytic purification while maintaining a suspended solid concentration in the electrolytic solution at 0.6 mg / L or less. 粗銅と砒素と50ppm以上のアンチモンとを含み、砒素/アンチモンの質量比が5.0以上となるように制御したアノード電極板を製造する工程と、
前記アノード電極板を用いて電流密度290A/m2以上で電解精製を行う工程と
を含む電気銅の製造方法。
Producing an anode electrode plate comprising crude copper, arsenic, and 50 ppm or more antimony, and controlled to have a mass ratio of arsenic / antimony of 5.0 or more;
And a process of performing electrolytic purification at a current density of 290 A / m 2 or more using the anode electrode plate.
前記アノード電極板を製造する工程が、粗銅溶湯中に砒素を添加して砒素/アンチモンの質量比を制御することを含む請求項7に記載の電気銅の製造方法。   The method for producing electrolytic copper according to claim 7, wherein the step of producing the anode electrode plate includes adding arsenic to the molten copper and controlling a mass ratio of arsenic / antimony.
JP2011028633A 2011-02-14 2011-02-14 Method for electrorefining copper, and method for producing electrolytic copper Withdrawn JP2012167318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028633A JP2012167318A (en) 2011-02-14 2011-02-14 Method for electrorefining copper, and method for producing electrolytic copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028633A JP2012167318A (en) 2011-02-14 2011-02-14 Method for electrorefining copper, and method for producing electrolytic copper

Publications (1)

Publication Number Publication Date
JP2012167318A true JP2012167318A (en) 2012-09-06

Family

ID=46971738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028633A Withdrawn JP2012167318A (en) 2011-02-14 2011-02-14 Method for electrorefining copper, and method for producing electrolytic copper

Country Status (1)

Country Link
JP (1) JP2012167318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564637A (en) * 2021-06-30 2021-10-29 河南豫光金铅股份有限公司 Method for electrolyzing high-arsenic anode plate at low current density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564637A (en) * 2021-06-30 2021-10-29 河南豫光金铅股份有限公司 Method for electrolyzing high-arsenic anode plate at low current density

Similar Documents

Publication Publication Date Title
CN107849716B (en) High-purity tin and method for producing same
WO2001090445A1 (en) Method of producing a higher-purity metal
JP4298712B2 (en) Method for electrolytic purification of copper
JP5250683B2 (en) Recovery method of valuable metals from Pb-free waste solder
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
KR20170130408A (en) Method for producing copper and apparatus for producing copper
JP5231415B2 (en) Generation method of metal powder
JP7398395B2 (en) Improvements in copper electrorefining
JP2012167318A (en) Method for electrorefining copper, and method for producing electrolytic copper
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
JP2007254800A (en) Method for manufacturing high purity nickel and high purity nickel obtained by using the method
KR20200047446A (en) Electrode and method for manufacturing same, and method for producing regenerative electrode
EP3189170B1 (en) Process and apparatus for metal refining
JP2015214737A (en) Method of adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
JP6318049B2 (en) High purity In and its manufacturing method
KR102237348B1 (en) Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution
JP6127938B2 (en) Removal of tellurium from sulfuric acid leachate of copper electrolytic slime
JP4787951B2 (en) Method for electrolytic purification of silver
JP4538802B2 (en) Method for producing crude nickel sulfate
JP2016044355A (en) Treatment method of nickel sulfide raw material
KR101692354B1 (en) Recovering Method of high purity Tin from low Tin solution by cyclone electrowinning
JP2019203199A (en) Electrolytic method of bismuth
JP5542605B2 (en) Method for electrolytic purification of silver
JP2019085618A (en) Recovery method of antimony
JP2019135318A (en) Manufacturing method of gold dust

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513