JP2000233971A - Highly heat resistant composite material - Google Patents

Highly heat resistant composite material

Info

Publication number
JP2000233971A
JP2000233971A JP11037218A JP3721899A JP2000233971A JP 2000233971 A JP2000233971 A JP 2000233971A JP 11037218 A JP11037218 A JP 11037218A JP 3721899 A JP3721899 A JP 3721899A JP 2000233971 A JP2000233971 A JP 2000233971A
Authority
JP
Japan
Prior art keywords
conductive particles
phase
particles
composite material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11037218A
Other languages
Japanese (ja)
Inventor
Katsunori Yamada
勝則 山田
Nobuo Kamiya
信雄 神谷
Mitsuru Asai
満 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11037218A priority Critical patent/JP2000233971A/en
Publication of JP2000233971A publication Critical patent/JP2000233971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly heat resistant composite material containing a small amount of electrically conductive particles in a matrix material and having little temperature dependency, a low cost but excellent mechanical characteristics. SOLUTION: The composite material consists of a 1st phase comprising insulating 1st particles and a 2nd phase forming an electrically conductive path in the 1st phase. The 2nd phase is obtained by discontinuously dispersing 2nd electrically conductive particles and 3rd electrically conductive particles having a sign of temperature resistance variation reverse to that of the 2nd electrically conductive particles in the 1st phase. The electrically conductive path formed by the 2nd phase are as small as the particle diameter order of the 2nd and 3rd electrically conductive particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,母材と導電パスとよりなる高耐
熱性複合材料に関する。
TECHNICAL FIELD The present invention relates to a high heat resistant composite material comprising a base material and conductive paths.

【0002】[0002]

【従来技術】温度抵抗変化率が0または0に近い材料は
抵抗値に対する温度補償が不要となるため,低コストな
高温用の力学量センサ材料,ガスセンサ,発熱を伴う電
極材料,バリスタ,コンデンサ,位置センサ,高耐熱性
の電極,高温用ヒータの発熱体として応用することがで
きる。
2. Description of the Related Art Materials having a temperature resistance change rate of 0 or close to 0 do not require temperature compensation for the resistance value. Therefore, low-cost high-temperature mechanical quantity sensor materials, gas sensors, electrode materials with heat generation, varistors, capacitors, It can be applied as a position sensor, a high heat-resistant electrode, and a heating element for a high-temperature heater.

【0003】つまり,温度が特定の範囲内にある場合の
抵抗値がほぼ一定であるが,その範囲をはずれた場合の
抵抗値が変化するような通常の材料では,上述の用途に
提供した際には,使用可能な温度範囲が自然と定まって
しまう。また,材料の電気的特性に温度依存性がある場
合には,温度による影響を取り除くために電気回路等に
よって温度補償を行う必要があり,コスト高となる。
[0003] In other words, in the case of an ordinary material in which the resistance value is substantially constant when the temperature is within a specific range, but the resistance value changes when the temperature is out of the range, it is difficult to provide the material for the above-mentioned applications. , The usable temperature range is naturally determined. Further, when the electrical characteristics of a material have temperature dependence, it is necessary to perform temperature compensation by an electric circuit or the like in order to eliminate the influence of temperature, which increases the cost.

【0004】そこで,温度抵抗変化率が0または0に近
くなる材料として,特公平4−61832号に示される
ような材料が,従来提案されている。このものは,絶縁
性のSi34等の窒化物の粉末に対し,N型導電体であ
るSiCの粉末とP型導電体であるMoSi2の粉末と
を混合して,これらを焼結して作製した材料である。
Therefore, as a material having a temperature resistance change rate of 0 or close to 0, a material as disclosed in Japanese Patent Publication No. 4-61832 has been conventionally proposed. In this method, an N-type conductor SiC powder and a P-type conductor MoSi 2 powder are mixed with an insulating nitride powder such as Si 3 N 4 and sintered. This is a material produced by

【0005】P型導電体とN型導電体とでは温度に対す
る抵抗値の変化が反対であるため(P型は温度が上昇す
ると抵抗値が上昇する,N型はその反対。),両者を適
当な分量で配合すれば,温度抵抗変化率を0に近くする
ことができる。また,両者の分量を調整することによ
り,温度抵抗特性を任意に可変することができる。
[0005] Since the change in the resistance value with respect to temperature is opposite between the P-type conductor and the N-type conductor (the resistance increases as the temperature rises in the P-type conductor, and the opposite in the N-type conductor). If it is added in an appropriate amount, the rate of change in temperature resistance can be made close to zero. Further, the temperature resistance characteristics can be arbitrarily varied by adjusting the amounts of the two.

【0006】[0006]

【解決しようとする課題】しかしながら,従来の材料で
はSi34,SiO2,Al23,ZnOなどの絶縁材
料に対し多量のN型導電体やP型導電体を添加する必要
があり,さらに絶縁材料にN型導電体及び/またはP型
導電体が連続的に分散または混合した状態にあるため
に,両者を等量またはそれに近い量を混合しなければな
らず,コスト高,焼結性の悪化,混合の不均一化及び機
械的特性の低下といった問題が生じていた。
However, in conventional materials, it is necessary to add a large amount of N-type conductors or P-type conductors to insulating materials such as Si 3 N 4 , SiO 2 , Al 2 O 3 , and ZnO. In addition, since the N-type conductor and / or the P-type conductor are continuously dispersed or mixed in the insulating material, both have to be mixed in equal or close amounts, resulting in high cost and burning. There have been problems such as deterioration of bonding properties, non-uniform mixing and deterioration of mechanical properties.

【0007】この他にも,導電性を発現させるためには
多量の導電体を添加しなければならず,焼結性の低下や
コスト高となるという問題や,2種の導電体が反応する
おそれがあった。このように併立する特性に悪影響が生
じるという問題があることから,従来技術にかかる温度
抵抗変化率がほぼ0となる材料は実使用が困難であっ
た。
[0007] In addition, a large amount of conductor must be added in order to exhibit conductivity, and the sinterability is reduced and the cost is increased. There was a fear. Due to such a problem that the coexisting characteristics are adversely affected, it is difficult to actually use the material according to the prior art, in which the rate of change in temperature resistance is almost zero.

【0008】本発明は,かかる従来の問題点に鑑みてな
されたもので,母材に対する導電粒子の量が少なく,温
度依存性が殆どなく,低コストで高い機械的特性を有す
る高耐熱性複合材料を提供しようとするものである。
The present invention has been made in view of the above-mentioned conventional problems, and has a small amount of conductive particles with respect to a base material, has almost no temperature dependency, is low in cost, and has high mechanical properties with high mechanical properties. It is intended to provide materials.

【0009】[0009]

【課題の解決手段】請求項1に記載の発明は,絶縁性の
第1粒子より構成された第1相と,該第1相中において
導電パスを形成する第2相とよりなり,上記第2相は,
上記第1相中に不連続に分散した第2導電粒子と該第2
導電粒子と温度抵抗変化率の符号が反対の第3導電粒子
とが不連続に分散することにより構成され,上記第2相
により形成された導電パスは上記第2及び第3導電粒子
の粒子径オーダーの細さであることを特徴とする高耐熱
性複合材料にある。
According to a first aspect of the present invention, there is provided a first phase comprising an insulating first particle, and a second phase forming a conductive path in the first phase. The two phases are
The second conductive particles discontinuously dispersed in the first phase and the second conductive particles;
The conductive particles are formed by discontinuous dispersion of conductive particles and third conductive particles having the opposite sign of the temperature resistance change rate, and the conductive path formed by the second phase has a particle diameter of the second and third conductive particles. A highly heat-resistant composite material characterized by being on the order of fineness.

【0010】本発明の作用につき説明する。本発明にか
かる高耐熱性複合材料は,母材となる第1相に対し不連
続に分散した第2導電粒子と第3導電粒子とが第2相を
形成し,これが導電パスとして機能する。そして,上記
第2相においても,上記第2導電粒子と上記第3導電粒
子とが不連続に分散した構造が構成されている。つま
り,第2相においては,第2導電粒子同士の間に不規則
に第3導電粒子が分散している。そして,後述するごと
く上記第3導電粒子は第2導電粒子とは反対の符号の温
度抵抗変化率を有する。
The operation of the present invention will be described. In the high heat resistant composite material according to the present invention, the second conductive particles and the third conductive particles that are discontinuously dispersed in the first phase serving as the base material form a second phase, which functions as a conductive path. The second phase also has a structure in which the second conductive particles and the third conductive particles are discontinuously dispersed. That is, in the second phase, the third conductive particles are irregularly dispersed between the second conductive particles. Further, as described later, the third conductive particles have a temperature resistance change rate of a sign opposite to that of the second conductive particles.

【0011】また,本発明にかかる高耐熱性複合材料
は,第2相よりなる導電パスの細さ,つまり導電パスの
幅が,第2,第3の導電粒子の粒子径オーダーである。
つまり第2相の幅方向には第2,第3導電粒子がせいぜ
い数個並ぶ程度であって,第2相の大部分は第2導電粒
子と第3導電粒子とが直列に配列することで構成されて
いる。
In the high heat-resistant composite material according to the present invention, the fineness of the conductive path formed of the second phase, that is, the width of the conductive path is on the order of the particle diameter of the second and third conductive particles.
In other words, at most a few second and third conductive particles are arranged in the width direction of the second phase, and most of the second phase is formed by arranging the second and third conductive particles in series. It is configured.

【0012】本発明にかかる高耐熱性複合材料は上記の
ような構造を有するため,これに通電した場合には,電
子は絶縁性の第1相を移動できないため,導電パスを,
つまり第2相における第2,第3導電粒子を移動する。
そして,本発明にかかる高耐熱性複合材料では,温度特
性が異なる2種類の導電粒子が上述したごとき状態に分
散されてなり,第2導電粒子と第3導電粒子とがほぼ直
列に配列した導電パスが第1相に形成されている。従っ
て,通電の際の温度に対する電気抵抗変化は第2導電粒
子と第3導電粒子とによって制御され,温度上昇によっ
て電気抵抗が殆ど変化しないか(後述の図1参照),ま
たは必要な抵抗値に容易に調整可能な高耐熱性複合材料
を得ることができる。
Since the high heat-resistant composite material according to the present invention has the above-described structure, when electricity is supplied to the composite material, electrons cannot move through the insulating first phase.
That is, the second and third conductive particles in the second phase move.
In the high heat resistant composite material according to the present invention, two types of conductive particles having different temperature characteristics are dispersed in the above-described state, and the conductive particles in which the second conductive particles and the third conductive particles are arranged substantially in series. Passes are formed in the first phase. Therefore, the change in electric resistance with respect to the temperature at the time of energization is controlled by the second conductive particles and the third conductive particles, and the electric resistance hardly changes due to the temperature rise (see FIG. 1 described later), or the required resistance value is reduced. A highly heat-resistant composite material that can be easily adjusted can be obtained.

【0013】そして,本発明にかかる高耐熱性複合材料
は,第1相に対し上述したごとき細い導電パスが形成さ
れる程度の少量の第2や第3導電粒子を添加することで
作製することができる。よって,この材料の製造の際に
コスト高という問題が生じ難い。また,第3,第3導電
粒子の量が少量でかつ不連続分散であることから,焼結
性の悪化や混合の不均一化,機械的特性の低下といった
問題も生じ難い。
The highly heat-resistant composite material according to the present invention is produced by adding a small amount of the second and third conductive particles to the first phase so as to form the fine conductive paths as described above. Can be. Therefore, the problem of high cost is unlikely to occur when manufacturing this material. In addition, since the amount of the third and third conductive particles is small and discontinuous dispersion, problems such as deterioration of sinterability, non-uniform mixing, and deterioration of mechanical characteristics hardly occur.

【0014】以上,本発明によれば,母材に対する導電
粒子の量が少なく,温度依存性が殆どなく,低コストで
高い機械的特性を有する高耐熱性複合材料を提供するこ
とができる。
As described above, according to the present invention, it is possible to provide a high heat resistant composite material having a small amount of conductive particles with respect to a base material, having little temperature dependency, and having low cost and high mechanical properties.

【0015】また,本発明にかかる高耐熱性複合材料に
おいて,第2導電粒子,第3導電粒子の粒径を変えるこ
とで,導電粒子数の割合を制御することができる。これ
により,第2相における第2導電粒子と第3導電粒子と
が接する不連続部分での電子の移動度を調整することが
できる。これにより,第2導電粒子,第3導電粒子の第
1相に対する量を調整することができる。
In the high heat-resistant composite material according to the present invention, the ratio of the number of conductive particles can be controlled by changing the particle size of the second conductive particles and the third conductive particles. This makes it possible to adjust the mobility of electrons in the discontinuous portion where the second conductive particles and the third conductive particles are in contact with each other in the second phase. Thereby, the amounts of the second conductive particles and the third conductive particles with respect to the first phase can be adjusted.

【0016】さらに,本発明にかかる高耐熱性複合材料
を特開平8−205320号に示した力学量センサ材料
等に適用することにより,圧力や応力,力に対してのみ
電気抵抗変化を得ることができ,すなわち力に対しての
み電気抵抗が得られるという特性,つまり温度依存性の
ない力学量(機械量)センサが得られる。
Further, by applying the high heat resistant composite material according to the present invention to a mechanical quantity sensor material or the like disclosed in JP-A-8-205320, it is possible to obtain an electric resistance change only with respect to pressure, stress and force. That is, a characteristic that an electric resistance can be obtained only for a force, that is, a mechanical quantity (mechanical quantity) sensor having no temperature dependency can be obtained.

【0017】また,第2導電粒子と第3導電粒子との粒
径比や第2相中における両者の粒子間隔,両者の粒子間
に絶縁物を挟ませる等の調整を施すことによって,高耐
熱性複合材料の電気抵抗値,温度抵抗変化率を任意の値
に設定することができる。
Further, by adjusting the particle size ratio between the second conductive particles and the third conductive particles, the distance between the two particles in the second phase, and the interposition of an insulator between the two particles, high heat resistance can be obtained. The electrical resistance value and the temperature resistance change rate of the conductive composite material can be set to arbitrary values.

【0018】次いで,上記第1相を構成する第1粒子と
なる材料について説明する。このものとしては,絶縁セ
ラミックス等の金属酸化物,金属窒化物,またはこれら
の複合化合物を用いることができる。
Next, the material that becomes the first particles constituting the first phase will be described. As this material, metal oxides such as insulating ceramics, metal nitrides, or composite compounds thereof can be used.

【0019】例えば,アルミニウム,珪素,マグネシウ
ム,カルシウム,クロム,ジルコニウム,イットリウ
ム,イッテリビウム,ランタン,バナジウム,バリウ
ム,ストロンチウム,スカンジウム,硼素,ハフニウ
ム,ビスマス,チタン,鉄,亜鉛,ニッケル,マンガ
ン,ランタン,モリブデン,ベリリウム,インジウム,
スズ,ストロンチウム,バナジウム,コバルト,鉄,ニ
オブ,タングステン,セリウム,ジスプロシウム,レニ
ウム,リチウム,サマリウム,タンタル等より選ばれる
1種以上の元素よりなる酸化物,窒化物,またはこれら
の複合酸化物,複合化合物,固溶体等を挙げることがで
きる。更に,サイアロン,コージュエライト,ムライ
ト,ジルコン,フォルステライト,フェライト,スピネ
ル,αSiC等の各種セラミックス材料を挙げることも
できる。
For example, aluminum, silicon, magnesium, calcium, chromium, zirconium, yttrium, ytterbium, lanthanum, vanadium, barium, strontium, scandium, boron, hafnium, bismuth, titanium, iron, zinc, nickel, manganese, lanthanum, molybdenum , Beryllium, indium,
Oxides, nitrides, or composite oxides or composites of at least one element selected from tin, strontium, vanadium, cobalt, iron, niobium, tungsten, cerium, dysprosium, rhenium, lithium, samarium, tantalum, etc. Compounds, solid solutions and the like can be mentioned. Further, various ceramic materials such as sialon, cordierite, mullite, zircon, forsterite, ferrite, spinel, αSiC and the like can also be mentioned.

【0020】また,第2導電粒子や第3導電粒子として
は,温度抵抗変化率が正であるものと負であるものとを
それぞれ選択することができる。第2導電粒子が正であ
れば第3導電粒子は負のものを使用する。その逆として
もよい。
Further, as the second conductive particles and the third conductive particles, those having a positive and negative rate of change in temperature resistance can be selected. If the second conductive particles are positive, negative third conductive particles are used. The reverse is also possible.

【0021】正の温度抵抗変化率を持つ物質としては,
VO2,Cr23,MgCr24,FeCrO4,CoC
rO4,ZnCr24,WO2,MnO,Cu2O,Mo
2,Mn34,Mn23,FeO,NiO,CoO,
Co34,PdO,Cu2O,Al23,CoAl
24,α−Bi23,LaMnO3,NiAl24,T
23,PbO,また第II〜IV族の硼化物,炭化物,珪
化物,窒化物,硫化物,フッ化物,それらの複合化合物
等が挙げられる。
Substances having a positive rate of change in temperature resistance include:
VO 2 , Cr 2 O 3 , MgCr 2 O 4 , FeCrO 4 , CoC
rO 4 , ZnCr 2 O 4 , WO 2 , MnO, Cu 2 O, Mo
O 2 , Mn 3 O 4 , Mn 2 O 3 , FeO, NiO, CoO,
Co 3 O 4 , PdO, Cu 2 O, Al 2 O 3 , CoAl
2 O 4 , α-Bi 2 O 3 , LaMnO 3 , NiAl 2 O 4 , T
Examples include i 2 O 3 , PbO, and borides, carbides, silicides, nitrides, sulfides, fluorides, and composite compounds thereof of Groups II to IV.

【0022】また,負のものとしては,BeO,Mg
O,CaO,SrO,BaO,CeO 2,ThO2,VO
3,V35,TiO2,ZrO2,V23,SnO2,Mo
3,WO3,MnO2,Fe23,MgFe24,Ni
Fe24,ZnFe24,ZnCo24,ZnO,Cd
O,Al23,MgAl24,Tl23,In23,S
iO2,PbO2,ReO2,SiC,VO2,Ta25
が挙げられる。本発明では,第2導電粒子,第3導電粒
子,またはそれ以外の導電粒子として上述の物質を適宜
組み合わせて使用することができる。
The negative ones are BeO, Mg
O, CaO, SrO, BaO, CeO Two, ThOTwo, VO
Three, VThreeOFive, TiOTwo, ZrOTwo, VTwoOThree, SnOTwo, Mo
OThree, WOThree, MnOTwo, FeTwoOThree, MgFeTwoOFour, Ni
FeTwoOFour, ZnFeTwoOFour, ZnCoTwoOFour, ZnO, Cd
O, AlTwoOThree, MgAlTwoOFour, TlTwoOThree, InTwoOThree, S
iOTwo, PbOTwo, ReOTwo, SiC, VOTwo, TaTwoOFiveetc
Is mentioned. In the present invention, the second conductive particles and the third conductive particles
The above-mentioned substances as appropriate for the particles or other conductive particles
They can be used in combination.

【0023】また,第1相が珪素,アルミニウム,硼素
等の窒化物系の絶縁材料よりなる場合には,IIIB族〜VI
IB族,VIII族及びIIIA族〜IV族の中から選出した元素の
炭化物,窒化物,珪化物,または硼化物の1種以上から
なる粒子を第2導電粒子,第3導電粒子として用いるこ
とができる。
When the first phase is made of a nitride-based insulating material such as silicon, aluminum or boron,
Particles consisting of one or more of carbides, nitrides, silicides, or borides of elements selected from the group IB, VIII and IIIA to IV may be used as the second conductive particles and the third conductive particles. it can.

【0024】また,第1相がAlNよりなる場合は,第
II〜IV族の硼化物,珪化物,窒化物より選ばれる1種以
上よりなる粒子を第2導電粒子,第3導電粒子として用
いることができる。
When the first phase is made of AlN,
Particles of one or more selected from borides, silicides, and nitrides of groups II to IV can be used as the second conductive particles and the third conductive particles.

【0025】また,第1相に対する第2導電粒子の量は
3〜60wt%であることが好ましい。これにより,母
材となる第1相の機械的特性を低下させることなく,第
2導電粒子により網目状等の状態にある導電パスを形成
することができ,これによって高耐熱性複合材料に所定
の電気抵抗を発現させることができる。第2導電粒子の
量が3wt%未満である場合には,第1相内に導電パス
が形成され難く,導電性が発現しされ難くなるおそれが
ある。一方,60wt%より大である場合には,第1相
に対する第2導電粒子の不連続な分散が困難となり,焼
結性の低下,機械的特性の低下が生じるおそれがある。
また,抵抗値調整のために,多量の第3導電粒子が必要
となるおそれがある。
Further, the amount of the second conductive particles with respect to the first phase is preferably 3 to 60 wt%. As a result, the second conductive particles can form a conductive path in a mesh shape or the like without deteriorating the mechanical properties of the first phase serving as a base material, thereby providing a high heat resistant composite material with a predetermined shape. Can be developed. When the amount of the second conductive particles is less than 3 wt%, a conductive path is hardly formed in the first phase, and there is a possibility that conductivity is hardly developed. On the other hand, when the content is more than 60 wt%, it becomes difficult to discontinuously disperse the second conductive particles in the first phase, and there is a possibility that sinterability is reduced and mechanical properties are reduced.
In addition, a large amount of third conductive particles may be required for adjusting the resistance value.

【0026】また,本発明にかかる高耐熱性複合材料
は,第1相を構成する複数の結晶粒を取り囲むようにし
て第2導電粒子が2次元的または3次元的に網目状に分
散して導電パスを形成することができるように,第2相
を構成することが好ましい。また,この場合,2次元ま
たは3次元網目状に分散した導電パスが部分的または一
部が第3導電粒子にて置き換えられたような分散状態に
あることが好ましい。これにより,第2導電粒子や第3
導電粒子が少量であっても,第1相内にこれらの粒子が
略直列に配列した導電パスを網目状に構成することがで
きる。
In the high heat resistant composite material according to the present invention, the second conductive particles are two-dimensionally or three-dimensionally dispersed in a network so as to surround the plurality of crystal grains constituting the first phase. Preferably, the second phase is configured so that a conductive path can be formed. In this case, it is preferable that the conductive paths dispersed in a two-dimensional or three-dimensional network are in a dispersed state in which the conductive paths are partially or partially replaced by third conductive particles. Thereby, the second conductive particles and the third conductive particles
Even if the amount of the conductive particles is small, a conductive path in which these particles are arranged substantially in series in the first phase can be formed in a mesh shape.

【0027】また,本発明にかかる高耐熱性複合材料
は,力学量センサ材料,電極材料,ヒータ材料,ガスセ
ンサなどの化学センサ,湿度計,運動量センサ材料等と
して使用することができる。特に力学量センサ材料とし
て使用する場合には,第2導電粒子と第3導電粒子との
粒子間距離を0.1nm〜1μmとすることが好まし
い。
The highly heat-resistant composite material according to the present invention can be used as a physical quantity sensor material, an electrode material, a heater material, a chemical sensor such as a gas sensor, a hygrometer, a momentum sensor material, and the like. In particular, when used as a physical quantity sensor material, the distance between the second conductive particles and the third conductive particles is preferably 0.1 nm to 1 μm.

【0028】粒子間距離が0.1nmより小さい場合に
は,第2導電粒子や第3導電粒子が第1相に連続的に分
散したような状態となり,高感度で直線的な歪み抵抗効
果が得られなくなるおそれがある。一方,1μmより大
である場合には,高耐熱性複合材料の抵抗値が増大し,
力学量センサとしての機能が得られなくなるおそれがあ
る。
When the distance between the particles is smaller than 0.1 nm, the second conductive particles and the third conductive particles are in a state where they are continuously dispersed in the first phase. There is a possibility that it cannot be obtained. On the other hand, when it is larger than 1 μm, the resistance value of the high heat resistant composite material increases,
There is a possibility that the function as the physical quantity sensor cannot be obtained.

【0029】次に,請求項2の発明のように,上記第1
粒子の粒子径より,上記第2及び第3粒子の粒子径が小
さいことが好ましい。これにより,より少ない添加量で
導電パスを形成しやすく,上記のような電気的特性を発
現しやすく,また高い機械的特性も得られ,更には材料
の電気抵抗値の調整もしやすくなるという効果を得るこ
とができる。
Next, as in the second aspect of the present invention, the first
It is preferable that the particle diameter of the second and third particles is smaller than the particle diameter of the particles. As a result, the conductive path can be easily formed with a smaller amount of addition, the above-mentioned electrical characteristics can be easily exhibited, high mechanical characteristics can be obtained, and the electric resistance value of the material can be easily adjusted. Can be obtained.

【0030】次に,請求項3の発明のように,上記第
1,第2及び第3粒子の熱膨張率はそれぞれ異なること
が好ましい。これにより,不連続に分散した第2導電粒
子および第3導電粒子間の間隔を調整し,粒子間の電気
抵抗を変えることにより,材料全体の電気抵抗値を調整
できるという効果を得ることができる。
Next, it is preferable that the first, second, and third particles have different coefficients of thermal expansion. Thereby, it is possible to obtain an effect that the electric resistance value of the whole material can be adjusted by adjusting the interval between the second conductive particles and the third conductive particles dispersed discontinuously and changing the electric resistance between the particles. .

【0031】[0031]

【発明の実施の形態】実施形態例 本発明の実施形態例にかかる高耐熱性複合材料について
説明する。本例にかかる高耐熱性複合材料は,絶縁性の
第1粒子より構成された第1相と,該第1相中において
導電パスを形成する第2相とよりなり,上記第2相は,
上記第1相中に不連続に分散した第2導電粒子と該第2
導電粒子と温度抵抗変化率の符号が反対の第3導電粒子
とが不連続に分散することにより構成されている。そし
て,上記第2相により形成された導電パスは上記第2及
び第3導電粒子の粒子径オーダーの細さである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment A high heat resistant composite material according to an embodiment of the present invention will be described. The high heat resistant composite material according to the present example includes a first phase composed of insulating first particles and a second phase forming a conductive path in the first phase.
The second conductive particles discontinuously dispersed in the first phase and the second conductive particles;
The conductive particles and the third conductive particles having the opposite signs of the rate of change in temperature resistance are discontinuously dispersed. The conductive path formed by the second phase is as thin as the particle diameter of the second and third conductive particles.

【0032】以下,本例にかかる高耐熱性複合材料であ
る試料1〜5を製造方法と共に説明する。また比較試料
C1〜C3についても製造方法と共に説明し,両者の性
能を比較する。
Hereinafter, Samples 1 to 5, which are high heat-resistant composite materials according to the present example, will be described together with a manufacturing method. In addition, comparative samples C1 to C3 will be described together with the manufacturing method, and the performance of both will be compared.

【0033】<試料1>第2導電粒子用の平均粒径:
0.1μmのβSiC原料粉末(抵抗率:0.01Ω・
cm)と第3導電粒子用の平均粒径:0.4μmのZr
2原料粉末とを6:1の体積割合で混合し,湿式ボー
ルミルで100時間,混合・粉砕し,スラリーを得た。
このスラリーの固形分35vol%に,上記原料粉末に
対する粒径比が約2.5〜8倍である第1相用のSi3
4(平均粒径:0.8μm)原料粉末を59vol%
(全体に対する体積,以下同様。),第1相に対する焼
結助材として機能するY23原料粉末を6vol%加え
て,エタノール中で更にボールミル混合した後,乾燥し
て複合粉末を得た。
<Sample 1> Average particle size for second conductive particles:
0.1 μm βSiC raw material powder (resistivity: 0.01Ω ·
cm) and the average particle size for the third conductive particles: Zr of 0.4 μm
B 2 raw material powder and a 6: 1 were mixed at a volume ratio, 100 hours in a wet ball mill, and mixed and pulverized to obtain a slurry.
35% by volume of the solid content of the slurry was mixed with Si 3 for the first phase having a particle size ratio of about 2.5 to 8 times that of the raw material powder.
N 4 (average particle diameter: 0.8 μm) 59 vol% of raw material powder
(Volume with respect to the whole, hereinafter the same.), 6 vol% of Y 2 O 3 raw material powder functioning as a sintering aid for the first phase was added, further ball-milled in ethanol, and dried to obtain a composite powder. .

【0034】上記複合粉末に対し20MPaのプレス圧
で一軸成形を施した後,温度1850℃×20MPa×
1時間の条件でホットプレスを行った。得られたホット
プレス体より,4×4×20mmの角柱状の試験片を切
出して試料1にかかる複合材料を得た。
After subjecting the above composite powder to uniaxial molding under a pressing pressure of 20 MPa, the temperature was 1850 ° C. × 20 MPa ×
Hot pressing was performed for one hour. From the obtained hot pressed body, a 4 × 4 × 20 mm prismatic test piece was cut out to obtain a composite material according to Sample 1.

【0035】得られた試料1の断面をECR(Energy D
ispersive X-ray Spectroscape)プラズマエッチングし
て,そのエッチング面をSEM観察した。さらに,ED
X(Electron Cyclotron Resonance)を用いて元素分析
を行った。その結果,試料1は,複数のSi34結晶粒
の周囲をSiC粒子が一定の間隔で取り囲むことで構成
された網目状構造の導電パスを有することが分かった。
そして,この導電パスのところどころにSiC粒子の代
わりにZrB2粒子が混在していることが分かった。
A cross section of the obtained sample 1 was subjected to ECR (Energy D
Ispersive X-ray Spectroscape) plasma etching was performed, and the etched surface was observed by SEM. Furthermore, ED
Elemental analysis was performed using X (Electron Cyclotron Resonance). As a result, it was found that Sample 1 has a conductive path having a network structure formed by surrounding a plurality of Si 3 N 4 crystal grains with SiC particles at regular intervals.
Then, it was found that ZrB 2 particles were mixed in place of the SiC particles in some places of this conductive path.

【0036】<試料2>第2導電粒子用の平均粒径:
0.1μmのβSiC原料粉末(抵抗率:0.01Ω・
cm)と第3導電粒子用の平均粒径:0.2μmのTi
2原料粉末とを3:1の割合で混合し,湿式ボールミ
ルで100時間,混合・粉砕し,スラリーを得た。この
スラリーの固形分35vol%に対し,上記原料粉末に
対する粒径比が約4〜8倍である第1相用のSi3
4(平均粒径:0.8μm)原料粉末を59vo1%,
23原料粉末を6vo1%加えて,エタノール中で更
にボールミル混合した後,乾燥して複合粉末を得た。
<Sample 2> Average particle size for second conductive particles:
0.1 μm βSiC raw material powder (resistivity: 0.01Ω ·
cm) and average particle size for third conductive particles: 0.2 μm Ti
B 2 raw material powder and a 3: 1 ratio, 100 hours in a wet ball mill, and mixed and pulverized to obtain a slurry. The first phase of Si 3 N having a particle size ratio of about 4 to 8 times the raw material powder with respect to a solid content of 35% by volume of this slurry.
4 (Average particle size: 0.8 μm)
Y 2 O 3 raw material powder was added 6Vo1%, after further mixing ball mill in ethanol, to obtain a composite powder and dried.

【0037】上記複合粉末に対し,20MPaのプレス
圧で一軸成形を施した後,温度1850℃×20MPa
×1時間の条件でホットプレスを行った。得られたホッ
トプレス体より,4×4×20mmの角柱状の試験片を
切出して試料2にかる複合材料を得た。
After the composite powder was subjected to uniaxial molding under a press pressure of 20 MPa, the temperature was 1850 ° C. × 20 MPa.
Hot pressing was performed under the condition of × 1 hour. From the obtained hot pressed body, a 4 × 4 × 20 mm prismatic test piece was cut out to obtain a composite material for Sample 2.

【0038】得られた試料2の断面をECRプラズマエ
ッチングして,そのエッチング面をSEM観察した。さ
らに,EDXを用いて元素分析を行った。その結果,試
料2は,試料1と同様に,複数のSi34結晶粒の周囲
をSiC粒子が一定の間隔で取り囲むことで構成された
網目状構造の導電パスを有することが分かった。そし
て,この導電パスのところどころにSiC粒子の代わり
にTiB2粒子が混在していることが分かった。
The cross section of the obtained sample 2 was subjected to ECR plasma etching, and the etched surface was observed by SEM. Further, elemental analysis was performed using EDX. As a result, similarly to Sample 1, it was found that Sample 2 had a conductive path having a network structure formed by surrounding a plurality of Si 3 N 4 crystal grains with SiC particles at regular intervals. Then, it was found that TiB 2 particles were mixed in place of the SiC particles in some places of this conductive path.

【0039】<試料3>第2導電粒子用の平均粒径:
0.1μmのβSiC原料粉末(抵抗率:0.01Ω・
cm)と第3導電粒子用の平均粒径:0.4μmのTi
N原料粉末とを3:1の割合で混合し,湿式ボールミル
で100時間,混合・粉砕し,スラリーを得た。このス
ラリーの固形分35vol%に対し,上記原料粉末に対
する粒径比が約2.5〜8倍である第1相用のSi34
(平均粒径:0.8μm)原料粉末を59vo1%,Y
23原料粉末を6vo1%加えて,エタノール中で更に
ボールミル混合した後,乾燥して複合粉末を得た。
<Sample 3> Average particle size for second conductive particles:
0.1 μm βSiC raw material powder (resistivity: 0.01Ω ·
cm) and average particle diameter for the third conductive particles: 0.4 μm Ti
N raw material powder was mixed at a ratio of 3: 1 and mixed and pulverized for 100 hours by a wet ball mill to obtain a slurry. The first phase Si 3 N 4 having a particle size ratio of about 2.5 to 8 times the raw material powder with respect to a solid content of 35% by volume of this slurry.
(Average particle diameter: 0.8 μm) 59 vol 1% of raw material powder, Y
6 vol 1% of 2 O 3 raw material powder was added, and the mixture was further ball-milled in ethanol, and then dried to obtain a composite powder.

【0040】上記複合粉末に対し,20MPaのプレス
圧で一軸成形を行った後,温度1850℃×20MPa
×1時間の条件でホットプレスを行った。得られたホッ
トプレス体より,4×4×20mmの角柱状の試験片を
切出して試料3にかかる複合材料を得た。
The composite powder was subjected to uniaxial molding under a pressure of 20 MPa, and then subjected to a temperature of 1850 ° C. × 20 MPa.
Hot pressing was performed under the condition of × 1 hour. From the obtained hot pressed body, a 4 × 4 × 20 mm prismatic test piece was cut out to obtain a composite material according to Sample 3.

【0041】得られた試料3の断面をECRプラズマエ
ッチングして,そのエッチング面をSEM観察した。さ
らに,EDXを用いて元素分析を行った。その結果,試
料3は,試料1と同様に,複数のSi34結晶粒の周囲
をSiC粒子が一定の間隔で取り囲むように構成された
網目状構造の導電パスを有することが分かった。そし
て,この導電パスのところどころにSiC粒子の代わり
にTiN粒子が混在していることが分かった。
The cross section of the obtained sample 3 was subjected to ECR plasma etching, and the etched surface was observed by SEM. Further, elemental analysis was performed using EDX. As a result, similarly to Sample 1, it was found that Sample 3 has a conductive path having a network structure in which SiC particles surround a plurality of Si 3 N 4 crystal grains at regular intervals. Then, it was found that TiN particles were mixed in place of the SiC particles in some places of this conductive path.

【0042】<試料4>第2導電粒子用の平均粒径:
0.1μmのβSiC原料粉末(抵抗率:0.01Ω・
cm)と第3導電粒子用の平均粒径:0.4μmのW原
料粉末とを3:1の割合で混合し,湿式ボールミルで1
00時間,混合・粉砕し,スラリーを得た。このスラリ
ーの固形分35vol%に対し,上記原料粉末に対する
粒径比が約2.5〜8倍である第1相用のSi34(平
均粒径:0.8μm)原料粉末を59vol%,Y23
原料粉末を6vo1%加えて,エタノール中で更にボー
ルミル混合した後,乾燥して複合粉末を得た。
<Sample 4> Average particle size for second conductive particles:
0.1 μm βSiC raw material powder (resistivity: 0.01Ω ·
cm) and a W material powder having an average particle size of 0.4 μm for the third conductive particles were mixed at a ratio of 3: 1 and mixed with a wet ball mill to form a mixture.
The mixture was mixed and pulverized for 00 hours to obtain a slurry. 59 vol% of the first phase Si 3 N 4 (average particle size: 0.8 μm) raw powder having a particle size ratio of about 2.5 to 8 times the solid content of the slurry of 35 vol% , Y 2 O 3
6 vol 1% of the raw material powder was added, and the mixture was further ball-milled in ethanol, and then dried to obtain a composite powder.

【0043】上記複合粉末に対し,20MPaのプレス
圧で一軸成形を行った後,温度1850℃×20MPa
×1時間の条件でホットプレスを行った。得られたホッ
トプレス体より,4×4×20mmの角柱状の試験片を
切出して試料4にかかる複合材料を得た。
The composite powder was subjected to uniaxial molding at a press pressure of 20 MPa, and then subjected to a temperature of 1850 ° C. × 20 MPa.
Hot pressing was performed under the condition of × 1 hour. From the obtained hot-pressed body, a 4 × 4 × 20 mm prismatic test piece was cut out to obtain a composite material according to Sample 4.

【0044】得られた試料4の断面をECRプラズマエ
ッチングして,そのエッチング面をSEM観察した。さ
らに,EDXを用いて元素分析を行った。その結果,試
料4は,試料1と同様に,複数のSi34結晶粒の周囲
をSiC粒子が一定の間隔で取り囲むように構成された
網目状構造の導電パスを有することが分かった。そし
て,この導電パスのところどころにSiC粒子の代わり
にW粒子が混在していることが分かった。
The cross section of the obtained sample 4 was subjected to ECR plasma etching, and the etched surface was observed by SEM. Further, elemental analysis was performed using EDX. As a result, similar to Sample 1, it was found that Sample 4 has a conductive path having a network structure in which SiC particles surround a plurality of Si 3 N 4 crystal grains at regular intervals. Then, it was found that W particles were mixed in place of the SiC particles in some places of this conductive path.

【0045】<試料5>第2導電粒子用の平均粒径:
0.1μmのβSiC原料粉末(抵抗率:0.01Ω・
cm)と第3導電粒子用の平均粒径:0.4μmのCr
2原料粉末とを3:1の割合で混合し,湿式ボールミ
ルで100時間,混合・粉砕し,スラリーを得た。この
スラリーの固形分35vol%に対し,上記原料粉末に
対する粒径比が約2.5〜8倍である第1相用のSi3
4(平均粒径:0.8μm)原料粉末59vol%
と,Y23原料粉末6vo1%を加えて,更にボールミ
ル混合した後,乾燥して複合粉末を得た。
<Sample 5> Average particle size for second conductive particles:
0.1 μm βSiC raw material powder (resistivity: 0.01Ω ·
cm) and average particle size for the third conductive particles: Cr of 0.4 μm
B 2 raw material powder and a 3: 1 ratio, 100 hours in a wet ball mill, and mixed and pulverized to obtain a slurry. The first phase Si 3 having a particle size ratio of about 2.5 to 8 times the solid content of the slurry with respect to a solid content of 35 vol% of the slurry.
N 4 (average particle size: 0.8 μm) raw material powder 59 vol%
And 6% by volume of Y 2 O 3 raw material powder were added, and the mixture was further mixed with a ball mill and dried to obtain a composite powder.

【0046】上記複合粉末に対し,20MPaのプレス
圧で一軸成形を行った後,温度1850℃×20MPa
×1時間の条件でホットプレスを行った。得られたホッ
トプレス体より,4×4×20mmの角柱状の試験片を
切出して試料5にかかる複合材料を得た。
The composite powder was subjected to uniaxial molding under a press pressure of 20 MPa, and then subjected to a temperature of 1850 ° C. × 20 MPa.
Hot pressing was performed under the condition of × 1 hour. From the obtained hot pressed body, a 4 × 4 × 20 mm prismatic test piece was cut out to obtain a composite material according to Sample 5.

【0047】得られた試料5の断面をECRプラズマエ
ッチングして,そのエッチング面をSEM観察した。さ
らに,EDXを用いて元素分析を行った。その結果,試
料5は,試料1と同様に,複数のSi34結晶粒の周囲
をSiC粒子が一定の間隔で取り囲むような網目状構造
の導電パスを有することが分かった。そして,この導電
パスのところどころにSiC粒子の代わりにCrB2
子が混在していることが分かった。
The cross section of the obtained sample 5 was subjected to ECR plasma etching, and the etched surface was observed by SEM. Further, elemental analysis was performed using EDX. As a result, similar to Sample 1, it was found that Sample 5 has a conductive path having a network structure in which SiC particles surround a plurality of Si 3 N 4 crystal grains at regular intervals. Then, it was found that CrB 2 particles were mixed in place of the SiC particles in some places of this conductive path.

【0048】<試料6>第2導電粒子用の平均粒径:
0.1μmのβSiC原料粉末(抵抗率:0.01Ω・
cm)と第3導電粒子用の平均粒径:0.4μmのZr
2原料粉末とを3:1の割合で混合し,湿式ボールミ
ルで100時間混合・粉砕してスラリーを得た。得られ
たスラリーに対し,上記原料粉末に対する粒径比が約4
〜8倍である第1相用のAlN(平均粒径:0.8μ
m)原料粉末59vo1%と,Y23原料粉末6vo1
%を加えて,更にボールミル混合した後,乾燥して複合
粉末を得た。
<Sample 6> Average particle size for second conductive particles:
0.1 μm βSiC raw material powder (resistivity: 0.01Ω ·
cm) and the average particle size for the third conductive particles: Zr of 0.4 μm
B 2 raw material powder and a 3: 1 ratio, to obtain a slurry with 100 hours mixed and pulverized in a wet ball mill. The obtained slurry has a particle size ratio of about 4
AlN for the first phase that is 88 times (average particle size: 0.8 μm)
m) 59 vol 1% of raw material powder and 6 vol 1 of Y 2 O 3 raw material powder
% And further mixed with a ball mill, followed by drying to obtain a composite powder.

【0049】上記複合粉末に対し,20MPaのプレス
圧で一軸成形を行った後,温度1850℃×20MPa
×1時間の条件でホットプレスを行った。得られたホッ
トプレス体より,4×4×20mmの角柱状の試験片を
切出して試料6を得た。
The composite powder was subjected to uniaxial molding at a press pressure of 20 MPa, and then subjected to a temperature of 1850 ° C. × 20 MPa.
Hot pressing was performed under the condition of × 1 hour. From the obtained hot pressed body, a 4 × 4 × 20 mm prismatic test piece was cut out to obtain a sample 6.

【0050】得られた試料6の断面をECRプラズマエ
ッチングして,そのエッチング面をSEM観察した。そ
の結果,試料6は,試料1と同様に,複数のAlN結晶
粒の周囲をSiC粒子が一定の間隔で取り囲むような網
目状構造の導電パスを有することが分かった。そして,
この導電パスのところどころSiC粒子の代わりにZr
2粒子が混在していることが分かった。
The cross section of the obtained sample 6 was subjected to ECR plasma etching, and the etched surface was observed by SEM. As a result, similar to Sample 1, it was found that Sample 6 has a conductive path having a network structure in which SiC particles surround a plurality of AlN crystal grains at regular intervals. And
In some places of this conductive path, Zr is used instead of SiC particles.
It was found that B 2 particles were mixed.

【0051】<比較試料C1>平均粒径:0.2μmの
Si34原料粉末64wt%と,Y23原料粉末6wt
%,平均粒径:0.03μmのSiC原料粉末(抵抗
率:0.03kΩ・cm)30wt%とを湿式ボールミ
ルで混合した後,乾燥,成形した。得られた成形体を温
度1850℃,プレス圧20MPaで1時間ホットプレ
スを行った。このホットプレス体より,試験片を切出し
て比較試料C1を得た。
<Comparative Sample C1> 64 wt% of Si 3 N 4 raw material powder having an average particle diameter of 0.2 μm and 6 wt% of Y 2 O 3 raw material powder
%, An average particle diameter of 0.03 μm and 30 wt% of SiC raw material powder (resistivity: 0.03 kΩ · cm) were mixed by a wet ball mill, and then dried and molded. The obtained compact was hot-pressed at a temperature of 1850 ° C. and a press pressure of 20 MPa for 1 hour. From this hot pressed body, a test piece was cut out to obtain a comparative sample C1.

【0052】この比較試料C1の断面をECRプラズマ
エッチングして,そのエッチング面をSEM観察した。
その結果,比較試料C1は,複数のSi34結晶粒の周
囲をSiC粒子が取り囲むような網目状構造の導電パス
を有することが分かった。
The cross section of this comparative sample C1 was subjected to ECR plasma etching, and the etched surface was observed by SEM.
As a result, it was found that the comparative sample C1 had a conductive path having a network structure in which a plurality of Si 3 N 4 crystal grains were surrounded by SiC particles.

【0053】<比較試料C2>平均粒径:2μmのSi
34原料粉末44wt%と,Y23原料粉末6wt%
と,平均粒径:2μmのβSiC原料粉末30wt%
と,平均粒径:1μmのMoSi2原料粉末20wt%
とを湿式ボールミル混合後,乾燥し成形した。この成形
体を温度1850℃,プレス圧20MPaで1時間ホッ
トプレスした。そして,得られたホットプレス体より試
験片を切出して,比較試料C2を得た。
<Comparative Sample C2> Si having an average particle diameter of 2 μm
3 N 4 and the raw material powder 44wt%, Y 2 O 3 raw material powder 6 wt%
And 30 wt% of βSiC raw material powder having an average particle size of 2 μm
And 20 wt% of MoSi 2 raw material powder having an average particle diameter of 1 μm
Were mixed with a wet ball mill, dried and molded. This compact was hot-pressed at a temperature of 1850 ° C. and a press pressure of 20 MPa for 1 hour. Then, a test piece was cut out from the obtained hot pressed body to obtain a comparative sample C2.

【0054】得られた比較試料C2の断面をECRプラ
ズマエッチングして,そのエッチング面をSEM観察し
た。その結果,比較試料C2は,Si34結晶粒の周囲
をMoSi2粒子が連続的に分散した導電パスを有し,
該導電パス相の内部にはSiC粒子が混在するような組
織が形成されていることが確認された。
The cross section of the obtained comparative sample C2 was subjected to ECR plasma etching, and the etched surface was observed by SEM. As a result, the comparative sample C2 has a conductive path in which MoSi2 particles are continuously dispersed around the Si 3 N 4 crystal grains.
It was confirmed that a structure in which SiC particles were mixed was formed inside the conductive path phase.

【0055】<比較試料C3>平均粒径:0.9μmの
Si34原料粉末64wt%と,Y23原料粉末6wt
%と,平均粒径:0.4μmのαSiC原料粉末(抵抗
率:220kΩ・cm)30wt%とを湿式ボールミル
で混合した後,乾燥,成形した。得られた成形体を温度
1850℃,プレス圧20MPaで1時間ホットプレス
した。このホットプレス体より,試験片を切出して,比
較試料C3を得た。
<Comparative Sample C3> 64 wt% of Si 3 N 4 raw material powder having an average particle diameter of 0.9 μm and 6 wt% of Y 2 O 3 raw material powder
% And 30 wt% of αSiC raw material powder having an average particle diameter of 0.4 μm (resistivity: 220 kΩ · cm) were mixed by a wet ball mill, and then dried and molded. The obtained molded body was hot-pressed at a temperature of 1850 ° C. and a press pressure of 20 MPa for 1 hour. From this hot pressed body, a test piece was cut out to obtain a comparative sample C3.

【0056】比較試料C3の断面をECRプラズマエッ
チングして,そのエッチング面をSEM観察した。その
結果,比較試料C3は,Si34結晶粒の周囲をSiC
粒子の導電パスを形成されていることが確認された。
The cross section of the comparative sample C3 was subjected to ECR plasma etching, and the etched surface was observed by SEM. As a result, the comparative sample C3 has the SiC around the Si 3 N 4 crystal grains.
It was confirmed that the conductive paths of the particles were formed.

【0057】<性能評価試験>以上,試料1〜6,比較
試料C1〜C3について,室温での抵抗率と温度105
0℃での抵抗率を測定し,両者の比を調べ,表1に記載
した。
<Performance Evaluation Test> As described above, for the samples 1 to 6 and the comparative samples C1 to C3, the resistivity at room temperature and the temperature 105
The resistivity at 0 ° C. was measured, and the ratio between the two was determined.

【0058】同表によれば,試料1〜6の抵抗比は1程
度であり,室温でも温度1050℃でも抵抗率があまり
変わらないことが分かった。これに対して比較試料C1
〜C3は抵抗比が1より大きいか(C1,C3),1よ
り小さい(C2)かった。つまり,温度によって抵抗率
が大きく変化する物質であることが分かった。また,比
較試料C2は,試料1〜6の第3導電粒子の添加量に比
べてMoSi 2を多く添加しているが,抵抗比は1より
随分小さく,緻密化が阻害されて機械的及び機能的特性
の低下を招いたり,抵抗値調整が困難となると共にコス
ト高になることが分かった。
According to the table, the resistance ratio of samples 1 to 6 is about 1.
Degree, and the resistivity is too low even at room temperature or at 1050 ° C.
It turned out to be the same. On the other hand, the comparative sample C1
-C3 is the resistance ratio greater than 1 (C1, C3), 1
Smaller (C2). In other words, the resistivity depends on the temperature.
Was found to be a substance that greatly changed. Also, the ratio
Comparative sample C2 was compared to the amount of the third conductive particles added to samples 1 to 6.
All MoSi TwoBut the resistance ratio is more than 1.
Very small, densification is hindered and mechanical and functional properties
Lowering the resistance, making it difficult to adjust the resistance, and
It turned out to be high.

【0059】[0059]

【表1】 [Table 1]

【0060】また,試料1について,室温〜1050℃
における温度−電気抵抗特性を4端子法で測定した。そ
の結果を図1に記載した。同図より明らかなように,試
料1は,室温から1050℃まで電気抵抗値がほぼ一定
であり,温度依存性の小さい歪−電気抵抗特性を発現で
きることが分かった。さらに,図1には各温度での応力
−電気抵抗の関係も記載した。試料1における温度−抵
抗特性は,温度に関係なく,ほぼ同様な変化率でかつ直
線性を示すことが分かった。また,試料2〜6について
も同様のことが分かった。
For sample 1, room temperature to 1050 ° C.
Was measured by the four-terminal method. The results are shown in FIG. As is clear from the figure, it was found that the electrical resistance of Sample 1 was almost constant from room temperature to 1050 ° C., and the strain-electric resistance characteristic with small temperature dependence could be exhibited. FIG. 1 also shows the relationship between stress and electric resistance at each temperature. It was found that the temperature-resistance characteristics of Sample 1 exhibited almost the same change rate and linearity regardless of the temperature. The same was found for samples 2 to 6.

【0061】本例の作用効果について説明する。本例に
かかる高耐熱性複合材料は温度特性が異なる2種類の第
2導電粒子と第3導電粒子とが上述したような分散形態
にあり,両者がほぼ直列に配列した導電パスが第1相中
に形成された状態にある。このため,第2導電粒子の温
度に対する電気抵抗変化を第3導電粒子がキャンセルす
ることができ,全体として,温度上昇によって電気抵抗
が殆ど変化しない材料を得ることができる(図1参
照)。
The operation and effect of this embodiment will be described. In the highly heat-resistant composite material according to the present example, two kinds of second conductive particles and third conductive particles having different temperature characteristics are in the dispersion form as described above, and the conductive path in which both are arranged substantially in series is the first phase. It is in a state formed inside. For this reason, the third conductive particles can cancel the change in the electric resistance of the second conductive particles with respect to the temperature, and a material whose electric resistance hardly changes due to the temperature rise can be obtained as a whole (see FIG. 1).

【0062】そして,本例にかかる高耐熱性複合材料で
は,第1相に対する第2,第3導電粒子の量が少量であ
るため,この材料の製造の際にコスト高や焼結性の悪
化,混合の不均一化及び機械的特性の低下といった問題
が生じ難い。
In the high heat-resistant composite material according to the present example, since the amount of the second and third conductive particles with respect to the first phase is small, the production cost is high and the sinterability is deteriorated. In addition, problems such as non-uniform mixing and deterioration of mechanical properties are unlikely to occur.

【0063】以上,本例によれば,母材に対する導電粒
子の量が少なく,温度依存性が殆どなく,低コストで高
い機械的特性を有する高耐熱性複合材料を提供すること
ができる。
As described above, according to the present embodiment, it is possible to provide a highly heat-resistant composite material having a small amount of conductive particles with respect to the base material, having little temperature dependency, and having low cost and high mechanical properties.

【0064】本例にかかる高耐熱性複合材料は以上のよ
うな優れた特徴を有しているため,温度係数の小さい力
学量センサ材料,低温〜高温用電極材料,ガスセンサ,
温度センサ,ポジションセンサ,ノックセンサ,燃焼圧
センサ,加速度センサ,トルクセンサ等の発熱を伴う電
極材料,バリスタ,コンデンサ用電極材料,ヒータ材
料,ロードセル,液量系として利用することができる。
Since the high heat-resistant composite material according to the present embodiment has the above-mentioned excellent characteristics, it has a small temperature coefficient, a physical quantity sensor material, a low-temperature to high-temperature electrode material, a gas sensor,
It can be used as electrode materials with heat generation such as temperature sensors, position sensors, knock sensors, combustion pressure sensors, acceleration sensors, torque sensors, varistors, electrode materials for capacitors, heater materials, load cells, and liquid volume systems.

【0065】[0065]

【発明の効果】上述のごとく,本発明によれば,母材に
対する導電粒子の量が少なく,温度依存性が殆どなく,
低コストで高い機械的特性を有する高耐熱性複合材料を
提供することができる。
As described above, according to the present invention, the amount of conductive particles relative to the base material is small, there is almost no temperature dependency,
A highly heat-resistant composite material having high mechanical properties at low cost can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,試料1における温度
と,抵抗値と,応力との関係を示す線図。
FIG. 1 is a diagram showing a relationship between a temperature, a resistance value, and a stress in a sample 1 in a first embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 満 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4G001 BA09 BA22 BA32 BA44 BA45 BB09 BB22 BB32 BB44 BB45 BC42 BC73 BD22 BE11 BE26 4G030 AA12 AA47 AA52 AA54 BA02 GA04 GA11 GA29  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mitsuru Asai 41-1, Oku-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi F-term in Toyota Central R & D Laboratories Co., Ltd. 4G001 BA09 BA22 BA32 BA44 BA45 BB09 BB22 BB32 BB44 BB45 BC42 BC73 BD22 BE11 BE26 4G030 AA12 AA47 AA52 AA54 BA02 GA04 GA11 GA29

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性の第1粒子より構成された第1相
と,該第1相中において導電パスを形成する第2相とよ
りなり,上記第2相は,上記第1相中に不連続に分散し
た第2導電粒子と該第2導電粒子と温度抵抗変化率の符
号が反対の第3導電粒子とが不連続に分散することによ
り構成され,上記第2相により形成された導電パスは上
記第2及び第3導電粒子の粒子径オーダーの細さである
ことを特徴とする高耐熱性複合材料。
1. A first phase comprising an insulating first particle and a second phase forming a conductive path in the first phase, wherein the second phase is included in the first phase. The second conductive particles are formed by the discontinuous dispersion of the second conductive particles and the third conductive particles having the opposite sign of the temperature resistance change rate from the second conductive particles, and the conductive particles formed by the second phase. A high heat-resistant composite material, wherein the path is as thin as the particle size of the second and third conductive particles.
【請求項2】 請求項1において,上記第1粒子の粒子
径より,上記第2及び第3粒子の粒子径が小さいことを
特徴とする高耐熱性複合材料。
2. The high heat resistant composite material according to claim 1, wherein the particle diameter of the second and third particles is smaller than the particle diameter of the first particle.
【請求項3】 請求項2において,上記第1,第2及び
第3粒子の熱膨張率はそれぞれ異なることを特徴とする
高耐熱性複合材料。
3. The high heat resistant composite material according to claim 2, wherein the first, second and third particles have different coefficients of thermal expansion.
JP11037218A 1999-02-16 1999-02-16 Highly heat resistant composite material Pending JP2000233971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11037218A JP2000233971A (en) 1999-02-16 1999-02-16 Highly heat resistant composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11037218A JP2000233971A (en) 1999-02-16 1999-02-16 Highly heat resistant composite material

Publications (1)

Publication Number Publication Date
JP2000233971A true JP2000233971A (en) 2000-08-29

Family

ID=12491463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11037218A Pending JP2000233971A (en) 1999-02-16 1999-02-16 Highly heat resistant composite material

Country Status (1)

Country Link
JP (1) JP2000233971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356367A (en) * 2001-03-29 2002-12-13 Taiheiyo Cement Corp Low thermal expansion ceramic and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356367A (en) * 2001-03-29 2002-12-13 Taiheiyo Cement Corp Low thermal expansion ceramic and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100292423B1 (en) Wide range thermistor material and manufacturing method thereof
EP0634756B1 (en) Metal oxide resistor, power resistor, and power circuit breaker
Park et al. Microstructure and electrical properties of YSZ–NiO composites
CN107614462B (en) Conductive oxide sintered body, conductive member, and gas sensor
CA2869627C (en) Sintered oxide compact and circuit board using same
US6144286A (en) PTCR-resistor
JPH0799103A (en) Porcelain composition for thermistor, and thermistor element
KR101260048B1 (en) Conductive particle dispersed negative temperature coefficient film and the preparation method thereof
KR101511840B1 (en) Sintered metal oxide for temperature sensor and proess for producing same
JP2000233971A (en) Highly heat resistant composite material
CN107731339B (en) Conductive oxide sintered body for gas sensor, conductive oxide sintered body, wiring substrate, and gas sensor
CA2721186A1 (en) Thermistor material for use in hydrogen atmosphere
JPS6033265A (en) Silicon carbide electroconductive ceramics
EP1597738B1 (en) A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for preparing thereof
JP6440566B2 (en) Conductive oxide sintered body for oxygen sensor electrode and oxygen sensor using the same
JP6621170B2 (en) PTC thermistor member and PTC thermistor element
WO2007108147A1 (en) Thermoelectric semiconductor, thermoelectric conversion element and thermoelectric conversion module
JP3131071B2 (en) Ceramic heating element
WO2013141238A1 (en) Low-temperature thermistor material and method for manufacturing same
CN107210105B (en) Semiconductor element and its manufacturing method
JP4231653B2 (en) Manufacturing method of laminated piezoelectric actuator
WO2024042767A1 (en) Thermistor element and method for producing same
WO2016136228A1 (en) Ptc thermistor member and ptc thermistor element
Tunkasiri Properties of PZT ceramics prepared from aqueous solutions
Golonka et al. Influence of composition and construction parameters on the basic properties of thick film thermistors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517