JP2000233282A - Power application member for power equipment and its production - Google Patents
Power application member for power equipment and its productionInfo
- Publication number
- JP2000233282A JP2000233282A JP11032552A JP3255299A JP2000233282A JP 2000233282 A JP2000233282 A JP 2000233282A JP 11032552 A JP11032552 A JP 11032552A JP 3255299 A JP3255299 A JP 3255299A JP 2000233282 A JP2000233282 A JP 2000233282A
- Authority
- JP
- Japan
- Prior art keywords
- current
- intermetallic compound
- metal
- carrying member
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/30—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
- C23C26/02—Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Laser Beam Processing (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電力機器に用いら
れる通電部材に係り、特に、アルミニウム又は銅を用い
た電力機器用通電部材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current-carrying member used for power equipment, and more particularly to a current-carrying member for power equipment using aluminum or copper.
【0002】[0002]
【従来の技術】一般に、電力機器に用いられる通電部材
として、高導電率材料であるアルミニウム(Al)又は
銅(Cu)が広く使用されている。ところで、近年、電
力機器において、電力需要の増大や耐環境性の問題か
ら、機器の小型縮小化が強く要求されている。そのた
め、このような機器に使用されるAl又はCuを用いた
通電部材は、その使用環境が非常に厳しくなっており、
特に、Al及びCuは硬度が低いため、耐摩耗特性が低
いことが問題となる場合がある。2. Description of the Related Art In general, aluminum (Al) or copper (Cu), which is a highly conductive material, is widely used as a current-carrying member used in power equipment. By the way, in recent years, power equipment has been strongly demanded to be reduced in size due to an increase in power demand and environmental resistance. For this reason, the current-carrying member using Al or Cu used for such equipment has a very severe use environment,
In particular, since Al and Cu have low hardness, there may be a problem that the wear resistance is low.
【0003】従来、このような問題に対する方策として
は、高強度なAl合金又はCu合金等を用いる方法、あ
るいは、Al又はCuの表面に、メッキや表面酸化処理
等を施すことにより硬化層を形成する方法等が採られて
いた。Conventionally, as a measure against such a problem, a method using a high-strength Al alloy or Cu alloy, or a method of forming a hardened layer by plating or surface oxidizing treatment on the surface of Al or Cu is used. And so on.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、Al合
金又はCu合金等を使用しても十分な硬度を得ることは
できず、かつ、Al合金及びCu合金はAl及びCuに
比べて導電率が低いという問題があった。また、メッキ
や表面酸化処理等の表面処理を施しても、そのような硬
化層は非常に薄いため、高荷重下では耐摩耗特性が不十
分であるという問題があった。However, even if an Al alloy or a Cu alloy is used, sufficient hardness cannot be obtained, and the Al alloy and the Cu alloy have lower conductivity than Al and Cu. There was a problem. Further, even if a surface treatment such as plating or surface oxidation treatment is performed, such a hardened layer is very thin, so that there is a problem that the abrasion resistance under a high load is insufficient.
【0005】本発明は、以上のような従来技術の課題を
解決するために提案されたものであり、その目的は、部
分的に厚膜による硬化層を形成することにより、導電性
を損なうことなく、かつ、耐摩耗特性を向上させた電力
機器用通電部材を提供することにある。The present invention has been proposed in order to solve the above-mentioned problems of the prior art, and an object thereof is to impair conductivity by forming a hardened layer partially with a thick film. It is another object of the present invention to provide a current-carrying member for a power device, which has no wear and has improved wear resistance.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明は、Al又はAl合金の金属基
材からなり、その一部に、厚膜で前記Al及びAl合金
以外の金属との金属間化合物が形成されることによりビ
ッカーズ硬度(Hv)が100〜250である部分硬化
部が形成されていることを特徴としている。In order to achieve the above object, the invention according to claim 1 comprises a metal substrate of Al or an Al alloy, and a part of the metal substrate has a thick film other than the Al and the Al alloy. It is characterized in that a partially cured portion having a Vickers hardness (Hv) of 100 to 250 is formed by forming an intermetallic compound with a metal.
【0007】また、請求項2記載の発明は、請求項1記
載の発明において、前記部分硬化部の導電率が10%〜
50%の範囲内にあることを特徴としている。更に、請
求項3記載の発明は、請求項1又は2記載の発明におい
て、前記金属間化合物が、Cu、Ni、Fe、Cr及び
Coからなる群から選択される金属を含んでいることを
特徴としている。また、請求項4記載の発明は、請求項
3記載の発明において、前記金属間化合物が、前記C
u、Ni、Fe、Cr及びCoからなる群から選択され
る金属が3重量%〜30重量%添加されてなることを特
徴としている。According to a second aspect of the present invention, in the first aspect of the invention, the partial cured portion has a conductivity of 10% to 10%.
It is characterized by being within the range of 50%. Further, the invention according to claim 3 is the invention according to claim 1 or 2, wherein the intermetallic compound contains a metal selected from the group consisting of Cu, Ni, Fe, Cr and Co. And Also, in the invention according to claim 4, in the invention according to claim 3, the intermetallic compound is
It is characterized in that a metal selected from the group consisting of u, Ni, Fe, Cr and Co is added in an amount of 3% by weight to 30% by weight.
【0008】請求項5記載の発明は、Cu又はCu合金
の金属基材からなり、その一部に、厚膜で前記Cu又は
Cu合金以外の金属間化合物が形成されることによりビ
ッカーズ硬度(Hv)が140〜250である部分硬化
部が形成されていることを特徴としている。According to a fifth aspect of the present invention, a Vickers hardness (Hv) is formed by forming a thick film of an intermetallic compound other than the Cu or Cu alloy on a part of the metal base material of Cu or Cu alloy. ) Is characterized in that a partially cured portion of 140 to 250 is formed.
【0009】また、請求項6記載の発明は、請求項5記
載の発明において、前記部分硬化部の導電率が10%〜
90%の範囲内にあることを特徴としている。更に、請
求項7記載の発明は、請求項5又は6記載の発明におい
て、前記金属間化合物が、Al、Fe及びTiからなる
群から選択される金属を含んでいることを特徴としてい
る。また、請求項8記載の発明は、請求項7記載の発明
において、前記金属間化合物が、前記Al、Fe及びT
iからなる群から選択される金属が3重量%〜30重量
%添加されてなることを特徴としている。According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the partial cured portion has a conductivity of 10% to 10%.
It is characterized by being within the range of 90%. Further, the invention of claim 7 is characterized in that, in the invention of claim 5 or 6, the intermetallic compound contains a metal selected from the group consisting of Al, Fe and Ti. The invention according to claim 8 is the invention according to claim 7, wherein the intermetallic compound is selected from the group consisting of Al, Fe and T.
It is characterized in that a metal selected from the group consisting of i is added in an amount of 3% by weight to 30% by weight.
【0010】請求項9記載の発明は、請求項1乃至8の
いずれか1項記載の発明において、前記部分硬化部の端
部において前記金属基材に対する自由縁のなす角度が、
45度〜85度又は110度〜150度であることを特
徴としている。According to a ninth aspect of the present invention, in the invention according to any one of the first to eighth aspects, an angle formed by a free edge with respect to the metal base at an end of the partially cured portion is as follows:
The angle is 45 to 85 degrees or 110 to 150 degrees.
【0011】以上のような請求項1乃至9記載の発明に
よれば、金属基材において摺動により大きな摩耗が生じ
ていた部分に部分硬化部を形成することにより、耐摩耗
特性及び通電特性共に優れた電力機器用通電部材を得る
ことができる。According to the first to ninth aspects of the present invention, by forming a partially hardened portion in a portion of the metal substrate where a large amount of abrasion has occurred due to sliding, both the abrasion resistance and the current-carrying characteristics are obtained. An excellent current-carrying member for power equipment can be obtained.
【0012】請求項10記載の発明は、請求項1乃至9
のいずれか1項記載の電力機器用通電部材を製造する方
法であって、前記部分硬化部の残留応力を緩和すること
を特徴としている。また、請求項11記載の発明は、請
求項10記載の発明において、前記部分硬化部を150
℃〜400℃の温度で熱処理することにより前記残留応
力を緩和することを特徴としている。The invention according to claim 10 is the invention according to claims 1 to 9
The method for producing a current-carrying member for a power device according to any one of claims 1 to 3, wherein a residual stress in the partially cured portion is reduced. According to an eleventh aspect of the present invention, in the tenth aspect of the present invention, the partially cured portion is set to 150
It is characterized in that the residual stress is relaxed by performing a heat treatment at a temperature of from 400C to 400C.
【0013】このような請求項10又は11記載の発明
によれば、部分硬化部の残留応力を緩和することにより
機械的強度が向上するため、機械的強度の高い電力機器
用通電部材を製造することができる。According to the tenth or eleventh aspect of the present invention, since the mechanical strength is improved by relaxing the residual stress in the partially cured portion, a current-carrying member for a power device having a high mechanical strength is manufactured. be able to.
【0014】請求項12記載の発明は、請求項1乃至9
のいずれか1項記載の電力機器用通電部材を製造する方
法であって、電子ビーム、プラズマ又はレーザによる再
溶融処理により前記金属間化合物を形成することを特徴
としている。また、請求項13記載の発明は、請求項1
2記載の発明において、真空中において電子ビームによ
る再溶融処理により前記金属間化合物を形成することを
特徴としている。[0014] The twelfth aspect of the present invention provides the first to ninth aspects.
The method for manufacturing a current-carrying member for a power device according to any one of claims 1 to 3, wherein the intermetallic compound is formed by a remelting process using an electron beam, plasma, or laser. Further, the invention according to claim 13 is based on claim 1.
3. The invention according to item 2, wherein the intermetallic compound is formed by a remelting process using an electron beam in a vacuum.
【0015】更に、請求項14記載の発明は、請求項1
2記載の発明において、不活性ガス雰囲気中においてプ
ラズマによる再溶融処理により前記金属間化合物を形成
することを特徴としている。以上のような請求項12乃
至14記載の発明によれば、耐摩耗特性及び通電特性を
有する電力機器用通電部材を製造することが可能とな
る。Further, the invention according to claim 14 is the first invention.
3. The invention according to item 2, wherein the intermetallic compound is formed by a remelting treatment using plasma in an inert gas atmosphere. According to the twelfth to fourteenth aspects of the present invention, it is possible to manufacture a current-carrying member for a power device having wear resistance and current-carrying characteristics.
【0016】[0016]
【実施例】以下に、本発明による電力機器用通電部材
(以下、単に「部材」とする)の実施例について図面を
参照して説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a power supply member for power equipment according to the present invention.
【0017】[1.第1実施例]図1は、本実施例にお
ける部材の概略構成を示す模式図である。同図におい
て、1は基材であり、本実施例ではA1050材を用い
ている。2は厚膜の硬化層であり、基材1に部分的に形
成されている(特許請求の範囲における部分硬化部)。
この硬化層2が形成されている部分は、従来、基材1に
おいて摺動により大きな摩耗が生じていた部分である。[1. First Embodiment] FIG. 1 is a schematic diagram showing a schematic configuration of a member in the present embodiment. In the drawing, reference numeral 1 denotes a base material, and in this embodiment, an A1050 material is used. Reference numeral 2 denotes a thick cured layer which is partially formed on the substrate 1 (partially cured portion in the claims).
The portion where the hardened layer 2 is formed is a portion where a large amount of wear has occurred in the base material 1 due to sliding.
【0018】上記硬化層2は、以下のようにして形成さ
れている。すなわち、基材1の硬化層2を形成する部分
(硬化部)に、予め銅線を設置しておき、その硬化部に
対し電子ビームによる高密度熱エネルギーにより再溶融
処理を施す。それにより、硬化部に、高硬度なCuとA
lによる金属間化合物を形成する。The cured layer 2 is formed as follows. That is, a copper wire is previously placed on a portion (cured portion) of the base material 1 where the cured layer 2 is to be formed, and the cured portion is subjected to re-melting processing by high-density thermal energy using an electron beam. Thereby, high hardness Cu and A
1 to form an intermetallic compound.
【0019】<硬化層2の硬度>ここで、硬化層2を形
成する際に、設置する銅線の径を種々変化させ、同様に
再溶融処理を施すことにより、硬化層2の硬度が異なる
部材を作製する。このようにして作製した複数の部材を
用いて、周知の方法により摺動時の耐摩耗特性を測定す
る。その結果、硬化層2のビッカーズ硬度(Hv)が1
00以上になると、硬化層2を形成していない部材に比
べて摺動摩耗が著しく低減された。一方、硬化層2のビ
ッカーズ硬度(Hv)が250を超えると、再溶融処理
時に硬化層2内に亀裂が生じることとなり、健全な部材
を得ることができなかった。<Hardness of hardened layer 2> Here, when the hardened layer 2 is formed, the hardness of the hardened layer 2 is varied by changing the diameter of the copper wire to be installed in various ways and performing a re-melting process in the same manner. Make a member. Using the plurality of members manufactured as described above, the wear resistance characteristics during sliding are measured by a known method. As a result, the Vickers hardness (Hv) of the cured layer 2 becomes 1
When it was 00 or more, sliding wear was significantly reduced as compared with a member having no hardened layer 2 formed thereon. On the other hand, when the Vickers hardness (Hv) of the hardened layer 2 exceeds 250, cracks occur in the hardened layer 2 at the time of the re-melting treatment, and a sound member could not be obtained.
【0020】従って、基材1において、部分的に金属間
化合物を生成して厚膜の硬化層2を形成し、そのビッカ
ーズ硬度を100〜250の範囲とすることにより、部
材の耐摩耗特性を向上させることができることが分かっ
た。Therefore, by forming a thick cured layer 2 by partially forming an intermetallic compound on the substrate 1 and setting its Vickers hardness in the range of 100 to 250, the wear resistance of the member is improved. It has been found that it can be improved.
【0021】<硬化層2の導電率>また、硬化層2を形
成する際に、設置する銅線の径を種々変化させ、同様に
再溶融処理を施すことにより、導電率(IACS)が異
なる部材を作製する。このようにして作製した複数の部
材を用いて、周知の方法により摺動時の耐摩耗特性を測
定する。その結果、硬化層2の導電率が10%〜50%
の部材において、優れた耐摩耗特性と十分な通電特性が
得られた。従って、硬化層2の導電率を10%〜50%
の範囲とすることにより、耐摩耗特性及び通電特性共に
優れた部材が得られることが分かった。<Electrical Conductivity of Hardened Layer 2> When the hardened layer 2 is formed, the electrical conductivity (IACS) differs by changing the diameter of the copper wire to be installed in various ways and performing the re-melting process in the same manner. Make a member. Using the plurality of members manufactured as described above, the wear resistance characteristics during sliding are measured by a known method. As a result, the conductivity of the cured layer 2 is 10% to 50%.
In the member of the above, excellent wear resistance characteristics and sufficient current-carrying characteristics were obtained. Therefore, the conductivity of the cured layer 2 is set to 10% to 50%.
It was found that a member excellent in both abrasion resistance characteristics and electric conduction characteristics could be obtained by setting the ratio in the range.
【0022】<金属間化合物>更に、硬化部に金属間化
合物を生成するために添加する金属として、上記Cu以
外の金属を添加することを試みた。その結果、Ni、F
e、Cr又はCoを添加して再溶融処理を施した場合
に、優れた耐摩耗特性及び通電特性を得ることができ
た。<Intermetallic Compound> Further, an attempt was made to add a metal other than the above-mentioned Cu as a metal to be added in order to form an intermetallic compound in the cured portion. As a result, Ni, F
When a remelting treatment was performed by adding e, Cr or Co, excellent wear resistance and electrical conduction characteristics could be obtained.
【0023】また、上記添加する金属(Cuも含む)が
硬化層2内において占める重量割合を種々変化させ、そ
れぞれ再溶融処理を施して部材を作製した。そして、こ
のようにして作製した複数の部材に対し、それぞれ評価
試験を行った。その結果、Cu、Ni、Fe、Cr又は
Coを3重量%〜30重量%とすることにより、優れた
耐摩耗特性及び通電特性を得ることができた。Also, the weight ratio of the added metal (including Cu) in the hardened layer 2 was changed variously, and each of them was subjected to remelting treatment to produce a member. Then, an evaluation test was performed on each of the plurality of members manufactured as described above. As a result, by setting Cu, Ni, Fe, Cr or Co to 3% by weight to 30% by weight, it was possible to obtain excellent wear resistance and current-carrying properties.
【0024】従って、硬化層2を形成する場合に添加す
る金属として、Cu、Ni、Fe、Cr又はCoのいず
れかを選択することにより、耐摩耗特性及び通電特性共
に優れた部材が得られ、それらを3重量%〜30重量%
とすることにより更に優れた部材が得られることが分か
った。Therefore, by selecting any one of Cu, Ni, Fe, Cr and Co as a metal to be added when forming the hardened layer 2, a member excellent in both abrasion resistance and current-carrying properties can be obtained. 3% to 30% by weight of them
It has been found that a more excellent member can be obtained by doing so.
【0025】なお、本実施例において、基材1としてA
1050材を用いて部材を作製し、各評価を行ったが、
その他のAl又はAl合金を用いた場合にも同様な効果
が得られることは確認済みである。In this embodiment, the substrate 1 is made of A
A member was produced using 1050 materials, and each evaluation was performed.
It has been confirmed that similar effects can be obtained when other Al or Al alloys are used.
【0026】[2.第2実施例]本実施例では、図1に
示す部材において、基材1としてC1020材を用いて
いる。また、第1実施例と同様に、基材1において摺動
により大きな摩耗が生じていた部分に、硬化層2が形成
されている。[2. Second Embodiment] In this embodiment, a C1020 material is used as the base material 1 in the member shown in FIG. Further, as in the first embodiment, a hardened layer 2 is formed in a portion of the base material 1 where a large amount of wear has occurred due to sliding.
【0027】上記硬化層2は、以下のようにして形成さ
れている。すなわち、基材1の硬化層2を形成する部分
(硬化部)に、予めアルミニウム線を設置しておき、そ
の硬化部に対し電子ビームによる高密度エネルギーによ
り再溶融処理を施す。それにより、硬化部に、高硬度な
CuとAlによる金属間化合物を生成する。The cured layer 2 is formed as follows. That is, an aluminum wire is previously set in a portion (cured portion) of the substrate 1 where the cured layer 2 is to be formed, and the cured portion is subjected to re-melting treatment by high-density energy using an electron beam. Thereby, an intermetallic compound of Cu and Al having high hardness is generated in the hardened portion.
【0028】<硬化層2の硬度>ここで、硬化層2を形
成する際に、設置するアルミニウム線(Al線)の径を
種々変化させ、同様に再溶融処理を施すことにより、硬
化層2の硬度が異なる部材を作製する。このようにして
作製した複数の部材を用いて、周知の方法により摺動時
の耐摩耗特性を測定する。その結果、硬化層2のビッカ
ーズ硬度(Hv)が140以上になると、硬化層2を形
成していない部材に比べて摺動摩耗が著しく低減され
た。一方、硬化層2のビッカーズ硬度(Hv)が250
を超えると、再溶融処理時に硬化層2内に亀裂が生じる
こととなり、健全な部材を得ることができなかった。<Hardness of hardened layer 2> Here, when the hardened layer 2 is formed, the diameter of the aluminum wire (Al wire) to be set is changed variously, and the hardened layer 2 is similarly subjected to remelting treatment. To produce members having different hardnesses. Using the plurality of members manufactured as described above, the wear resistance characteristics during sliding are measured by a known method. As a result, when the Vickers hardness (Hv) of the hardened layer 2 was 140 or more, sliding wear was significantly reduced as compared with a member without the hardened layer 2. On the other hand, the Vickers hardness (Hv) of the cured layer 2 is 250
If the temperature exceeds the limit, cracks will occur in the hardened layer 2 during the remelting treatment, and a sound member cannot be obtained.
【0029】従って、基材1において、部分的に金属間
化合物を生成して厚膜の硬化層2を形成し、そのビッカ
ーズ硬度を140〜250の範囲とすることにより、部
材の耐摩耗特性を向上させることができることが分かっ
た。Therefore, by forming a thick cured layer 2 by partially forming an intermetallic compound on the base material 1 and setting its Vickers hardness in the range of 140 to 250, the wear resistance of the member is improved. It has been found that it can be improved.
【0030】<硬化層2の導電率>また、硬化層2を形
成する際に、設置するAl線の径を種々変化させ、同様
に再溶融処理を施すことにより、導電率(IACS)が
異なる部材を作製する。このようにして作製した複数の
部材を用いて、周知の方法により摺動時の耐摩耗特性を
測定する。その結果、硬化層2の導電率が10%〜90
%の部材において、優れた耐摩耗特性を十分な通電特性
が得られた。従って、硬化層2の導電率を10%〜90
%の範囲とすることにより、耐摩耗特性及び通電特性共
に優れた部材が得られることが分かった。<Electrical Conductivity of Hardened Layer 2> When the hardened layer 2 is formed, the electrical conductivity (IACS) differs by changing the diameter of the Al wire to be installed in various ways and performing the re-melting process in the same manner. Make a member. Using the plurality of members manufactured as described above, the wear resistance characteristics during sliding are measured by a known method. As a result, the conductivity of the cured layer 2 is 10% to 90%.
% Of the members, excellent wear resistance and sufficient current-carrying characteristics were obtained. Therefore, the conductivity of the cured layer 2 is set to 10% to 90%.
%, It was found that a member excellent in both abrasion resistance characteristics and electric conduction characteristics could be obtained.
【0031】<金属間化合物>更に、硬化部に金属間化
合物を生成するために添加する金属として、上記Al以
外の金属を添加することを試みた。その結果、Fe又は
Tiを添加して再溶融処理を施した場合に、優れた耐摩
耗特性及び通電特性を得ることができた。<Intermetallic Compound> Further, an attempt was made to add a metal other than Al as a metal to be added in order to form an intermetallic compound in the cured portion. As a result, when the remelting treatment was performed by adding Fe or Ti, excellent abrasion resistance characteristics and electric conduction characteristics could be obtained.
【0032】また、上記添加する金属(Alも含む)が
硬化層2内において占める重量割合を種々変化させ、そ
れぞれ再溶融処理を施して部材を作製した。そして、こ
のようにして作製した複数の部材に対し、それぞれ評価
試験を行った。その結果、Al、Fe又はTiを3重量
%〜30重量%とすることにより、優れた耐摩耗特性及
び通電特性を得ることができた。Also, the weight ratio of the added metal (including Al) in the hardened layer 2 was variously changed, and each member was subjected to remelting treatment to produce a member. Then, an evaluation test was performed on each of the plurality of members manufactured as described above. As a result, by setting the content of Al, Fe, or Ti to 3% by weight to 30% by weight, it was possible to obtain excellent wear resistance and electrical conduction.
【0033】従って、硬化層2を形成する場合に添加す
る金属として、Al、Fe又はTiのいずれかを選択す
ることにより、耐摩耗特性及び通電特性共に優れた部材
が得られ、それらを3重量%〜30重量%とすることに
より更に優れた部材が得られることが分かった。Therefore, by selecting any one of Al, Fe and Ti as the metal to be added when forming the hardened layer 2, a member excellent in both the wear resistance and the current-carrying properties can be obtained, and these can be used in a weight of 3%. % To 30% by weight, it was found that a more excellent member could be obtained.
【0034】なお、本実施例において、基材1としてC
1020材を用いて部材を作製し、各評価を行ったが、
その他のCu又はCu合金を用いた場合にも同様の効果
が得られることは確認済みである。In this embodiment, the base material 1 is C
A member was manufactured using 1020 materials, and each evaluation was performed.
It has been confirmed that a similar effect can be obtained when other Cu or Cu alloy is used.
【0035】[3.第3実施例]本実施例では、部材の
硬化層における機械的強度に及ぼす残留応力の影響につ
いて調査を行った。まず、図2に示すように硬化層2を
形成した4点曲げ試験片を多数作製した。ここで、基材
1としてC1020材を使用し、硬化部にAlを添加し
て、電子ビームによる高密度熱エネルギーにより再溶融
処理を施し、ビッカーズ硬度(Hv)が200の硬化層
2を形成した。なお、この図に示す試験片では、硬化層
2の端部において基材1に対して自由縁3のなす角度は
90度としている。[3. Third Embodiment] In the present embodiment, the effect of residual stress on the mechanical strength of a cured layer of a member was investigated. First, as shown in FIG. 2, a number of four-point bending test pieces on which the cured layer 2 was formed were prepared. Here, a C1020 material was used as the base material 1, Al was added to the hardened portion, and re-melting treatment was performed by high-density thermal energy using an electron beam to form a hardened layer 2 having a Vickers hardness (Hv) of 200. . In the test piece shown in this figure, the angle formed by the free edge 3 with respect to the substrate 1 at the end of the cured layer 2 is 90 degrees.
【0036】以上のような試験片に対し、硬化層2の表
面に引張応力が発生するような4点曲げ試験を実施し
た。ここでは、試験片として、再溶融処理したままのも
のと、再溶融処理の後、熱処理により残留応力を緩和し
たものとの2種類について、それぞれ5pの試験を行っ
た。The above test piece was subjected to a four-point bending test in which a tensile stress was generated on the surface of the hardened layer 2. Here, 5p tests were carried out on two types of test pieces, ones that had been subjected to the remelting process and those that had their residual stress relaxed by heat treatment after the remelting process.
【0037】その結果、硬化層2内に亀裂が発生するま
での強度が、再溶融処理したままの試験片は平均410
MPaであったのに対し、熱処理により残留応力を緩和
した試験片は平均520MPaであった。すなわち、残
留応力を緩和した試験片の方が、機械的強度が向上し
た。以上のことから、硬化層2の残留応力を緩和するこ
とにより、部材の機械的強度を向上させ得ることが明ら
かである。As a result, the strength of the cured layer 2 before a crack was generated was an average of 410 for the remelted test piece.
On the other hand, the average value of the test pieces whose residual stress was relaxed by the heat treatment was 520 MPa. That is, the test piece in which the residual stress was relaxed had improved mechanical strength. From the above, it is clear that the mechanical strength of the member can be improved by relaxing the residual stress of the hardened layer 2.
【0038】<熱処理温度>次いで、残留応力を緩和す
るための熱処理において、温度を種々変化させた試験片
を多数作製し、上述した4点曲げ試験を実施した。ここ
で、熱処理時間は2時間とした。<Heat Treatment Temperature> Next, in the heat treatment for relaxing the residual stress, a large number of test pieces having various temperatures were prepared and subjected to the above-described four-point bending test. Here, the heat treatment time was 2 hours.
【0039】図3に、この4点曲げ試験の結果を示す。
同図に示すグラフにおいて、横軸は熱処理温度(℃)を
示し、縦軸は試験片の平均強度(MPa)を示してい
る。このグラフに示す結果から、熱処理温度を150℃
〜400℃とした場合に、試験片の平均強度が向上して
いることが分かる。以上のことから、硬化層2に対し1
50℃〜400℃の温度で熱処理を施すことにより、部
材の機械的強度を向上させ得ることが明らかである。FIG. 3 shows the results of the four-point bending test.
In the graph shown in the figure, the horizontal axis indicates the heat treatment temperature (° C.), and the vertical axis indicates the average strength (MPa) of the test piece. From the results shown in this graph, the heat treatment temperature was set to 150 ° C.
It can be seen that the average strength of the test piece is improved when the temperature is set to 400 ° C. From the above, 1 to the cured layer 2
It is clear that the heat treatment at a temperature of 50C to 400C can improve the mechanical strength of the member.
【0040】なお、本実施例において、基材1としてC
1020材を用いた場合の結果を示したが、その他のC
u又はCu合金、あるいはAl又はAl合金を用いた場
合にも同様な効果が得られることは確認済みである。In this embodiment, the base material 1 is C
The results in the case of using 1020 material are shown.
It has been confirmed that a similar effect can be obtained when u or Cu alloy, or Al or Al alloy is used.
【0041】[4.第4実施例]本実施例では、上述し
た第3実施例と同様に試験片を作製し、同様な4点曲げ
試験を実施した。ここでは、硬化層2の形状が試験片の
機械的強度に及ぼす影響について調査した。すなわち、
図2に示す試験片において、硬化層2の端部において基
材1に対して自由縁3のなす角度を種々変化させた試験
を多数作製し、上記試験を実施した。[4. Fourth Embodiment] In this embodiment, a test piece was prepared in the same manner as in the above-described third embodiment, and a similar four-point bending test was performed. Here, the influence of the shape of the cured layer 2 on the mechanical strength of the test piece was investigated. That is,
In the test piece shown in FIG. 2, a large number of tests in which the angle formed by the free edge 3 with respect to the base material 1 at the end of the cured layer 2 was variously manufactured, and the above test was performed.
【0042】図4に、この4点曲げ試験の結果を示す。
同図に示すグラフにおいて、横軸は自由縁角度(度)を
示し、縦軸は試験片の平均強度(MPa)を示してい
る。このグラフに示す結果から、自由縁3の角度を11
0度以上、又は45度〜85度とした場合に、試験片の
平均強度が向上していることが分かる。FIG. 4 shows the results of the four-point bending test.
In the graph shown in the figure, the horizontal axis represents the free edge angle (degree), and the vertical axis represents the average strength (MPa) of the test piece. From the results shown in this graph, the angle of the free edge 3 was 11
It can be seen that the average strength of the test piece is improved when it is 0 degrees or more, or when it is 45 degrees to 85 degrees.
【0043】以上のことから、硬化層2の端部において
基材1に対する自由縁3のなす角度を110度〜150
度、又は45度〜85度とすることにより、部材の機械
的強度を向上させ得ることが明らかである。From the above, the angle formed by the free edge 3 with respect to the base material 1 at the end of the cured layer 2 is 110 ° to 150 °.
It is clear that the mechanical strength of the member can be improved by setting the angle to 45 degrees or 45 degrees to 85 degrees.
【0044】なお、本実施例において、基材1としてC
1020材を用いた場合の結果を示したが、その他のC
u又はCu合金、あるいはAl又はAl合金を用いた場
合にも同様な効果が得られることは確認済みである。In this embodiment, the base material 1 is C
The results in the case of using 1020 material are shown.
It has been confirmed that a similar effect can be obtained when u or Cu alloy, or Al or Al alloy is used.
【0045】[5.第5実施例]本実施例では、硬化層
2を形成する際の再溶融処理を施す熱エネルギー源とし
て、上述した電子ビームの代わりに他の熱エネルギー源
を用いて、第1及び第2実施例と同様な部材を作製し、
耐摩耗特性及び通電特性を調査した。ここで、基材1と
してC1020材を使用し、硬化部にAlを添加して、
種々の熱エネルギー源を用いて再溶融処理を施し、硬化
層2を形成した。[5. Fifth Embodiment] In this embodiment, the first and second embodiments use another heat energy source instead of the above-described electron beam as the heat energy source for performing the re-melting process when forming the cured layer 2. Create a member similar to the example,
The wear resistance and the current-carrying characteristics were investigated. Here, C1020 material is used as the base material 1, Al is added to the cured portion,
The re-melting treatment was performed using various heat energy sources to form a cured layer 2.
【0046】そして、このようにして作製した部材に対
し、それぞれ耐摩耗特性及び通電特性を調べた結果、高
密度熱エネルギー源であるプラズマ又はレーザを用いた
場合にも、電子ビームを用いた場合と同様に優れた耐摩
耗特性及び通電特性が得られることが分かった。As a result of examining the wear resistance and the current-carrying characteristics of the members manufactured as described above, it was found that a high-density thermal energy source, such as a plasma or a laser, was used and an electron beam was used. It was found that excellent abrasion resistance and current-carrying characteristics were obtained in the same manner as in Example 1.
【0047】以上のことから、硬化層2を形成する際
に、再溶融処理の熱エネルギー源として電子ビーム、プ
ラズマ又はレーザを使用して金属間化合物を生成するこ
とにより、優れた耐摩耗特性及び通電特性を有する部材
を得ることができることが分かった。As described above, when the hardened layer 2 is formed, the intermetallic compound is generated by using an electron beam, a plasma or a laser as a thermal energy source for the re-melting treatment, so that excellent wear resistance and excellent wear resistance can be obtained. It was found that a member having current-carrying characteristics could be obtained.
【0048】<再溶融処理の雰囲気>次に、熱エネルギ
ー源として電子ビームを使用し、雰囲気を種々変化させ
て再溶融処理を施して、金属間化合物を生成し、硬化層
2を形成した。そのような複数の部材に対し、耐摩耗特
性及び通電特性を調べた。その結果、真空雰囲気中にお
いて再溶融処理を施した部材において、最も優れた耐摩
耗特性及び通電特性が得られた。<Atmosphere of Remelting Treatment> Next, an electron beam was used as a thermal energy source, the atmosphere was changed in various ways, and remelting treatment was performed to produce an intermetallic compound, thereby forming a hardened layer 2. With respect to such a plurality of members, the wear resistance characteristics and the current-carrying characteristics were examined. As a result, in the member that was subjected to the remelting treatment in a vacuum atmosphere, the most excellent wear resistance and electric conduction characteristics were obtained.
【0049】以上のことから、電子ビームを熱エネルギ
ー源として金属間化合物を生成する場合、真空雰囲気中
で再溶融処理を行うことにより、優れた耐摩耗特性及び
通電特性を有する部材が得られることが分かった。As described above, when an intermetallic compound is generated by using an electron beam as a thermal energy source, a member having excellent wear resistance and current-carrying properties can be obtained by performing remelting treatment in a vacuum atmosphere. I understood.
【0050】更に、熱エネルギー源としてプラズマを使
用し、雰囲気を種々変化させて再溶融処理を施して、金
属間化合物を生成し、硬化層2を形成した。そして、そ
のような複数の部材に対し、耐摩耗特性及び通電特性を
調べた。その結果、不活性ガス雰囲気中において再溶融
処理を施した部材において、最も優れた耐摩耗特性及び
通電特性が得られた。Further, a plasma was used as a thermal energy source, and the atmosphere was variously changed to perform a re-melting treatment to produce an intermetallic compound, thereby forming a hardened layer 2. Then, the wear resistance characteristics and the current-carrying characteristics of the plurality of members were examined. As a result, in the member subjected to the re-melting treatment in the inert gas atmosphere, the most excellent wear resistance and electric conduction characteristics were obtained.
【0051】以上のことから、プラズマを熱エネルギー
源として金属間化合物を生成する場合、不活性ガス雰囲
気中で再溶融処理を行うことにより、優れた耐摩耗特性
及び通電特性を有する部材が得られることが分かった。As described above, when an intermetallic compound is generated using plasma as a heat energy source, a member having excellent wear resistance and current-carrying properties can be obtained by performing remelting treatment in an inert gas atmosphere. I understood that.
【0052】なお、本実施例において、基材1としてC
1020材を用いて部材を作製し、各評価を行ったが、
その他のCu又はCu合金、あるいはAl又はAl合金
を用いた場合にも同様の効果が得られることは確認済み
である。In this embodiment, the base material 1 is C
A member was manufactured using 1020 materials, and each evaluation was performed.
It has been confirmed that a similar effect can be obtained when other Cu or Cu alloy, or Al or Al alloy is used.
【0053】[0053]
【発明の効果】以上のように、本発明によれば、基材に
対し部分的に厚膜による硬化層を形成することにより、
優れた耐摩耗特性及び通電特性を有する電力機器用通電
部材を提供することができる。As described above, according to the present invention, by forming a cured layer of a thick film partially on a substrate,
A current-carrying member for a power device having excellent wear resistance and current-carrying characteristics can be provided.
【図1】本発明の第1、第2及び第5実施例における電
力機器用通電部材の一例を示す模式図FIG. 1 is a schematic view showing an example of a current-carrying member for a power device according to first, second and fifth embodiments of the present invention.
【図2】本発明の第3及び第4実施例における試験片の
一例を示す模式図FIG. 2 is a schematic view showing an example of a test piece according to third and fourth embodiments of the present invention.
【図3】第3実施例における試験の結果である熱処理温
度と試験片の平均強度との関係を示すグラフFIG. 3 is a graph showing a relationship between a heat treatment temperature and an average strength of a test piece as a result of a test in a third example.
【図4】第4実施例における試験の結果である自由縁3
の角度と試験片の平均強度との関係を示すグラフFIG. 4 shows a free edge 3 as a result of a test in the fourth embodiment.
Graph showing the relationship between the angle of the specimen and the average strength of the test piece
【符号の説明】 1…基材 2…硬化層 3…自由縁[Explanation of symbols] 1 ... substrate 2 ... cured layer 3 ... free edge
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 6/00 C23C 6/00 // C22F 1/00 691 C22F 1/00 691B B23K 103:10 103:12 103:16 (72)発明者 鈴木 洋典 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 伊藤 義康 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 Fターム(参考) 4E066 AA03 CA15 CA21 CB09 CB10 4E068 BB00 DA09 DB02 DB04 DB05 4K031 AA06 AB08 CA05 DA03 DA04 DA07 FA01 GA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 6/00 C23C 6/00 // C22F 1/00 691 C22F 1/00 691B B23K 103: 10 103: 12 103: 16 (72) Inventor Hironori Suzuki 2-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Hamakawasaki Plant (72) Inventor Yoshiyasu Ito 2-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F term in the Toshiba Hamakawasaki Plant (reference) 4E066 AA03 CA15 CA21 CB09 CB10 4E068 BB00 DA09 DB02 DB04 DB05 4K031 AA06 AB08 CA05 DA03 DA04 DA07 FA01 GA01
Claims (14)
その一部に、厚膜で前記Al及びAl合金以外の金属と
の金属間化合物が形成されることによりビッカーズ硬度
(Hv)が100〜250である部分硬化部が形成され
ていることを特徴とする電力機器用通電部材。1. A metal substrate of Al or an Al alloy,
A partially cured portion having a Vickers hardness (Hv) of 100 to 250 is formed on a part thereof by forming an intermetallic compound with a metal other than Al and the Al alloy in a thick film. For power equipment.
%の範囲内にあることを特徴とする請求項1記載の電力
機器用通電部材。2. The electric conductivity of the partially cured portion is 10% to 50%.
2. The current-carrying member for a power device according to claim 1, wherein the value is in the range of%.
e、Cr及びCoからなる群から選択される金属を含ん
でいることを特徴とする請求項1又は2記載の電力機器
用通電部材。3. The method according to claim 2, wherein the intermetallic compound is Cu, Ni, F
The current-carrying member for a power device according to claim 1, further comprising a metal selected from the group consisting of e, Cr, and Co.
Fe、Cr及びCoからなる群から選択される金属が3
重量%〜30重量%添加されてなることを特徴とする請
求項3記載の電力機器用通電部材。4. The method according to claim 1, wherein the intermetallic compound is Cu, Ni,
The metal selected from the group consisting of Fe, Cr and Co is 3
The current-carrying member for electric power equipment according to claim 3, wherein the electric-current member is added in an amount of 30 to 30% by weight.
その一部に、厚膜で前記Cu又はCu合金以外の金属間
化合物が形成されることによりビッカーズ硬度(Hv)
が140〜250である部分硬化部が形成されているこ
とを特徴とする電力機器用通電部材。5. A metal substrate of Cu or Cu alloy,
Vickers hardness (Hv) is formed by forming an intermetallic compound other than the Cu or Cu alloy as a thick film on a part thereof.
Characterized in that a partially cured portion having a diameter of 140 to 250 is formed.
%の範囲内にあることを特徴とする請求項5記載の電力
機器用通電部材。6. The partially cured portion has a conductivity of 10% to 90%.
The power supply member for electric power equipment according to claim 5, wherein the value is within the range of%.
iからなる群から選択される金属を含んでいることを特
徴とする請求項5又は6記載の電力機器用通電部材。7. The intermetallic compound includes Al, Fe and T.
The current-carrying member for a power device according to claim 5, further comprising a metal selected from the group consisting of i.
びTiからなる群から選択される金属が3重量%〜30
重量%添加されてなることを特徴とする請求項7記載の
電力機器用通電部材。8. The intermetallic compound, wherein the metal selected from the group consisting of Al, Fe and Ti is 3% by weight to 30% by weight.
The current-carrying member for a power device according to claim 7, wherein the member is added by weight%.
基材に対する自由縁のなす角度が、45度〜85度又は
110度〜150度であることを特徴とする請求項1乃
至8のいずれか1項記載の電力機器用通電部材。9. The method according to claim 1, wherein an angle formed by a free edge with respect to the metal substrate at an end of the partially cured portion is 45 to 85 degrees or 110 to 150 degrees. The current-carrying member for power equipment according to claim 1.
電力機器用通電部材を製造する方法であって、 前記部分硬化部の残留応力を緩和することを特徴とする
電力機器用通電部材の製造方法。10. A method for manufacturing a current-carrying member for a power device according to any one of claims 1 to 9, wherein the current-carrying member for a power device is relieved of residual stress in the partially cured portion. Manufacturing method.
の温度で熱処理することにより前記残留応力を緩和する
ことを特徴とする請求項10記載の電力機器用通電部材
の製造方法。11. The method according to claim 11, wherein the partially cured portion is set at 150 ° C. to 400 ° C.
The method according to claim 10, wherein the residual stress is relaxed by performing a heat treatment at a temperature.
電力機器用通電部材を製造する方法であって、 電子ビーム、プラズマ又はレーザによる再溶融処理によ
り前記金属間化合物を形成することを特徴とする電力機
器用通電部材の製造方法。12. The method for manufacturing a current-carrying member for a power device according to claim 1, wherein the intermetallic compound is formed by a remelting process using an electron beam, plasma, or laser. A method for manufacturing a current-carrying member for power equipment.
融処理により前記金属間化合物を形成することを特徴と
する請求項12記載の電力機器用通電部材の製造方法。13. The method according to claim 12, wherein the intermetallic compound is formed by a remelting process using an electron beam in a vacuum.
による再溶融処理により前記金属間化合物を形成するこ
とを特徴とする請求項12記載の電力機器用通電部材の
製造方法。14. The method according to claim 12, wherein the intermetallic compound is formed by a remelting process using plasma in an inert gas atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11032552A JP2000233282A (en) | 1999-02-10 | 1999-02-10 | Power application member for power equipment and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11032552A JP2000233282A (en) | 1999-02-10 | 1999-02-10 | Power application member for power equipment and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000233282A true JP2000233282A (en) | 2000-08-29 |
Family
ID=12362102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11032552A Pending JP2000233282A (en) | 1999-02-10 | 1999-02-10 | Power application member for power equipment and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000233282A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100450694C (en) * | 2006-11-21 | 2009-01-14 | 宁波江丰电子材料有限公司 | A vacuum electron beam welding method |
-
1999
- 1999-02-10 JP JP11032552A patent/JP2000233282A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100450694C (en) * | 2006-11-21 | 2009-01-14 | 宁波江丰电子材料有限公司 | A vacuum electron beam welding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6126791B2 (en) | Cu-Ni-Si copper alloy | |
CA1250157A (en) | Copper-beryllium-cobalt alloys | |
JP2014095150A (en) | Copper alloy containing cobalt, nickel and silicon | |
CN108950292B (en) | Conductive elastic Cu-Ti-Ni-Al alloy and preparation method thereof | |
JP2006328542A (en) | Copper-based alloy material and manufacturing method therefor | |
JP2009132965A (en) | Copper alloy material for electrical and electronic parts | |
JP2016166396A (en) | Copper terminal material with silver platting and terminal | |
JP2023175747A (en) | Palladium-copper-silver-ruthenium alloy | |
JPH09509221A (en) | Oxidation resistant coating for titanium alloys | |
JP2959872B2 (en) | Electrical contact material and its manufacturing method | |
FI84627C (en) | Process for manufacturing a copper-beryllium alloy | |
CN1301026A (en) | Copper alloy with excellent surface characteristics for electronic materials and manufacture thereof | |
JP2014173167A (en) | Cu-Ni-Si BASED COPPER ALLOY | |
Dobatkin et al. | Aging Processes in Ultrafine‐Grained Low‐Alloyed Bronzes Subjected to Equal Channel Angular Pressing | |
JP7335679B2 (en) | conductive material | |
CN101020974A (en) | Precise resistive Cu-Mn-Ga-Ge alloy | |
JP2000233282A (en) | Power application member for power equipment and its production | |
CN1073637C (en) | Contact material gold-base alloy | |
JP6840140B2 (en) | Clad material for electrical contacts and method for manufacturing the clad material | |
JP5389097B2 (en) | Sn plating material | |
JP6162817B2 (en) | Silver coating material and method for producing the same | |
JP4427487B2 (en) | Tin-coated electrical connector | |
JPH0547252A (en) | Electric contact material and its manufacture | |
CN110592515B (en) | Hot-dip tinned copper material and manufacturing method thereof | |
JP2006291271A (en) | High-strength copper alloy material having excellent settling resistance, and method for producing the same |