JP2000221167A - Method for diagnosing stress using barkhausen noise - Google Patents

Method for diagnosing stress using barkhausen noise

Info

Publication number
JP2000221167A
JP2000221167A JP2293099A JP2293099A JP2000221167A JP 2000221167 A JP2000221167 A JP 2000221167A JP 2293099 A JP2293099 A JP 2293099A JP 2293099 A JP2293099 A JP 2293099A JP 2000221167 A JP2000221167 A JP 2000221167A
Authority
JP
Japan
Prior art keywords
stress
barkhausen noise
range
residual stress
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2293099A
Other languages
Japanese (ja)
Other versions
JP4128294B2 (en
Inventor
Hiroaki Sakamoto
広明 坂本
Toru Inaguma
徹 稲熊
Shigehiko Yamana
成彦 山名
Takao Sasaki
孝雄 佐々木
Jun Tsujimoto
潤 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02293099A priority Critical patent/JP4128294B2/en
Publication of JP2000221167A publication Critical patent/JP2000221167A/en
Application granted granted Critical
Publication of JP4128294B2 publication Critical patent/JP4128294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure not only the stress of an elastic area but the stress of a plastic area, exceeding a yield point by plastically deforming part of a Barkhausen noise detect part of a steel material, applying residual stress and detecting Barkhausen noises generated from the part. SOLUTION: When a compressive residual stress -σγ is applied in an in-plane direction of a Barkhausen noise measurement part of a steel material with a tensile yield stress σty, an external stress F in the range of 0<=F+σty can be diagnosed. When a tensile residual stress σγ(>0) is applied in the in-plane direction of a measurement face of the Barkhausen noise measurement part of a steel material with a compressive yield stress -σcy (σcy>0), the external force F in the range of -(σγ+σcy)<=F<=0 can be diagnosed. At this time, linear correlation range of a calibration curve increases as the residual stress σγbecomes larger, so that the external stress F can be diagnosed up to a larger value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材などの強磁性
体から発生するバルクハウゼンノイズを利用して、鋼材
に作用している外部応力を非破壊的に診断する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively diagnosing external stress acting on a steel material using Barkhausen noise generated from a ferromagnetic material such as a steel material.

【0002】[0002]

【従来の技術】ビル、橋梁などの建築物の部材、また、
クレ―ンなどの機器の部材に作用している応力は通常、
絶えず変化しており、安全上それらの応力変化を測定す
る必要が生じる場合がある。通常、前記した部材は強磁
性体である鋼材であることから、その鋼材の磁気的性質
から応力を診断する技術が従来から提案されている。
2. Description of the Related Art Building members such as buildings and bridges,
The stress acting on components of equipment such as crane is usually
It is constantly changing, and it may be necessary to measure those stress changes for safety. Usually, since the above-mentioned member is a ferromagnetic steel material, a technique for diagnosing stress from the magnetic properties of the steel material has been conventionally proposed.

【0003】例えば、測定領域の直交する方向の透磁率
を電圧信号として検出して応力値に換算する方法(特開
昭48-33885号公報、特開昭49-25994号公報)、また、磁
気回路を工夫して直交する透磁率の差を直接に電圧信号
として検出し、その信号の大きさから応力を求める方法
(特開昭60-17330号公報、特開昭60-243526号公報)、
応力が負荷されたときの保磁力の変化を検出する方法
(特開昭50-159787号公報)、バルクハウゼンノイズと
アコ−スティックエミッションの両方を用いて応力また
は疲労変形を検査する方法(特開昭59-112257号公
報)、被測定物の上に種類の異なる強磁性層を2層形成
し、各層で生じる大バルクハウゼンノイズの発生時間差
を検出して応力、温度を検知する方法(特開昭61-25816
1号公報)、渦電流から応力と欠陥の二次元分布を測定
する方法(特開昭63-81262号公報)、保磁力とバルクハ
ウゼンノイズを同時に測定して硬度と応力を検出する方
法(特開昭63-279185号公報)、レ−ルを局部的に熱処
理して球状化セメンタイト組織にした部位、または、そ
れと同じ組織を有する小片をレ−ルに貼り付けた部位か
らの磁気信号を検出して応力を求める方法(特開平7-28
0669号公報)、等が開示されている。
For example, a method of detecting magnetic permeability in a direction perpendicular to a measurement area as a voltage signal and converting it into a stress value (JP-A-48-33885, JP-A-49-25994), A method in which a circuit is devised to directly detect a difference between orthogonal magnetic permeability as a voltage signal and obtain a stress from the magnitude of the signal (Japanese Patent Application Laid-Open Nos. 60-17330 and 60-243526),
A method for detecting a change in coercive force when a stress is applied (Japanese Patent Application Laid-Open No. 50-159787) and a method for inspecting stress or fatigue deformation using both Barkhausen noise and acoustic emission Japanese Patent Laid-Open No. 59-112257), a method of forming two ferromagnetic layers of different types on an object to be measured, and detecting a time difference of occurrence of large Barkhausen noise generated in each layer to detect stress and temperature (Japanese Patent Laid-Open No. Showa 61-25816
No. 1), a method for measuring the two-dimensional distribution of stress and defects from eddy current (Japanese Patent Application Laid-Open No. 63-81262), and a method for simultaneously detecting coercive force and Barkhausen noise to detect hardness and stress (particularly, JP-A-63-279185), detecting a magnetic signal from a region where a rail is locally heat-treated to form a spheroidized cementite structure, or a region where a small piece having the same structure is adhered to the rail. To determine the stress by using
No. 0669), and the like.

【0004】これらは全て鋼材の磁気的性質が、結晶粒
径や析出物などの組織や応力に応じて変化することを利
用したものである。応力に関して見れば、全てに共通し
ている検出対象の応力範囲は弾性領域内のものである。
このことは、前記明細書中には”弾性領域内の応力”と
いう限定された記述はほとんど無いが、実施例の応力範
囲が弾性領域であること、また、実施例の対象物がレ−
ル等の実際の使用状態では弾性領域内にあるもの、さら
に、明細書中に塑性領域でも測定できるとの明記が全く
ないことからも明らかである。また、疲労診断では、鋼
材は塑性領域に入っているが、この場合の検出対象は応
力ではなく、組織の損傷度合いである。
All of these techniques utilize the fact that the magnetic properties of a steel material change in accordance with the structure such as the crystal grain size and precipitates and the stress. In terms of stress, the range of stress to be detected that is common to all is within the elastic region.
This means that although there is almost no limited description of "stress in the elastic region" in the above specification, the stress range of the embodiment is the elastic region, and the object of the embodiment is a laser.
It is clear from the fact that there is no specification that the measurement can be performed in the elastic region in the actual use state of the device or the like, and that the measurement can also be performed in the plastic region in the specification. In the fatigue diagnosis, the steel material is in the plastic region. In this case, the detection target is not the stress but the degree of damage to the structure.

【0005】鋼材を使った建築物などは、特殊な場合を
除き、弾性範囲内で設計される。従って、それらの部材
に降伏応力以上の応力が作用して、塑性領域に入ってし
まっているならば、大変危険な状態にあることになる。
しかしながら従来では、バルクハウゼンノイズなどの磁
気信号を使って、降伏応力以上の応力を診断する方法は
世の中にはなかった。
[0005] Buildings and the like using steel materials are designed within the elastic range, except in special cases. Therefore, if a stress higher than the yield stress acts on those members and enters the plastic region, it is in a very dangerous state.
However, conventionally, there has been no method in the world for diagnosing a stress higher than the yield stress using a magnetic signal such as Barkhausen noise.

【0006】[0006]

【発明が解決しようとする課題】以上の如く、従来は、
鋼材などに作用している応力を磁気信号を用いて診断す
る場合、降伏応力以上の応力範囲まで測定できる方法は
なかった。
As described above, conventionally,
When diagnosing the stress acting on steel or the like using a magnetic signal, there is no method capable of measuring a stress range equal to or higher than the yield stress.

【0007】本発明は、鋼材のバルクハウゼンノイズの
測定部位の残留応力状態を予め制御することによって、
弾性領域のみならず、降伏点を越えた塑性領域にある応
力の測定までも可能にする方法を提供することを目的と
する。
According to the present invention, a residual stress state at a measurement site of a Barkhausen noise of a steel material is controlled in advance,
It is an object of the present invention to provide a method capable of measuring not only an elastic region but also a stress in a plastic region beyond a yield point.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記の通りである。
The gist of the present invention is as follows.

【0009】(1)励磁ヘッドと検出ヘッドから構成さ
れる磁気ヘッドを用いて鋼材を交流励磁し、検出ヘッド
に誘起される電圧信号を周波数分離してバルクハウゼン
ノイズを検出し、該バルクハウゼンノイズの電圧値から
鋼材に負荷されている外部応力を診断する方法であっ
て、鋼材のバルクハウゼンノイズ検出部位の一部を塑性
変形させて残留応力を付与し、該残留応力が付与された
領域を含む部位から発生するバルクハウゼンノイズを検
出することによって、診断可能な外部応力範囲を増大さ
せることを特徴とする応力診断方法。
(1) A steel material is AC-excited using a magnetic head composed of an excitation head and a detection head, and a voltage signal induced in the detection head is frequency-separated to detect Barkhausen noise. A method of diagnosing external stress applied to a steel material from the voltage value of the steel material, wherein a part of the Barkhausen noise detection site of the steel material is plastically deformed to apply a residual stress, and the region where the residual stress is applied is provided. A stress diagnostic method characterized by increasing the range of diagnosable external stress by detecting Barkhausen noise generated from a site including the stress.

【0010】(2)引っ張り降伏応力がσtyである鋼材
のバルクハウゼンノイズ測定部位に−σr(σr>0)の
圧縮残留応力を測定面内方向に付与させることによっ
て、0≦F≦σr+σtyの範囲の外部応力Fの診断を可
能にすることを特徴とする前項1記載の応力診断方法。
(2) A range of 0 ≦ F ≦ σr + σty by applying a compressive residual stress of −σr (σr> 0) to a measurement site of Barkhausen noise of a steel material having a tensile yield stress of σty in a measurement plane direction. 3. The stress diagnosis method according to the above 1, wherein the external stress F can be diagnosed.

【0011】(3)圧縮降伏応力が−σcy(σcy>0)
である鋼材のバルクハウゼンノイズ測定部位にσr(>
0)の引っ張り残留応力を測定面内方向に付与させるこ
とによって、−(σr+σcy)≦F≦0の範囲の外部応
力Fの診断を可能にすることを特徴とする前項1記載の
応力診断方法。
(3) The compressive yield stress is -σcy (σcy> 0)
Σr (>) at the barkhausen noise measurement site of steel
2. The stress diagnosis method according to the above 1, wherein the external stress F in the range of-([sigma] r + [sigma] cy)?

【0012】(4)残留応力が測定面内において等方的
に分布していることを特徴とする前項1〜3のいずれか
1項に記載の応力診断方法。
(4) The stress diagnosis method according to any one of the above (1) to (3), wherein the residual stress is isotropically distributed in the measurement plane.

【0013】(5)バルクハウゼンノイズの検出深さを
dとした場合、圧縮残留応力あるいは引っ張り残留応力
を測定部位の表面から少なくとも0.5dの深さまで付
与することを特徴とする前項1〜3のいずれか1項に記
載の応力診断方法。
(5) When the detection depth of Barkhausen noise is d, compressive residual stress or tensile residual stress is applied to a depth of at least 0.5 d from the surface of the measurement site. The stress diagnosis method according to any one of the above items.

【0014】[0014]

【発明の実施の形態】鋼材のバルクハウゼンノイズは、
外部応力および結晶粒径、析出物や転位等の組織に応じ
て変化するため、外部応力を診断するためには組織を変
化させないことが必須であった。すなわち、鋼材に外部
応力が作用しても、それが弾性範囲内にあるときには、
組織変化がないためバルクハウゼンノイズは応力のみに
依存し、かつ、応力に対して可逆的に変化する。しか
し、鋼材に降伏応力以上の外部応力が作用し、それが塑
性領域に入ってしまうと転位の増殖や結晶回転などが起
こり組織が変わってしまうため、もはや外部応力のみを
診断をすることが不可能になってしまう。
DETAILED DESCRIPTION OF THE INVENTION Barkhausen noise of steel
Since the stress varies depending on the structure such as external stress and crystal grain size, precipitates and dislocations, it is essential that the structure is not changed in order to diagnose external stress. That is, even if external stress acts on the steel material, when it is within the elastic range,
Since there is no structural change, Barkhausen noise depends only on stress and changes reversibly with respect to stress. However, an external stress greater than the yield stress acts on the steel material, and when it enters the plastic region, dislocation multiplication and crystal rotation occur and the structure changes, so it is no longer possible to diagnose only the external stress. It will be possible.

【0015】本発明者らは、測定部位の残留応力の初期
状態を制御することによって、外部応力の大きさが降伏
応力より大きくなった場合においても組織変化をほとん
ど生じさせなくすることを可能にし、さらに、そのよう
な状態において、応力とバルクハウゼンノイズの関係を
詳細に調べた結果、本発明に至ったものである。
By controlling the initial state of the residual stress at the measurement site, the present inventors have made it possible to hardly cause a structural change even when the magnitude of the external stress becomes larger than the yield stress. Further, in such a state, a detailed investigation of the relationship between stress and Barkhausen noise resulted in the present invention.

【0016】図1(a)、(b)、(c)は通常の鋼材
における応力(σ)対歪み(ε)曲線である。(a)は
外部応力が降伏応力以下の弾性領域の場合であり、応力
対歪み曲線上ではほとんど可逆的に変化する。σ/εが
ヤング率Eである。(b)は引っ張り降伏応力σty以上
の大きさの外部引っ張り応力が負荷された場合、(c)
は圧縮降伏応力−σcy以上の大きさの外部圧縮応力が負
荷された場合である。(b)および(c)では塑性領域
に入っている。通常、σtyとσcy、および、εtyとεcy
はほぼ同じ値である。
FIGS. 1 (a), 1 (b) and 1 (c) are stress (σ) vs. strain (ε) curves of a normal steel material. (A) shows the case where the external stress is in the elastic region where the external stress is equal to or lower than the yield stress, and changes almost reversibly on the stress versus strain curve. σ / ε is the Young's modulus E. (B), when an external tensile stress having a magnitude equal to or greater than the tensile yield stress σty is applied, (c)
Is a case where an external compressive stress having a magnitude equal to or greater than the compressive yield stress-σcy is applied. (B) and (c) are in the plastic region. Usually σty and σcy, and εty and εcy
Are almost the same value.

【0017】本発明者らは、弾性領域から塑性領域に至
るまで、さらに、塑性領域においては種々の歪みの大き
さまで塑性変形させた場合における応力あるいは歪みと
バルクハウゼンノイズの大きさの関係を詳細に測定し
た。その結果、一端、圧縮側あるいは引っ張り側まで塑
性変形させて、残留応力を付与させた状態の試料に引っ
張り応力あるいは圧縮応力を新たに負荷した場合には、
応力あるいは歪みとバルクハウゼンノイズの直線相関が
成り立つ応力範囲が残留応力が無い場合に比べて格段に
向上することを見出した。
The present inventors have described in detail the relationship between the stress or strain and the magnitude of Barkhausen noise when plastic deformation is performed from the elastic region to the plastic region, and further to various strains in the plastic region. Was measured. As a result, when one end is subjected to plastic deformation to the compression side or the tension side and a tensile stress or a compressive stress is newly applied to the sample in a state where the residual stress is applied,
It has been found that the stress range in which the linear correlation between stress or strain and Barkhausen noise is established is significantly improved as compared with the case where there is no residual stress.

【0018】以下、具体的に図を用いて説明する。図2
(a)は原点Oにある試料に降伏点Fを越える圧縮応力
を加えて点Gに達した後に除荷し、点Hの状態にある場
合、すなわち、−σrの圧縮残留応力の状態にある場合
を示している。これに引っ張り応力を負荷し、応力と歪
みの関係が点Iから点Jを通っていく場合におけるバル
クハウゼンノイズの変化率の典型的な例を図3(a)お
よび(b)に示す。
Hereinafter, a specific description will be given with reference to the drawings. FIG.
(A) shows that the sample at the origin O is subjected to a compressive stress exceeding the yield point F and is unloaded after reaching the point G, and is in the state of the point H, that is, in the state of the compressive residual stress of -σr. Shows the case. FIGS. 3A and 3B show typical examples of the rate of change of Barkhausen noise in the case where a tensile stress is applied to this and the relationship between the stress and the strain passes from the point I to the point J.

【0019】ここで、バルクハウゼンノイズの大きさは
実効値電圧で評価し、その変化率は、点Hにある場合の
バルクハウゼンノイズの実効値電圧を基準にした。図3
(a)からわかるようにバルクハウゼンノイズはσr+
σty'の範囲で直線相関を示した。実際には、σty'≒σ
tyであった。したがって、この関係を検量線として用い
ることによって、引っ張り応力Fを0≦F≦σr+σty
の範囲で診断することができる。図3(b)には横軸に
歪みをとった場合である。この関係から歪みεも0≦ε
≦εIH+εty'の範囲で診断することができる。
Here, the magnitude of the Barkhausen noise was evaluated by the effective voltage, and the rate of change was based on the effective voltage of the Barkhausen noise at the point H. FIG.
As can be seen from (a), the Barkhausen noise is σr +
A linear correlation was shown in the range of σty '. In practice, σty '≒ σ
was ty. Therefore, by using this relationship as a calibration curve, the tensile stress F can be set to 0 ≦ F ≦ σr + σty
Can be diagnosed within the range. FIG. 3B shows a case where distortion is taken on the horizontal axis. From this relationship, strain ε is also 0 ≦ ε
The diagnosis can be made within the range of ≦ εIH + εty ′.

【0020】ここで、εty'≒εtyである。この直線相
関の範囲ではバルクハウゼンノイズは、応力あるいは歪
みに対して可逆的に変化する。これは、試料が塑性領域
にある場合でも、図2(a)に示すように点Gと点Jの
間ではσ/ε=Eがほぼ成り立つからである。図2
(a)において、点Hが点Gの状態になるように残留応
力を制御することによって、すなわち、残留応力−σr
をほぼ−σcyに制御することによって、図3(a)およ
び(b)に示した検量線の直線相関の範囲をさらに広げ
ることが可能になる。
Here, εty ′ ≒ εty. Within this linear correlation range, Barkhausen noise reversibly changes with respect to stress or strain. This is because, even when the sample is in the plastic region, σ / ε = E is almost established between the points G and J as shown in FIG. FIG.
In (a), by controlling the residual stress so that the point H is in the state of the point G, that is, the residual stress −σr
Is controlled to approximately -σcy, it is possible to further widen the range of the linear correlation of the calibration curves shown in FIGS. 3 (a) and 3 (b).

【0021】図2(b)は、(a)の場合と同様に試料
に圧縮応力を加えていった場合の応力と歪みの変化を示
している。両者の相異点は、点G'の最大圧縮歪みを
(a)の点Gよりも小さくしたことであるが、点H'に
おける圧縮残留応力は点Hと同じ値になるように制御し
た。点H'から点I'、さらに点J'を越えるところまで
引っ張り応力を負荷していった場合のバルクハウゼンノ
イズの変化率を測定したが、図3(a)および(b)に
示した場合と同様であった。図2および図3は、与える
歪み量が異なっても同じ大きさの圧縮残留応力を付与さ
えすれば、同じ検量線が得られることを示している。こ
のことは、実際に圧縮残留応力を付与する場合、歪みの
制御範囲に裕度ができることを示しており、その制御が
容易であることがわかる。
FIG. 2B shows changes in stress and strain when a compressive stress is applied to the sample as in the case of FIG. The difference between the two is that the maximum compressive strain at the point G 'is smaller than that at the point G in (a), but the compressive residual stress at the point H' is controlled to be the same value as the point H. The rate of change of Barkhausen noise was measured when a tensile stress was applied from point H ′ to point I ′, and further beyond point J ′. In the case shown in FIGS. 3 (a) and 3 (b) Was similar to FIGS. 2 and 3 show that the same calibration curve can be obtained as long as the same amount of compressive residual stress is applied even if the amount of strain to be applied is different. This indicates that when the compressive residual stress is actually applied, there is a margin in the control range of the strain, and it can be seen that the control is easy.

【0022】残留応力が制御されていない通常の試料に
引っ張り応力を負荷していった場合のバルクハウゼンノ
イズの変化率を調べたが、その変化率が応力あるいは歪
みと直線相関を示す範囲、および、直線の傾きで表され
る感度は圧縮残留応力がある場合に比べて著しく低くな
ることが明らかになった。この場合の典型的な例を図4
に示した。
The rate of change of Barkhausen noise when a normal sample whose residual stress was not controlled was subjected to a tensile stress was examined. The range in which the rate of change showed a linear correlation with stress or strain, and It was found that the sensitivity represented by the slope of the straight line was significantly lower than when there was a compressive residual stress. A typical example of this case is shown in FIG.
It was shown to.

【0023】図5(a)は原点Oにある試料に降伏点A
を越える引っ張り応力を加えて点Bに達した後に除荷
し、点Cの状態にある場合、すなわち、σrの引っ張り
残留応力の状態にある場合を示している。これに圧縮応
力を負荷し、応力と歪みの関係が点Dから点Eを通って
いく場合におけるバルクハウゼンノイズの変化率の典型
的な例を図6(a)および(b)に示す。ここで、バル
クハウゼンノイズの大きさは図3の場合と同様に評価し
た。ただし、点Cにある場合のバルクハウゼンノイズの
実効値電圧を基準にした。図6(a)からわかるように
バルクハウゼンノイズは−(σr+σcy')の範囲で直線
相関を示した。実際には、σcy'≒σcyであった。した
がって、この関係を検量線として用いることによって、
圧縮応力Fを−(σr+σcy)≦F≦0の範囲で診断す
ることができる。
FIG. 5A shows that the sample at the origin O has a yield point A
In this case, the load is unloaded after reaching the point B by applying a tensile stress exceeding the point B, and the state is at the point C, that is, the state is under the tensile residual stress of σr. FIGS. 6A and 6B show typical examples of the rate of change of Barkhausen noise in the case where a compressive stress is applied thereto and the relationship between stress and strain passes from point D to point E. Here, the magnitude of Barkhausen noise was evaluated as in the case of FIG. However, the effective value voltage of Barkhausen noise at the point C was used as a reference. As can be seen from FIG. 6A, Barkhausen noise showed a linear correlation in the range of-([sigma] r + [sigma] cy '). Actually, σcy ′ ≒ σcy. Therefore, by using this relationship as a calibration curve,
The compression stress F can be diagnosed in the range of-(σr + σcy) ≦ F ≦ 0.

【0024】図6(b)は横軸に歪みをとった場合であ
る。この関係から歪みεも−(εCD+εcy')≦ε≦0
の範囲で診断することができる。ここで、εcy'≒εcy
である。この直線相関の範囲ではバルクハウゼンノイズ
は、応力あるいは歪みに対して可逆的に変化する。これ
は、試料が塑性領域にある場合でも、図5(a)に示す
ように点Bと点Eの間ではσ/ε=Eがほぼ成り立つか
らである。図5(a)において、点Cが点Bの状態にな
るように残留応力を制御することによって、すなわち、
残留応力σrをほぼσtyに制御することによって、図6
(a)および(b)に示した検量線の直線相関の範囲を
さらに広げることが可能になる。
FIG. 6B shows a case where distortion is taken on the horizontal axis. From this relationship, the strain ε is also − (εCD + εcy ′) ≦ ε ≦ 0
Can be diagnosed within the range. Where εcy '≒ εcy
It is. Within this linear correlation range, Barkhausen noise reversibly changes with respect to stress or strain. This is because σ / ε = E is substantially established between the point B and the point E as shown in FIG. 5A even when the sample is in the plastic region. In FIG. 5A, by controlling the residual stress so that the point C becomes the state of the point B,
By controlling the residual stress σr to approximately σty, FIG.
It is possible to further widen the range of the linear correlation of the calibration curves shown in (a) and (b).

【0025】図5(b)は、(a)の場合と同様に試料
に引っ張り応力を加えていった場合の応力と歪みの変化
を示している。両者の相異点は、点B'の最大引っ張り
歪みを(a)の点Bよりも小さくしたことであるが、点
C'における残留引っ張り応力は点Cと同じ値になるよ
うに制御した。点C'から点D'、さらに点E'を越える
ところまで圧縮応力を負荷していった場合のバルクハウ
ゼンノイズの変化率を測定したが、図6(a)および
(b)に示した場合と同様であった。図5および図6
は、図2および図3の場合と同様に引っ張り残留応力を
付与する場合の歪みの制御も容易であることを示してい
る。
FIG. 5B shows changes in stress and strain when a tensile stress is applied to the sample as in the case of FIG. 5A. The difference between the two is that the maximum tensile strain at the point B 'is smaller than that at the point B in (a). However, the residual tensile stress at the point C' is controlled to have the same value as the point C. The rate of change of Barkhausen noise when a compressive stress was applied from point C ′ to point D ′ and further beyond point E ′ was measured. The case shown in FIGS. 6A and 6B was used. Was similar to 5 and 6
Indicates that it is easy to control the strain when the tensile residual stress is applied, as in the case of FIGS. 2 and 3.

【0026】残留応力が制御されていない通常の試料に
圧縮応力を負荷していった場合のバルクハウゼンノイズ
の変化率を調べたが、その変化率が応力あるいは歪みと
直線相関を示す範囲、および、直線の傾きで表される感
度は引っ張り残留応力がある場合に比べて著しく低くな
ることが明らかになった。この場合の典型的な例を図7
に示した。
The rate of change of Barkhausen noise when compressive stress was applied to a normal sample whose residual stress was not controlled was examined. The range in which the rate of change showed a linear correlation with stress or strain, and It was found that the sensitivity represented by the slope of the straight line was significantly lower than that in the case where there was a tensile residual stress. A typical example in this case is shown in FIG.
It was shown to.

【0027】通常、励磁ヘッドと検出ヘッドから構成さ
れる磁気ヘッドを試料表面の測定部位にあてて、その部
位のバルクハウゼンノイズを検出するが、制御された残
留応力を与える部位は、少なくともこのバルクハウゼン
ノイズの検出領域に入っていればよい。バルクハウゼン
ノイズを測定する試料表面近傍においては、試料に負荷
される引っ張りまたは圧縮の外部応力はほぼ試料表面の
面内方向であるため、制御された残留応力は試料表面の
面内方向に付与することが好ましい。さらに、どの方向
から外部応力が負荷されても応力の診断精度が低下しな
いように、残留応力が面内において等方的に分布してい
ることがより好ましい。
Normally, a magnetic head composed of an excitation head and a detection head is applied to a measurement site on a sample surface to detect Barkhausen noise at that site. It suffices if it is within the detection area of the Hausen noise. In the vicinity of the sample surface where Barkhausen noise is measured, since the external stress of tension or compression applied to the sample is almost in the in-plane direction of the sample surface, the controlled residual stress is applied in the in-plane direction of the sample surface. Is preferred. Further, it is more preferable that the residual stress is isotropically distributed in the plane so that the diagnostic accuracy of the stress does not decrease even if the external stress is applied from any direction.

【0028】以上の結果から、引っ張り降伏応力がσty
である鋼材のバルクハウゼンノイズの測定部位に−σr
(σr>0)の圧縮残留応力を測定面内方向に付与させ
ることによって、0≦F≦σr+σtyの範囲の外部応力
Fの診断が可能になり、また、圧縮降伏応力が−σcy
(σcy>0)である鋼材のバルクハウゼンノイズの測定
部位にσr(>0)の引っ張り残留応力を測定面内方向
に付与させることによって、−(σr+σcy)≦F≦0
の範囲の外部応力Fの診断が可能になる。σrが大きい
方が検量線の直線相関範囲が広くなってより大きな外部
応力までの診断が可能になる。通常、σrは降伏応力に
相当する大きさが上限になるが、転位のすべりを抑制し
た方法で行えば降伏応力より大きな残留応力の制御も可
能になる。
From the above results, the tensile yield stress is σty
-Σr at the measurement site of Barkhausen noise of steel
By applying the compressive residual stress of (σr> 0) in the in-plane direction of the measurement, it is possible to diagnose the external stress F in the range of 0 ≦ F ≦ σr + σty, and the compressive yield stress becomes −σcy.
By applying a tensile residual stress of σr (> 0) in the in-plane direction to the measurement site of the Barkhausen noise of a steel material with (σcy> 0), − (σr + σcy) ≦ F ≦ 0
It is possible to diagnose the external stress F in the range of The larger σr is, the wider the linear correlation range of the calibration curve is, and the diagnosis up to a larger external stress becomes possible. Normally, the upper limit of σr is the size corresponding to the yield stress, but control of residual stress larger than the yield stress becomes possible by performing the method in which dislocation slip is suppressed.

【0029】試料のより深い部位から発生するバルクハ
ウゼンノイズほど減衰が大きくなるため、検出コイルに
発生する電圧は小さくなる。試料表面を基準としてバル
クハウゼンノイズが1/eに減衰する深さdをスキンデ
プス(skin depth)とよび、d=(ρ/πfμ)1/2
ρは電気抵抗、fはバルクハウゼンノイズの検出周波
数、μは透磁率で表される。残留応力を付与する深さ
は、検出深さをdとした場合、少なくとも0.5d以上
でなければならない。それが0.5dより浅い場合に
は、バルクハウゼンノイズと応力あるいは歪みとの関係
において、両者の直線相関が成り立つ範囲が低下するか
らである。
Since the attenuation increases as Barkhausen noise generated from a deeper part of the sample, the voltage generated in the detection coil decreases. The depth d at which the Barkhausen noise attenuates to 1 / e with respect to the sample surface is called skin depth, and d = (ρ / πfμ) 1/2 ,
ρ is an electric resistance, f is a detection frequency of Barkhausen noise, and μ is a magnetic permeability. The depth at which the residual stress is applied must be at least 0.5d or more, where the detected depth is d. If it is shallower than 0.5 d, the range in which the linear correlation between them is satisfied in the relationship between Barkhausen noise and stress or strain is reduced.

【0030】残留応力をバルクハウゼンノイズの測定部
位に付与する方法は、例えば、エア−ブラスト、ショッ
トブラストなどの小さな鋼球やセラミックス粒子を試料
表面に高速で衝突させる方法、スキンパス圧延、サンダ
−による研磨、局部的な加熱冷却による方法、等がある
が、試料表面に等方的に残留応力を付与するためには、
エア−ブラスト、ショットブラストや局部的な加熱冷却
が適している。サンダ−による場合でも等方的に研磨す
ることによって残留応力を等方的に付与することが可能
である。
Methods for applying residual stress to a Barkhausen noise measurement site include, for example, a method in which small steel balls such as air blast and shot blast and ceramic particles collide with the sample surface at high speed, skin pass rolling, and sander. Polishing, local heating and cooling methods, etc. are available, but in order to impart isotropic residual stress to the sample surface,
Air blast, shot blast and local heating and cooling are suitable. Even in the case of using a sander, the residual stress can be isotropically applied by isotropic polishing.

【0031】これらの方法を使った残留応力付与は、被
測定物を実際に設置する前、すなわち、外部応力が負荷
されていない段階で実施するのが望ましい。この段階で
処理すれば設置後の外部応力の絶対値を測定できる。既
に設置してあるもので、それに負荷されている外部応力
が不明の状態で残留応力を付与すれば、その時点からの
外部応力の相対変化がわかる。付与する残留応力を降伏
応力に相当する大きさにするのが均一な残留応力を付与
し易い点から好ましい。
It is desirable to apply the residual stress using these methods before the object to be measured is actually installed, that is, at a stage where no external stress is applied. If the treatment is performed at this stage, the absolute value of the external stress after installation can be measured. If a residual stress is applied in a state where the external stress is already applied and the external stress applied thereto is unknown, the relative change of the external stress from that point can be known. It is preferable that the residual stress to be applied has a size corresponding to the yield stress, since uniform residual stress is easily applied.

【0032】本発明を実際に使う場合には、被測定部材
における外部応力とバルクハウゼンノイズの実効値電圧
との関係を示す検量線を予め測定しておき、実際に測定
した実効値電圧を応力へ換算する場合に、この検量線を
用いればよい。
When the present invention is actually used, a calibration curve indicating the relationship between the external stress in the member to be measured and the RMS voltage of Barkhausen noise is measured in advance, and the actually measured RMS voltage is used as the stress. This calibration curve may be used when converting to.

【0033】[0033]

【実施例】以下、実施例をもって本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0034】(実施例1)降伏応力σtyが24kgf/
mm2 の鋼種を用いてバルクハウゼンノイズと外部応力
との関係を調べた。測定試料は外径318mm、肉厚
6.9mm、長さ6mの鋼管である。ただし、鋼管表面
にショットブラスト処理で圧縮残留応力を付与したもの
と付与しないものを用いた。それぞれの鋼管に曲げ応力
を負荷しながらバルクハウゼンノイズを測定し、両者の
関係を調べた。なお、鋼管上でのバルクハウゼンノイズ
の測定は軸方向に最大引っ張り応力が生じる部位で実施
した。測定部位に負荷される応力はバルクハウゼンノイ
ズ測定部位に隣接して貼り付けた歪みゲージから求め
た。
(Example 1) The yield stress σty is 24 kgf /
The relationship between Barkhausen noise and external stress was investigated using a steel type of mm 2 . The measurement sample is a steel pipe having an outer diameter of 318 mm, a thickness of 6.9 mm, and a length of 6 m. However, those with and without compressive residual stress applied to the steel pipe surface by shot blasting were used. Barkhausen noise was measured while applying bending stress to each steel pipe, and the relationship between the two was examined. The measurement of Barkhausen noise on the steel pipe was performed at a portion where the maximum tensile stress occurs in the axial direction. The stress applied to the measurement site was determined from a strain gauge attached adjacent to the Barkhausen noise measurement site.

【0035】バルクハウゼンノイズの測定は、以下のよ
うにして行った。珪素鋼板を積層したU字型励磁コアに
1000タ−ンのエナメル線を巻いた励磁ヘッド、およ
び断面積が2mm×8mmのアクリル製ボビンに500
タ−ンのエナメル線を巻いた検出ヘッドからなる磁気ヘ
ッドを各曲げ応力を負荷している状態で試料表面にあて
てバルクハウゼンノイズの実効値電圧を測定した。励磁
方向は鋼管の長手方向である。励磁周波数は100H
z、検出周波数は10kHz〜100kHzである。
The measurement of Barkhausen noise was performed as follows. An excitation head in which a 1000-turn enamel wire is wound on a U-shaped excitation core in which silicon steel sheets are laminated, and an acrylic bobbin having a cross-sectional area of 2 mm × 8 mm are 500
A magnetic head comprising a detection head wound with a turn enameled wire was applied to the surface of the sample under each bending stress, and the effective voltage of Barkhausen noise was measured. The excitation direction is the longitudinal direction of the steel pipe. Excitation frequency is 100H
z, the detection frequency is 10 kHz to 100 kHz.

【0036】ショットブラスト処理後の鋼管表面の残留
応力の大きさの深さ方向の分布は、表面から板厚方向へ
所定厚さだけエッチングした後、X線残留応力測定法に
よって求めた。その結果、表面から約200μmの深さ
まで降伏応力と同じ大きさの圧縮残留応力(−σr=−
24kgf/mm2 )が面内で等方的に入っていること
を確認した。スキンデプス(skin depth)の計算式d=
(ρ/πfμ)1/2から求めたバルクハウゼンノイズの
検出深さは、約160μmである。
The distribution in the depth direction of the magnitude of the residual stress on the surface of the steel pipe after the shot blast treatment was determined by X-ray residual stress measurement after etching a predetermined thickness from the surface in the thickness direction. As a result, the compressive residual stress (−σr = −) having the same magnitude as the yield stress up to a depth of about 200 μm from the surface.
24 kgf / mm 2 ) was confirmed to enter isotropically in the plane. Formula for calculating skin depth d =
The detection depth of Barkhausen noise obtained from (ρ / πfμ) 1/2 is about 160 μm.

【0037】図8に測定部位における長手方向の外部引
っ張り応力とバルクハウゼンノイズの実効値電圧の変化
率の関係を示した。ただし、図2に示したように点Gと
点Jの間ではσ/ε=Eが成り立つため、歪みから応力
を計算できるが、点Jよりも大きな応力範囲ではσ/ε
=Eが成り立たないため、歪みから応力を求めることは
できない。図8は便宜上、σ/ε=Eの関係を使って計
算した値を横軸に使ったが、歪みから応力を計算できな
い応力範囲を( )付きで示した。図8からわかるよう
に、直線相関が成り立つ範囲は、図中に矢印で示したよ
うに、47kgf/mm2 であり、ほぼσr+σty=2
4+24=48kgf/mm2 の範囲まで応力とバルク
ハウゼンノイズの実効値電圧は直線相関を示しているの
がわかる。この関係を検量線として用いる用いることに
よって、バルクハウゼンノイズの実効値電圧から外部応
力を診断することが可能になる。
FIG. 8 shows the relationship between the external tensile stress in the longitudinal direction at the measurement site and the rate of change of the effective voltage of Barkhausen noise. However, since σ / ε = E is established between the points G and J as shown in FIG. 2, the stress can be calculated from the strain, but in the stress range larger than the point J, σ / ε is obtained.
Since = E does not hold, stress cannot be determined from strain. In FIG. 8, for convenience, the values calculated using the relationship of σ / ε = E are used on the horizontal axis, but the stress range in which stress cannot be calculated from the strain is shown in parentheses. As can be seen from FIG. 8, the range where the linear correlation is established is 47 kgf / mm 2 , as indicated by the arrow in the figure, and approximately σr + σty = 2.
It can be seen that the stress and the effective voltage of Barkhausen noise show a linear correlation up to the range of 4 + 24 = 48 kgf / mm 2 . By using this relationship as a calibration curve, it is possible to diagnose external stress from the effective value voltage of Barkhausen noise.

【0038】図9は、ショットブラスト処理なしのもの
であり、バルクハウゼンノイズの応力依存性が小さく、
両者の直線相関もほとんどないことがわかる。
FIG. 9 shows the case without the shot blast processing, in which the stress dependence of Barkhausen noise is small.
It can be seen that there is almost no linear correlation between the two.

【0039】以上から、測定面内方向に圧縮残留応力を
付与することによって、弾性領域の外部応力みならず、
降伏応力以上の外部応力までもが診断可能となる。
As described above, by applying the compressive residual stress in the in-plane direction of the measurement, the external stress in the elastic region is not reduced.
It is possible to diagnose even external stresses equal to or higher than the yield stress.

【0040】(実施例2)降伏応力σtyが45kg/m
2 の鋼種を用いてバルクハウゼンノイズと外部応力と
の関係を実施例1と同様に調べた。ただし、試料は外径
318mm、肉厚7.9mmの鋼管から管軸方向に長さ
500mm、管周方向に幅100mmの大きさに切り出
した樋状試験材である。鋼管表面にショットブラスト処
理で圧縮残留応力を付与したものと付与しないものを用
いた。ショットブラスト処理材の圧縮残留応力(−σ
r)は−34kgf/mm2 であり、測定面内で等方的
に、表面から約120μm深さまで入っていた。
Example 2 Yield stress σty is 45 kg / m
The relationship between Barkhausen noise and external stress was examined in the same manner as in Example 1 using a steel grade of m 2 . However, the sample is a gutter-shaped test material cut out from a steel pipe having an outer diameter of 318 mm and a wall thickness of 7.9 mm to a length of 500 mm in the pipe axis direction and a width of 100 mm in the pipe circumferential direction. The steel tube surface was subjected to a shot blast treatment to which a compressive residual stress was applied and the steel tube surface was not applied. Compressive residual stress of shot blasted material (-σ
r) was −34 kgf / mm 2 , and was isotropically in the measurement plane to a depth of about 120 μm from the surface.

【0041】樋状試験材の外側が張り出すように曲げ応
力を負荷した場合における外部応力とバルクハウゼンノ
イズの実効値電圧の関係を図10に示した。励磁は樋状
試験材の長手方向である。図中に矢印で示したように、
直線相関が成り立つ範囲は77kgf/mm2 であり、
ほぼσr+σty=34+45=79kgf/mm2 の範
囲まで外部応力とバルクハウゼンノイズの実効値電圧は
直線相関を示しているのがわかる。この関係を検量線と
して用いる用いることによって、バルクハウゼンノイズ
の実効値電圧から外部応力を診断することが可能にな
る。
FIG. 10 shows the relationship between the external stress and the effective voltage of Barkhausen noise when a bending stress was applied so that the outside of the gutter-shaped test material protruded. The excitation is in the longitudinal direction of the gutter-shaped test material. As indicated by the arrow in the figure,
The range in which the linear correlation holds is 77 kgf / mm 2 ,
It can be seen that the external stress and the effective voltage of Barkhausen noise show a linear correlation up to a range of approximately σr + σty = 34 + 45 = 79 kgf / mm 2 . By using this relationship as a calibration curve, it is possible to diagnose external stress from the effective value voltage of Barkhausen noise.

【0042】図11は、ショットブラスト処理なしのも
のであり、バルクハウゼンノイズの応力依存性が小さ
く、両者の直線相関もほとんどないことがわかる。
FIG. 11 shows the case without the shot blast processing, in which the stress dependence of Barkhausen noise is small and there is almost no linear correlation between the two.

【0043】以上から、測定面内方向に圧縮残留応力を
付与することによって、弾性領域の外部応力みならず、
降伏応力以上の外部応力までもが診断可能となる。
As described above, by applying the compressive residual stress in the in-plane direction of the measurement, the external stress in the elastic region can be prevented.
It is possible to diagnose even external stresses equal to or higher than the yield stress.

【0044】(実施例3)断面が10mm×10mmの
中炭素鋼(圧縮降伏応力σcy=−30kgf/mm2
の角棒に表面から約300μmの深さまで脱炭処理を施
した後、800℃から水中に焼き入れ処理を行った。こ
の処理によって、角棒内部はマルテンサイトに変態し体
積が膨張するが、脱炭した表面はα−Fe単相状態に近
いため変態は起こらない。従って、脱炭層には引っ張り
残留応力が発生する。実測の結果、角棒試験材の軸方向
に15kgf/mm2 の引っ張り残留応力が脱炭層全体
にわたって生じていた。軸方向に外部圧縮応力を負荷し
て、実施例1と同様な測定を行った。
Example 3 Medium carbon steel with a cross section of 10 mm × 10 mm (compression yield stress σcy = −30 kgf / mm 2 )
Was decarburized to a depth of about 300 μm from the surface, and then quenched in water at 800 ° C. By this treatment, the inside of the square bar is transformed into martensite and the volume is expanded, but the decarburized surface is close to the α-Fe single phase state, so that no transformation occurs. Therefore, tensile residual stress is generated in the decarburized layer. As a result of the actual measurement, a tensile residual stress of 15 kgf / mm 2 was generated over the entire decarburized layer in the axial direction of the square bar test material. The same measurement as in Example 1 was performed by applying an external compressive stress in the axial direction.

【0045】その結果、ほぼ−(σr+σcy)=−(1
5+30)=45kgf/mm2 の範囲まで外部応力と
バルクハウゼンノイズの実効値電圧は直線相関を示して
おり、この関係を検量線として用いる用いることによっ
て、バルクハウゼンノイズの実効値電圧から外部応力を
診断することが可能になる。
As a result, approximately-(σr + σcy) =-(1
5 + 30) = 45 kgf / mm 2 The external stress and the effective voltage of Barkhausen noise show a linear correlation up to the range of 45 kgf / mm 2. By using this relationship as a calibration curve, the external stress can be calculated from the effective voltage of Barkhausen noise. Diagnosis becomes possible.

【0046】比較例として、脱炭処理のみを施した試験
材、すなわち、残留応力がほとんど生じていないもので
は、外部応力とバルクハウゼンノイズの直線相関が成り
立つ応力範囲が、引っ張り残留応力がある場合に比べて
半分以下であった。
As a comparative example, in the test material subjected to only the decarburization treatment, that is, in the case where almost no residual stress is generated, the stress range in which the linear correlation between the external stress and the Barkhausen noise is satisfied is determined when the tensile residual stress is present. Was less than half.

【0047】(実施例4)バルクハウゼンノイズの検出
深さをd、残留応力の存在深さをDとした場合、D/d
が変化した時に外部応力とバルクハウゼンノイズの実効
値電圧の直線相関が成り立つ範囲を調べた。実際には、
バルクハウゼンノイズの検出深さdを一定として、ショ
ットブラスト条件を変えることによって、Dを変えた。
バルクハウゼンノイズの測定法および残留応力の測定法
は実施例1と同様である。なお、ショットブラスト条件
を変えると残留応力の存在深さDとともに残留応力の大
きさσrも同時に変わってしまうため、直線相関が成り
立つ応力範囲の評価は、実測した直線相関範囲をσline
rとした場合、σliner/(σr+σty)で評価した。こ
れは、直線相関が成り立つ応力範囲は最大で(σr+σt
y)であり、このσliner/(σr+σty)が大きい方が
直線相関が成り立つ範囲が広いことを意味する。結果を
以下の表1に示す。
(Embodiment 4) When the depth of detection of Barkhausen noise is d and the depth of existence of residual stress is D, D / d
The range in which the linear correlation between the external stress and the effective value voltage of Barkhausen noise is established when is changed. actually,
D was changed by changing the shot blast condition while keeping the detection depth d of Barkhausen noise constant.
The method of measuring Barkhausen noise and the method of measuring residual stress are the same as in Example 1. When the shot blast conditions are changed, the residual stress magnitude σr is also changed together with the residual stress existence depth D. Therefore, the stress range in which the linear correlation is established is evaluated by using the actually measured linear correlation range as σline
When r was used, the evaluation was performed by σliner / (σr + σty). This is because the stress range in which the linear correlation holds is maximum (σr + σt
y), and the larger the σliner / (σr + σty), the wider the range in which the linear correlation is established. The results are shown in Table 1 below.

【0048】[0048]

【表1】 [Table 1]

【0049】以上からわかるように、バルクハウゼンノ
イズの検出深さをdとした場合、残留応力を測定部位の
表面から少なくとも0.5dの深さまで付与することに
よって、外部応力とバルクハウゼンノイズの実効値電圧
の直線相関がより広い応力範囲まで成り立つことがわか
る。
As can be seen from the above, when the detection depth of Barkhausen noise is d, the residual stress is applied at least to a depth of 0.5 d from the surface of the measurement site, so that the external stress and the Barkhausen noise can be effectively reduced. It can be seen that the linear correlation of the value voltage holds over a wider stress range.

【0050】[0050]

【発明の効果】本発明によれば、鋼材のバルクハウゼン
ノイズの測定部位の残留応力状態を予め制御することに
よって、弾性範囲の応力のみならず、降伏応力を越えた
塑性範囲にある応力の診断までもが可能になる。本発明
を用いて、ビル、橋梁、鋼管などの応力診断を実施する
ことによって、従来は診断できなかった高い応力範囲ま
で診断可能となり、管理精度が向上する。
According to the present invention, not only the stress in the elastic range but also the stress in the plastic range exceeding the yield stress can be diagnosed by controlling the residual stress state at the measurement site of Barkhausen noise of steel in advance. Even it becomes possible. By performing stress diagnosis on buildings, bridges, steel pipes, and the like using the present invention, diagnosis can be performed up to a high stress range that could not be diagnosed conventionally, and management accuracy is improved.

【0051】[0051]

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般鋼材の応力と歪みの関係を表す特性図であ
る。
FIG. 1 is a characteristic diagram showing a relationship between stress and strain of a general steel material.

【図2】本発明によるバルクハウゼンノイズ測定部位の
応力と歪みの関係を表す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between stress and strain at a Barkhausen noise measurement site according to the present invention.

【図3】圧縮残留応力を付与した場合における応力又は
歪みとバルクハウゼンノイズの実効値電圧の変化率を表
す特性図である。
FIG. 3 is a characteristic diagram showing the rate of change of the effective value voltage of stress or strain and Barkhausen noise when a compressive residual stress is applied.

【図4】残留応力を付与しない場合における応力とバル
クハウゼンノイズの実効値電圧の変化率を表す特性図で
ある(比較例)。
FIG. 4 is a characteristic diagram showing a change rate of the effective value voltage of the stress and Barkhausen noise when no residual stress is applied (Comparative Example).

【図5】本発明によるバルクハウゼンノイズ測定部位の
応力と歪みの関係を表す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between stress and strain at a Barkhausen noise measurement site according to the present invention.

【図6】引っ張り残留応力を付与した場合における応力
あるいは歪みとバルクハウゼンノイズの実効値電圧の変
化率を表す特性図である。
FIG. 6 is a characteristic diagram showing the rate of change of the effective value voltage of stress or strain and Barkhausen noise when a tensile residual stress is applied.

【図7】残留応力を付与しない場合における応力とバル
クハウゼンノイズの実効値電圧の変化率を表す特性図で
ある(比較例)。
FIG. 7 is a characteristic diagram showing a rate of change of an effective value voltage of stress and Barkhausen noise when no residual stress is applied (Comparative Example).

【図8】外部引っ張り応力とバルクハウゼンノイズの実
効値電圧の関係を表す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between an external tensile stress and an effective value voltage of Barkhausen noise.

【図9】外部引っ張り応力とバルクハウゼンノイズの実
効値電圧の関係を表す特性図である(比較例)。
FIG. 9 is a characteristic diagram illustrating a relationship between an external tensile stress and an effective value voltage of Barkhausen noise (Comparative Example).

【図10】外部引っ張り応力とバルクハウゼンノイズの
実効値電圧の関係を表す特性図である。
FIG. 10 is a characteristic diagram showing a relationship between an external tensile stress and an effective value voltage of Barkhausen noise.

【図11】外部引っ張り応力とバルクハウゼンノイズの
実効値電圧の関係を表す特性図である(比較例)。
FIG. 11 is a characteristic diagram illustrating a relationship between an external tensile stress and an effective value voltage of Barkhausen noise (Comparative Example).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山名 成彦 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 佐々木 孝雄 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 辻本 潤 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 Fターム(参考) 2G053 AA19 AB20 BA15 BC02 CA03 CB24  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigehiko Yamana 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Takao Sasaki 2-6-3, Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Jun Tsujimoto 2-6-3 Otemachi, Chiyoda-ku, Tokyo F-term within Nippon Steel Corporation (reference) 2G053 AA19 AB20 BA15 BC02 CA03 CB24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 励磁ヘッドと検出ヘッドから構成される
磁気ヘッドを用いて鋼材を交流励磁し、検出ヘッドに誘
起される電圧信号を周波数分離してバルクハウゼンノイ
ズを検出し、このバルクハウゼンノイズの電圧値から鋼
材に負荷されている外部応力を診断する方法であって、 前記鋼材のバルクハウゼンノイズ検出部位の一部を塑性
変形させて残留応力を付与し、前記残留応力が付与され
た領域を含む部位から発生するバルクハウゼンノイズを
検出することによって、診断可能な外部応力範囲を増大
させることを特徴とする応力診断方法。
1. A steel material is AC-excited using a magnetic head including an excitation head and a detection head, and a voltage signal induced in the detection head is frequency-separated to detect Barkhausen noise. A method of diagnosing external stress applied to a steel material from a voltage value, wherein a part of a Barkhausen noise detection site of the steel material is plastically deformed to apply a residual stress, and the region where the residual stress is applied is provided. A stress diagnostic method characterized by increasing the range of diagnosable external stress by detecting Barkhausen noise generated from a site including the stress.
【請求項2】 引っ張り降伏応力がσtyである鋼材のバ
ルクハウゼンノイズ測定部位に−σr(σr>0)の圧縮
残留応力を測定面内方向に付与させることによって、0
≦F≦σr+σtyの範囲の外部応力Fの診断を可能にす
ることを特徴とする請求項1に記載の応力診断方法。
2. Applying a compressive residual stress of -σr (σr> 0) to a Barkhausen noise measurement site of a steel material having a tensile yield stress of σty in the in-plane direction of the steel, thereby reducing
The stress diagnosis method according to claim 1, wherein diagnosis of an external stress F in a range of ≤ F ≤ σr + σty is enabled.
【請求項3】 圧縮降伏応力が−σcy(σcy>0)であ
る鋼材のバルクハウゼンノイズ測定部位にσr(>0)
の引っ張り残留応力を測定面内方向に付与させることに
よって、−(σr+σcy)≦F≦0の範囲の外部応力F
の診断を可能にすることを特徴とする請求項1に記載の
応力診断方法。
3. A steel material having a compressive yield stress of −σcy (σcy> 0) has a σr (> 0) at a Barkhausen noise measurement site.
Is applied in the measurement plane direction to obtain an external stress F in a range of − (σr + σcy) ≦ F ≦ 0.
2. The stress diagnosis method according to claim 1, wherein diagnosis of stress is enabled.
【請求項4】 残留応力が測定面内において等方的に分
布していることを特徴とする請求項1〜3のいずれか1
項に記載の応力診断方法。
4. The method according to claim 1, wherein the residual stress is isotropically distributed in the measurement plane.
The stress diagnosis method according to the item.
【請求項5】 バルクハウゼンノイズの検出深さをdと
した場合、圧縮残留応力又は引っ張り残留応力を測定部
位の表面から少なくとも0.5dの深さまで付与するこ
とを特徴とする請求項1〜3のいずれか1項に記載の応
力診断方法。
5. When the depth of detection of Barkhausen noise is d, compressive residual stress or tensile residual stress is applied to a depth of at least 0.5d from the surface of the measurement site. The stress diagnosis method according to any one of the above items.
JP02293099A 1999-01-29 1999-01-29 Stress diagnosis method Expired - Fee Related JP4128294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02293099A JP4128294B2 (en) 1999-01-29 1999-01-29 Stress diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02293099A JP4128294B2 (en) 1999-01-29 1999-01-29 Stress diagnosis method

Publications (2)

Publication Number Publication Date
JP2000221167A true JP2000221167A (en) 2000-08-11
JP4128294B2 JP4128294B2 (en) 2008-07-30

Family

ID=12096359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02293099A Expired - Fee Related JP4128294B2 (en) 1999-01-29 1999-01-29 Stress diagnosis method

Country Status (1)

Country Link
JP (1) JP4128294B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043161A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
JP2021043163A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
CN114113294A (en) * 2020-08-28 2022-03-01 宝山钢铁股份有限公司 Online measuring device and method for determining yield strength and tensile strength of strip steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043161A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
JP2021043163A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
CN114113294A (en) * 2020-08-28 2022-03-01 宝山钢铁股份有限公司 Online measuring device and method for determining yield strength and tensile strength of strip steel
CN114113294B (en) * 2020-08-28 2023-12-12 宝山钢铁股份有限公司 Online measuring device and method for determining yield strength and tensile strength of strip steel

Also Published As

Publication number Publication date
JP4128294B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
Moorthy et al. Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel
US6964202B2 (en) Detection of rolling contact fatigue
EP2124043B1 (en) Eddy current inspection method and eddy current inspection device for carrying out the eddy current inspection method
Clapham et al. Origin of a magnetic easy axis in pipeline steel
JP2019042807A (en) Manufacturing method of steel plate and surface layer hardness measuring device for magnetic material
Dobmann Physical basics and industrial applications of 3MA–micromagnetic multiparameter microstructure and stress analysis
KR20130115078A (en) System and method for determining stress of a component made of magnetizable material
Stashkov et al. Studying field dependence of reversible magnetic permeability in plastically deformed low-carbon steels
EP0703439B1 (en) Rail axial force measuring method and rail whose axial force can be measured
JPH0466863A (en) Residual stress measuring method by steel working
JP2000221167A (en) Method for diagnosing stress using barkhausen noise
JPH0792140A (en) Method for evaluating fatigue strength of steel member
Stashkov et al. Magnetic non-destructive testing of residual stresses in low carbon steels
JP5026195B2 (en) Metal fatigue identification device and metal fatigue identification method
Artetxe et al. Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples
Mandal et al. Use of magnetic Barkhausen noise and magnetic flux leakage signals for analysis of defects in pipeline steel
JP4128297B2 (en) Steel pipe stress diagnosis method
EP0704686B1 (en) Stress sensor
Dhar et al. Influence of Lüders bands on magnetic Barkhausen noise and magnetic flux leakage signals
Jolfaei et al. EM sensor system for characterisation of advanced high strength strip steels
JP2005338046A (en) Nondestructive inspection apparatus for metallic conduit
Theiner et al. Non-destructive analysis of the structure of pressure-vessel steels by micromagnetic testing techniques
JP4029119B2 (en) Steel pipe stress diagnosis method
Clapham et al. Magnetic easy axis development in steel—the influence of manufacturing
Diwakar et al. Barkhausen Noise Signal Analysis of IS 2062 Steel and AISI D2 Tool Steel with Different Range of Magnetizing Frequency and Intensity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees