JP4029119B2 - Steel pipe stress diagnosis method - Google Patents

Steel pipe stress diagnosis method Download PDF

Info

Publication number
JP4029119B2
JP4029119B2 JP30858499A JP30858499A JP4029119B2 JP 4029119 B2 JP4029119 B2 JP 4029119B2 JP 30858499 A JP30858499 A JP 30858499A JP 30858499 A JP30858499 A JP 30858499A JP 4029119 B2 JP4029119 B2 JP 4029119B2
Authority
JP
Japan
Prior art keywords
steel pipe
stress
barkhausen noise
measurement site
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30858499A
Other languages
Japanese (ja)
Other versions
JP2001124638A (en
Inventor
広明 坂本
徹 稲熊
成彦 山名
孝雄 佐々木
潤 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP30858499A priority Critical patent/JP4029119B2/en
Publication of JP2001124638A publication Critical patent/JP2001124638A/en
Application granted granted Critical
Publication of JP4029119B2 publication Critical patent/JP4029119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中に埋設された鋼管に地盤沈下や地層変動等によって発生した応力を、鋼管から発生するバルクハウゼンノイズを利用して、非破壊的に診断する方法に関する。
【0002】
【従来の技術】
ガス供給管、水道管等の鋼管は地中に埋設されているため、地盤沈下などが発生すると、沈下量の異なる鋼管部位の間に曲げ応力が発生する。その応力が鋼管に長期間に渡って作用すると応力腐食割れが発生する危険が生じ、また、その応力が過大になると鋼管が破損してしまう場合が出てくる。特に、ガス供給管でこのようなことが起こらないように埋設管に作用している応力を監視し、安全性を確認しなければならない。
【0003】
このために、地表から鋼管表面へ細い抗を開けて、その抗に沈下棒と呼ばれる棒を差込み、その棒の沈下量から地中で生じている鋼管の変形を推定して曲げ応力を求める方法が従来から実施されている。しかし、この方法では鋼管の水平方向の変位を測定できないこと、沈下棒の数が制限されているために鋼管の変形量の推定精度が不十分なこと、の理由から、応力診断の精度に問題があった。
【0004】
そこで、磁歪を利用した磁歪センサ(磁気異方性センサ)を鋼管表面に直接あてて、その出力値から鋼管に作用している応力を求める方法が提案されている。この測定原理は、鉄などの鋼材では磁歪は正であるため、鋼管表面に応力が作用すると、引っ張り応力方向では透磁率が増加し、圧縮応力方向ではそれが減少することを用いたものである。例えば、鋼管周囲で測定した磁歪センサ出力をサイン曲線で近似して算出した値が保安上の基準値を越えない値、または、最小値となるように調整する応力解放方法(特開平3−176630号公報)、2ヶ所の応力中立部近傍の磁歪センサ出力の角度依存性を直線近似し、両者の傾きの平均値から曲げ応力を推定する方法(特開平3−176626号公報)、磁歪センサ出力とSINθ近似との差をSIN2θで近似し、その振幅値から偏平応力を推定する方法(特開平3−176627号公報)、電縫管を磁歪センサで測定する際に溶接部の測定値を除去してCOSθ、COS2θで補正する方法(特開平5−281058号公報)、磁歪センサ出力が最大となる位置、及びそこから90°ずれた位置の外径を実測して偏平率を求めて、軸方向最大応力値を補正する方法(特開平6−288842公報)、磁歪センサ等で部分的に測定した応力を沈下量測定によるシミュレーションに取り入れて埋設管全体の中の最大応力を求めて基準値を越えないようにする管理方法(特開平9−242933号公報)、等が開示されている。
【0005】
しかしながら、これらの方法を既埋設管に適用する場合には、管を埋設する前、すなわち、外部応力が負荷されていない状態での所定の測定部位における出力値(初期値)がわかっていれば問題ないが、それが不明の場合には初期値は場所によってばらつくために埋設後に測定した出力値から直接的に応力を求めることはできない。したがって、種々の補正方法を用いて応力を求めなければならなかった。
【0006】
【発明が解決しようとする課題】
以上の如く、従来の方法では、測定部位の初期値が不明の鋼管の各部位に作用している外部応力を求めようとする場合には、ある程度の仮定的判断を必要とするため、測定精度の低下は避けられなかった。
【0007】
そこで本発明は、表面に制御された圧縮残留応力が付与された鋼管を用いることにより、埋設前の初期値が不明の場合であっても十分な精度で応力診断を可能にする方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の要旨とするところは、下記の通りである。
(1)鋼管を診断対象とし、励磁ヘッドと検出ヘッドから構成される磁気ヘッドを用いて前記励磁ヘッドにより鋼管の測定部位を交流励磁し、前記検出ヘッドに誘起される電圧信号を周波数分離してバルクハウゼンノイズを検出し、前記鋼管に負荷された応力値を診断する鋼管の応力診断方法であって、
予め前記鋼管表面に所定の圧縮残留応力を付与しておき、
前記鋼管表面の所定の測定部位において、前記鋼管の軸方向に励磁して測定したバルクハウゼンノイズの実効値電圧をVL 、周方向に励磁して測定したバルクハウゼンノイズの実効値電圧をVC とした場合、(VL −VC )の値から、前記鋼管と同一の部材を使って予め求めておいた外部応力とバルクハウゼンノイズの実効値電圧との関係を表す検量線を用い、前記測定部位に作用している軸方向の前記応力値を求めることを特徴とする鋼管の応力診断方法。
【0009】
(2)現場設置前における前記鋼管表面の測定部位の軸方向と周方向にそれぞれ励磁して測定したバルクハウゼンノイズの実効値電圧を均一にするように、前記測定部位の面内方向に前記圧縮残留応力を付与した前記鋼管を用いることを特徴とする前項1に記載の鋼管の応力診断方法。
【0010】
(3)前記測定部位の面内方向に等方的に均一に前記圧縮残留応力を付与した前記鋼管を用いることを特徴とする前項2に記載の鋼管の応力診断方法。
【0011】
【発明の実施の形態】
鋼材のバルクハウゼンノイズは、外部応力及び結晶粒径、析出物や転位等の組織に応じて変化するため、外部応力を診断するためには組織を変化させないことが必須であった。すなわち、鋼材に外部応力が作用しても、それが弾性範囲内にあるときには、組織変化がないためバルクハウゼンノイズは応力のみに依存し、かつ、応力に対して可逆的に変化する。しかし、鋼材に降伏応力以上の外部応力が作用し、それが塑性領域に入ってしまうと転位の増殖や結晶回転などが起こり組織が変わってしまうため、もはや外部応力のみを診断をすることが不可能になってしまう。
【0012】
本発明者らは、外部応力の大きさが降伏応力より大きくなった場合においても組織変化をほとんど生じさせなくするように、測定部位の残留応力の初期状態を制御することを可能にし、さらに、そのような状態において、応力とバルクハウゼンノイズの関係を詳細に調べた結果、本発明に至ったものである。すなわち、本発明者らは、弾性領域から塑性領域に至るまで、さらに、塑性領域においては種々の歪みの大きさまで塑性変形させた場合における、応力あるいは歪みと軸方向及び周方向に励磁して測定したバルクハウゼンノイズの大きさ、の関係を詳細に測定した。その結果、一端、測定部位を塑性変形させて、その部位の面内方向に圧縮残留応力を付与した試料に引っ張り応力を新たに負荷した場合には、応力あるいは歪みとバルクハウゼンノイズの実効値電圧の直線相関が成り立つ応力あるいは歪み範囲が、圧縮残留応力が無い場合に比べて格段に広くなることを見出した。さらに、軸方向に励磁して測定したバルクハウゼンノイズの実効値電圧(VL )は引っ張り応力あるいは引っ張り歪みに応じて非常に敏感に変化するのに対して、圧縮側ではほとんど変化しないこと、また、周方向に励磁して測定したバルクハウゼンノイズの実効値電圧(VC )は、引っ張り側及び圧縮側の両方において、応力あるいは歪みが変化してもほとんど変化しないか、変化しても僅かであることを見出した。
【0013】
通常の電縫管やシームレス管では鋼管表面の各部位ごとに組織や残留応力が異なるために、実際にバルクハウゼンノイズを測定してみると同じ鋼管でも測定部位が数cm異なるだけでその実効値電圧は大きく異なってしまう。したがって、各測定部位ごとの初期値の管理が必要になり、管理する上で煩雑になってしまう。本発明者らは、電縫管やシームレス管表面の面内方向にほぼ同じ大きさの圧縮残留応力を付与することによって鋼管表面のどの測定部位でバルクハウゼンノイズを測定しても同じ大きさの実効値電圧が得られることを見出した。この圧縮残留応力を面内に等方的に付与することによって、初期値の値も等方的になって、どの方向から外部応力が負荷されても応力の診断精度の低下を防ぐことが可能になる。しかし、鋼管周囲に渡る所定の測定部位でバルクハウゼンノイズを測定する場合、それらの全ての測定部位に均一な大きさの圧縮残留応力を付与することは可能であっても、製造工程の省力化や生産性を考慮した場合、残留応力を付与する工程は出来るだけ簡略化することが望ましい。
【0014】
本発明者らは、例えば、エアーブラスト、ショットブラストなどの小さな鋼球やセラミックス粒子を試料表面に高速で衝突させる方法、サンダーによる研磨、等、を用いて鋼管に導入される圧縮残留応力の大きさを評価した。その結果、これらの処理を何度か繰り返せば、鋼管周囲の測定部位の全てにほぼ均一な圧縮残留応力が付与されるが、処理の程度を軽くしていくと、測定部位によって圧縮残留応力の大きさが異なってくることがわかった。しかし、測定部位によって圧縮残留応力の大きさが異なる場合においても、同じ測定部位であるならば、軸方向と周方向の圧縮残留応力の大きさはほぼ同じであることも新たに判明した。
【0015】
上記のような方法で圧縮残留応力を付与した鋼管のある一個所の測定部位に注目した場合、現場設置前の外部応力が無付加の状態では、軸方向と周方向のそれぞれの方向に励磁して測定したバルクハウゼンノイズの実効値電圧は均一(VL 〜VC 、外部応力なし)であるが、そこに外部曲げ応力が負荷されると、軸方向に励磁して測定したバルクハウゼンノイズ(VL )は応力に応じて変化するが、周方向に励磁して測定したバルクハウゼンノイズ(VC )はほとんど変化しない。したがって、VL −VC を求めれば、測定部位の場所によらず、外部応力によって生じた実効値電圧のみを抽出できることになる。なお、実際のバルクハウゼンノイズの実効値電圧を検出する場合の測定誤差などを考慮すると、現場設置前の外部応力が無付加の状態において、軸方向と周方向のそれぞれの方向に励磁して測定したバルクハウゼンノイズの実効値電圧の差(VL −VC )が2mV〜3mV程度以下であるなら、VL とVC は均一と見なせる。
【0016】
通常のガス導管などでは、鋼管に内圧がかかっている状態で測定することになるが、内圧は既知であるため、内圧によって鋼管表面に生じている応力は力学的に計算可能である。したがって、この場合、外部応力を求めたい場合には、測定値からこの内圧による応力増加分を差し引けば良い。
【0017】
次に測定手順について説明する。
各測定部位において制御された圧縮残留応力が付与された鋼管表面上の周囲に渡って複数の所定の場所で軸方向及び周方向にそれぞれ励磁してバルクハウゼンノイズの実効値電圧VL 及びVC を測定する。その際、鋼管の管軸中心線を含み鋼管表面の所定の測定部位と交わる平面を考え、各平面の内の一枚を基準面として、各測定部位をその基準面と各測定部位を含む平面とのなす角度で表示する。どの面を基準面としても良い。それらの角度と(VL −VC )との関係をグラフまたは表に表す。ここで、通常の測定点数は数点から数十点程度である。
【0018】
次に、このグラフまたは表から(VL −VC )の最大値を求める。この部位は軸方向に作用している引っ張り応力が最大となるところである。実効値電圧の最大値から予め同じ鋼種を使って求めておいた検量線を用いて軸方向の最大引っ張り応力値を求めることができる。ここで、応力とバルクハウゼンノイズの関係を表す検量線は、歪みゲージを貼り付けた同じ鋼種の部材に応力を負荷していきながら、バルクハウゼンノイズを同時に測定することによって、容易に求めることができる。
【0019】
さらに、この最大引っ張り応力値をσmaxとすると、M=Z×σmax、(ただし、Zは断面係数)から曲げモーメントMを求めることができる。降伏応力に相当する圧縮残留応力を鋼管表面に付与した場合、降伏応力の約2倍に相当する外部引っ張り応力までバルクハウゼンノイズで診断が可能になる。
【0020】
電縫管では溶接部、及びその両側に熱影響部があるが、これらの部位ではバルクハゼンノイズが大きく変化してしまう場合がある。被覆や塗装が施されていない場合には目視でそれらの部位を確認できるため、予め測定部位から除くことができるが、被覆や塗装があって目視で確認できない場合には、測定値からこれらの部位に相当する値を除外すればよい。溶接部や熱影響部では,測定部位の角度とバルクハウゼンノイズの実効値電圧との関係を表したグラフにおいて、実効値電圧が不連続的に変化するため、それらの部位を容易に見つけることができる。公知の非接触式磁気ヘッド(特開平7−174730号公報)を用いれば被覆材の上からでも測定が可能となる。
【0021】
試料のより深い部位から発生するバルクハウゼンノイズほど減衰が大きくなるため、検出コイルに発生する電圧は小さくなる。これはskin depth効果と呼ばれ、定量的に示すと次にようになる。試料表面においてバルクハウゼンノイズが1/eに減衰する発生源の深さをdとすると、d=(ρ/πfμ)1/2、(ρは電気抵抗、fはバルクハウゼンノイズの検出周波数、μは透磁率)で表される。残留応力を付与する深さは、検出深さをdとした場合、少なくとも0.5d以上であることが好ましい。それが0.5dより少ない場合には、バルクハウゼンノイズと応力あるいは歪みとの関係において、両者の直線相関が成り立つ応力範囲が低下するからである。
【0022】
本発明を実際に使う場合には、被測定部材における外部応力とバルクハウゼンノイズの実効値電圧との関係を示す検量線を予め測定しておき、この検量線を用いて実際に測定した実効値電圧差(VL −VC )を応力へ換算すればよい。
【0023】
【実施例】
以下、実施例をもって本発明を具体的に説明する。
外径318mm、肉厚6.9mm、長さ6000mmのSGP300A鋼管表面の全面に渡ってスチール系研掃材を用いたショットブラスト処理を施すことによって圧縮残留応力を付与した。但し、部位によってショットブラスト処理の強さを積極的に変えて、圧縮残留応力の大きさを場所によって変化させた。この鋼管を曲げて任意量の外部応力を負荷した状態でバルクハウゼンノイズを測定し、本発明によって外部応力が診断できるか否かを調べた。
【0024】
バルクハウゼンノイズの測定は、以下のようにして行った。珪素鋼板を積層したU字型励磁コアに1000ターンのエナメル線を巻いた励磁ヘッド、及び断面積が2mm×8mmのアクリル製ボビンに500ターンのエナメル線を巻いた検出ヘッドからなる磁気ヘッドを用いて軸方向及び周方向の二つの方向に励磁して各測定部位の実効値電圧VL 及びVC をそれぞれ測定した。励磁周波数は100Hz、検出周波数は10kHz〜100kHzである。同一鋼種を使って予め求めておいた検量線を用いて、(VL −VC )を応力に換算した場合、及び比較例としてVL を応力に換算した場合について検討した。
【0025】
鋼管の測定部位は管軸中心線を含み鋼管表面の所定の測定部位と交わる平面を考え、その内の一枚の平面を基準面とし、測定部位をその基準面と各測定部位を含む平面とのなす角度で表示した。実際には、任意の面を基準面として、22.5°の間隔で16ヶ所を鋼管周囲にわたって一周分測定した。
【0026】
ショットブラスト処理後の鋼管表面の残留応力の大きさの深さ方向の分布は、表面から板厚方向へ所定厚さだけエッチングした後、X線残留応力測定法によって求めた。その結果、各測定部位では、表面から約150μmの深さまではほぼ同じ大きさの圧縮残留応力が面内で等方的に均一に入っているが、圧縮残留応力の絶対値は、各測定部位で異なっていることを確認した。
【0027】
図1は、各測定部位において、軸方向及び周方向に励磁して測定したバルクハウゼンノイズの実効値電圧VL 及びVC を示す特性図である。
各測定部位の圧縮残留応力の大きさが異なっているために、実効値電圧はばらついている。このグラフからでは、鋼管のどの部位に最大引っ張り応力が負荷されているのかを求めることは困難である。
【0028】
図2は、本発明に従ってVL −VC を求めた特性図である。
この図から、明らかに23°の部位と210°部位の間に軸方向に引っ張り応力が作用していることがわかり、約110°部位に最大引っ張り応力が作用していることがわかる。
【0029】
図2では最大で4.5mV増加しているが、これを予め求めておいた検量線を用いて応力に換算すると、210MPaとなる。この値は、曲げた鋼管の曲率を精度良く測定して計算によって求めた歪みの値を応力に換算した値とほぼ一致した。
【0030】
したがって、本発明によって、各測定部位の圧縮残留応力の大きさが異なっている場合においても応力の診断が可能であることがわかる。
【0031】
【発明の効果】
本発明によれば、表面に予め圧縮残留応力が付与された鋼管のバルクハウゼンノイズを鋼管の周囲に渡って所定の部位で測定することによって、鋼管に作用している応力を精度良く診断することが可能となる。本発明は弾性域のみならず、塑性域においても適用することか可能であるため、本発明を用いることによって、埋設してある鋼管に対して、本来最も注意して監視し、場合によっては直ちに応力解放工事を実施しなければならないような塑性領域にある応力の診断精度も格段に向上する。
【図面の簡単な説明】
【図1】バルクハウゼンノイズの実効値電圧のプロファイルを表す(実測値)特性図である。
【図2】バルクハウゼンノイズの実効値電圧のプロファイルを表す(本発明による計算結果)特性図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for nondestructively diagnosing stress generated by subsidence or formation fluctuation in a steel pipe embedded in the ground, using Barkhausen noise generated from the steel pipe.
[0002]
[Prior art]
Since steel pipes such as gas supply pipes and water pipes are buried in the ground, when subsidence occurs, bending stress is generated between steel pipe parts having different subsidence amounts. If the stress acts on the steel pipe for a long period of time, there is a risk of stress corrosion cracking, and if the stress is excessive, the steel pipe may be damaged. In particular, it is necessary to monitor the stress acting on the buried pipe so as to prevent this from occurring in the gas supply pipe and to confirm safety.
[0003]
For this purpose, a method is used to obtain a bending stress by opening a thin crack from the ground surface to the surface of the steel pipe, inserting a rod called a sinking rod into the resistance, and estimating the deformation of the steel pipe occurring in the ground from the sinking amount of the rod. Has been implemented conventionally. However, this method cannot measure the horizontal displacement of the steel pipe, and because the number of sinking bars is limited, the estimation accuracy of the deformation amount of the steel pipe is insufficient. was there.
[0004]
Therefore, a method has been proposed in which a magnetostrictive sensor (magnetic anisotropy sensor) using magnetostriction is directly applied to the surface of the steel pipe and the stress acting on the steel pipe is obtained from the output value. This measurement principle uses the fact that the magnetostriction is positive in steel materials such as iron, so that when stress acts on the steel pipe surface, the permeability increases in the tensile stress direction and decreases in the compressive stress direction. . For example, a stress release method for adjusting a value calculated by approximating a magnetostrictive sensor output measured around a steel pipe with a sine curve to a value that does not exceed a reference value for security or a minimum value (Japanese Patent Laid-Open No. 3-176630). No. 3) A method of linearly approximating the angular dependence of magnetostrictive sensor outputs in the vicinity of two stress neutral parts, and estimating the bending stress from the average value of the slopes of both (JP-A-3-176626), magnetostrictive sensor output Approximating the difference between SINθ and SINθ approximation by SIN2θ and estimating the flat stress from the amplitude value (Japanese Patent Laid-Open No. 3-176627), removing the measured value of the weld when measuring the ERW pipe with a magnetostrictive sensor Then, a correction method using COSθ and COS2θ (Japanese Patent Laid-Open No. 5-28158), an outer diameter at a position where the magnetostrictive sensor output is maximized and a position shifted by 90 ° therefrom are measured, and the flatness is obtained. Direction The method of correcting the maximum direction stress value (Japanese Patent Laid-Open No. 6-288842), incorporating the stress partially measured by a magnetostrictive sensor or the like into a simulation based on subsidence measurement, obtaining the maximum stress in the entire buried pipe, and determining the reference value A management method (Japanese Patent Application Laid-Open No. 9-242933), etc., that prevents it from exceeding is disclosed.
[0005]
However, when these methods are applied to an existing pipe, if the output value (initial value) at a predetermined measurement site is known before the pipe is buried, that is, with no external stress applied. There is no problem, but if it is unknown, the initial value varies depending on the location, so the stress cannot be obtained directly from the output value measured after embedding. Therefore, the stress has to be obtained using various correction methods.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional method, when trying to obtain external stress acting on each part of the steel pipe where the initial value of the measurement part is unknown, a certain degree of hypothetical judgment is required. The decline of was inevitable.
[0007]
Therefore, the present invention provides a method for enabling stress diagnosis with sufficient accuracy even when the initial value before embedding is unknown by using a steel pipe with a controlled compressive residual stress applied to the surface. For the purpose.
[0008]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) Using a magnetic head composed of an excitation head and a detection head as a diagnostic object, the measurement portion of the steel pipe is AC-excited by the excitation head, and the voltage signal induced in the detection head is frequency-separated. A steel pipe stress diagnostic method for detecting Barkhausen noise and diagnosing a stress value applied to the steel pipe,
Applying a predetermined compressive residual stress to the steel pipe surface in advance,
At a predetermined measurement site on the surface of the steel pipe, the effective voltage of Barkhausen noise measured by exciting in the axial direction of the steel pipe is V L , and the effective value voltage of Barkhausen noise measured by exciting in the circumferential direction is V C. In this case, from the value of (V L −V C ), using a calibration curve representing the relationship between the external stress and the effective value voltage of Barkhausen noise obtained in advance using the same member as the steel pipe, A stress diagnosis method for a steel pipe, wherein the stress value in the axial direction acting on a measurement site is obtained.
[0009]
(2) The compression in the in-plane direction of the measurement site so that the effective voltage of the Barkhausen noise measured by exciting in the axial direction and the circumferential direction of the measurement site on the surface of the steel pipe before installation on the site is uniform. 2. The steel pipe stress diagnostic method according to item 1, wherein the steel pipe to which residual stress is applied is used.
[0010]
(3) The steel pipe stress diagnosis method according to (2) above, wherein the steel pipe to which the compressive residual stress is applied isotropically and uniformly in an in-plane direction of the measurement site is used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Since the Barkhausen noise of a steel material changes according to the structure of external stress, crystal grain size, precipitates, dislocations, and the like, it was indispensable not to change the structure in order to diagnose the external stress. That is, even if an external stress acts on the steel material, when it is within the elastic range, there is no structural change, so Barkhausen noise depends only on the stress and reversibly changes with respect to the stress. However, if an external stress higher than the yield stress acts on the steel material and enters the plastic region, the structure changes due to the growth of dislocations and crystal rotation, so it is no longer possible to diagnose only the external stress. It will be possible.
[0012]
The inventors have made it possible to control the initial state of the residual stress at the measurement site so as to hardly cause a structural change even when the magnitude of the external stress becomes larger than the yield stress, In such a state, as a result of examining the relationship between stress and Barkhausen noise in detail, the present invention has been achieved. That is, the present inventors measured by exciting in the axial direction and circumferential direction with stress or strain when plastically deformed from the elastic region to the plastic region, and further in the plastic region to various strains. The relationship between the magnitude of Barkhausen noise was measured in detail. As a result, when the measurement site is plastically deformed and a tensile stress is newly applied to the sample to which compressive residual stress is applied in the in-plane direction, the effective voltage of the stress or strain and Barkhausen noise It has been found that the stress or strain range in which the linear correlation is established is much wider than that in the case where there is no compressive residual stress. Furthermore, the effective voltage (V L ) of Barkhausen noise measured by exciting in the axial direction changes very sensitively according to tensile stress or tensile strain, whereas it hardly changes on the compression side. The effective voltage (V C ) of Barkhausen noise measured with excitation in the circumferential direction hardly changes even if the stress or strain changes on both the tension side and the compression side. I found out.
[0013]
In ordinary ERW and seamless pipes, the structure and residual stress are different for each part of the steel pipe surface. Therefore, when actually measuring Barkhausen noise, the effective value of the same steel pipe is only a few centimeters different. The voltage will vary greatly. Therefore, it is necessary to manage the initial value for each measurement site, which is complicated in management. The present inventors apply a compressive residual stress of approximately the same magnitude in the in-plane direction of the surface of the ERW pipe or seamless pipe to measure the Barkhausen noise at any measurement site on the steel pipe surface. It was found that an effective voltage can be obtained. By applying this compressive residual stress isotropically to the surface, the initial value becomes isotropic, and it is possible to prevent deterioration of the diagnostic accuracy of stress no matter which direction external stress is applied from. become. However, when measuring Barkhausen noise at a predetermined measurement site around the steel pipe, even if it is possible to apply a compressive residual stress of uniform size to all of these measurement sites, labor-saving in the manufacturing process In view of productivity, it is desirable to simplify the process of applying residual stress as much as possible.
[0014]
The inventors of the present invention, for example, a method of causing small steel balls and ceramic particles such as air blast and shot blast to collide with a sample surface at high speed, polishing with a sander, etc. Was evaluated. As a result, if these treatments are repeated several times, almost uniform compressive residual stress is applied to all the measurement sites around the steel pipe. I found that the size was different. However, even when the magnitude of the compressive residual stress differs depending on the measurement site, it has been newly found that if the measurement site is the same, the magnitude of the compressive residual stress in the axial direction and the circumferential direction is almost the same.
[0015]
When attention is paid to one measurement site of a steel pipe to which compressive residual stress has been applied by the method described above, excitation is performed in the axial direction and circumferential direction in the absence of external stress before installation on site. The effective value voltage of the Barkhausen noise measured in this way is uniform (V L to V C , no external stress), but when an external bending stress is applied thereto, the Barkhausen noise measured by exciting in the axial direction ( V L ) changes according to the stress, but Barkhausen noise (V C ) measured by excitation in the circumferential direction hardly changes. Therefore, if V L −V C is obtained, only the effective value voltage generated by the external stress can be extracted regardless of the location of the measurement site. In consideration of measurement errors when detecting the actual effective voltage of Barkhausen noise, measurement is performed with excitation in the axial and circumferential directions in the absence of external stress before installation on site. If the difference in effective voltage (V L −V C ) of the Barkhausen noise is about 2 mV to 3 mV or less, V L and V C can be regarded as uniform.
[0016]
In a normal gas conduit or the like, measurement is performed in a state where the internal pressure is applied to the steel pipe. However, since the internal pressure is known, the stress generated on the surface of the steel pipe by the internal pressure can be calculated dynamically. Therefore, in this case, when it is desired to obtain the external stress, the stress increase due to the internal pressure may be subtracted from the measured value.
[0017]
Next, the measurement procedure will be described.
The effective voltages V L and V C of Barkhausen noise are excited by excitation in the axial direction and circumferential direction at a plurality of predetermined locations around the surface of the steel pipe to which the compressive residual stress controlled at each measurement site is applied. Measure. At that time, considering a plane that includes the pipe axis center line of the steel pipe and intersects with a predetermined measurement site on the surface of the steel pipe, one of each plane is used as a reference plane, and each measurement site is a plane that includes the reference plane and each measurement site Is displayed at an angle between Any surface may be used as a reference surface. The relationship between these angles and (V L −V C ) is shown in a graph or table. Here, the normal number of measurement points is about several to several tens.
[0018]
Next, the maximum value of (V L −V C ) is obtained from this graph or table. This part is where the tensile stress acting in the axial direction is maximized. The maximum tensile stress value in the axial direction can be obtained using a calibration curve obtained in advance using the same steel type from the maximum value of the effective value voltage. Here, a calibration curve representing the relationship between stress and Barkhausen noise can be easily obtained by simultaneously measuring Barkhausen noise while applying stress to the same steel type member with a strain gauge attached. it can.
[0019]
Further, when this maximum tensile stress value is σ max , the bending moment M can be obtained from M = Z × σ max (where Z is a section modulus). When compressive residual stress corresponding to the yield stress is applied to the surface of the steel pipe, diagnosis can be performed with Barkhausen noise up to an external tensile stress equivalent to about twice the yield stress.
[0020]
In an electric resistance welded pipe, there are a welded portion and heat-affected portions on both sides of the welded portion, but bulk hazen noise may change greatly in these portions. Since these parts can be confirmed visually when coating or coating is not applied, they can be removed from the measurement site in advance. What is necessary is just to exclude the value corresponding to a site | part. In a welded part or heat-affected part, the effective value voltage changes discontinuously in a graph showing the relationship between the angle of the measured part and the effective voltage of Barkhausen noise. it can. If a known non-contact type magnetic head (Japanese Patent Laid-Open No. 7-174730) is used, measurement can be performed even from above the covering material.
[0021]
Since the Barkhausen noise generated from a deeper part of the sample is more attenuated, the voltage generated in the detection coil becomes smaller. This is called the skin depth effect. Assuming that the depth of the source where Barkhausen noise attenuates to 1 / e on the sample surface is d, d = (ρ / πfμ) 1/2 , (ρ is electric resistance, f is the detection frequency of Barkhausen noise, μ Is expressed by permeability). The depth to which the residual stress is applied is preferably at least 0.5 d or more, where d is the detected depth. This is because if it is less than 0.5 d, the stress range in which the linear correlation between the two is reduced in the relationship between Barkhausen noise and stress or strain.
[0022]
When the present invention is actually used, a calibration curve indicating the relationship between the external stress in the member to be measured and the effective voltage of Barkhausen noise is measured in advance, and the effective value actually measured using this calibration curve is measured. The voltage difference (V L −V C ) may be converted into stress.
[0023]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
A compressive residual stress was applied by performing a shot blasting treatment using a steel-based abrasive over the entire surface of the SGP300A steel pipe having an outer diameter of 318 mm, a wall thickness of 6.9 mm, and a length of 6000 mm. However, the strength of the shot blast treatment was positively changed depending on the part, and the magnitude of the compressive residual stress was changed depending on the location. Barkhausen noise was measured in a state where an arbitrary amount of external stress was applied by bending the steel pipe, and it was examined whether or not external stress could be diagnosed by the present invention.
[0024]
Barkhausen noise was measured as follows. Using a magnetic head consisting of an excitation head in which a 1000-turn enamel wire is wound around a U-shaped excitation core laminated with silicon steel plates, and a detection head in which a 500-turn enamel wire is wound around an acrylic bobbin having a cross-sectional area of 2 mm × 8 mm Then, excitation was performed in two directions, the axial direction and the circumferential direction, and the effective value voltages V L and V C at each measurement site were measured. The excitation frequency is 100 Hz, and the detection frequency is 10 kHz to 100 kHz. The case where (V L -V C ) was converted to stress using a calibration curve obtained in advance using the same steel type, and the case where VL was converted to stress were examined as comparative examples.
[0025]
The measurement part of the steel pipe is a plane that includes the center line of the pipe and intersects with a predetermined measurement part on the surface of the steel pipe. One of the planes is used as a reference plane, and the measurement part is a plane including the reference plane and each measurement part. Displayed at an angle formed by In practice, an arbitrary surface was used as a reference surface, and 16 locations were measured over the circumference of the steel pipe at intervals of 22.5 °.
[0026]
The distribution in the depth direction of the residual stress magnitude on the surface of the steel pipe after the shot blasting was determined by an X-ray residual stress measurement method after etching a predetermined thickness from the surface in the plate thickness direction. As a result, at each measurement site, compressive residual stress of approximately the same magnitude is isotropically uniform in the plane at a depth of about 150 μm from the surface, but the absolute value of the compressive residual stress is It was confirmed that they are different.
[0027]
FIG. 1 is a characteristic diagram showing effective values V L and V C of Barkhausen noise measured by exciting in the axial direction and the circumferential direction at each measurement site.
Since the magnitude of the compressive residual stress at each measurement site is different, the effective value voltage varies. From this graph, it is difficult to determine which part of the steel pipe is subjected to the maximum tensile stress.
[0028]
FIG. 2 is a characteristic diagram showing V L -V C according to the present invention.
From this figure, it can be clearly seen that a tensile stress acts in the axial direction between the 23 ° portion and the 210 ° portion, and that the maximum tensile stress acts on the approximately 110 ° portion.
[0029]
In FIG. 2, it is increased by 4.5 mV at the maximum, but when this is converted into stress using a calibration curve obtained in advance, it becomes 210 MPa. This value almost coincided with the value obtained by converting the value of strain obtained by calculation by accurately measuring the curvature of the bent steel pipe into stress.
[0030]
Therefore, according to the present invention, it is understood that the stress can be diagnosed even when the compressive residual stress of each measurement site is different.
[0031]
【The invention's effect】
According to the present invention, the stress acting on the steel pipe can be accurately diagnosed by measuring the Barkhausen noise of the steel pipe having a compressive residual stress applied to the surface in advance at a predetermined site over the circumference of the steel pipe. Is possible. Since the present invention can be applied not only in the elastic region but also in the plastic region, by using the present invention, the steel pipe that is buried is monitored with the utmost care, and in some cases immediately. The diagnostic accuracy of stress in the plastic region where stress relief work must be performed is also greatly improved.
[Brief description of the drawings]
FIG. 1 is a (measured value) characteristic diagram showing a profile of an effective value voltage of Barkhausen noise.
FIG. 2 is a characteristic diagram showing a profile of an effective value voltage of Barkhausen noise (calculation result according to the present invention).

Claims (3)

鋼管を診断対象とし、励磁ヘッドと検出ヘッドから構成される磁気ヘッドを用いて前記励磁ヘッドにより鋼管の測定部位を交流励磁し、前記検出ヘッドに誘起される電圧信号を周波数分離してバルクハウゼンノイズを検出し、前記鋼管に負荷された応力値を診断する鋼管の応力診断方法であって、
予め前記鋼管表面に所定の圧縮残留応力を付与しておき、
前記鋼管表面の所定の測定部位において、前記鋼管の軸方向に励磁して測定したバルクハウゼンノイズの実効値電圧をVL 、周方向に励磁して測定したバルクハウゼンノイズの実効値電圧をVC とした場合、(VL −VC )の値から、前記鋼管と同一の部材を使って予め求めておいた外部応力とバルクハウゼンノイズの実効値電圧との関係を表す検量線を用い、前記測定部位に作用している軸方向の前記応力値を求めることを特徴とする鋼管の応力診断方法。
Using a magnetic head composed of an excitation head and a detection head as a diagnostic object, AC excitation is performed on the measurement site of the steel pipe by the excitation head, and the voltage signal induced in the detection head is frequency-separated to generate Barkhausen noise. A stress diagnosis method for a steel pipe that detects a stress value applied to the steel pipe,
Applying a predetermined compressive residual stress to the steel pipe surface in advance,
At a predetermined measurement site on the surface of the steel pipe, the effective voltage of Barkhausen noise measured by exciting in the axial direction of the steel pipe is V L , and the effective value voltage of Barkhausen noise measured by exciting in the circumferential direction is V C. In this case, from the value of (V L −V C ), using a calibration curve representing the relationship between the external stress and the effective value voltage of Barkhausen noise obtained in advance using the same member as the steel pipe, A stress diagnosis method for a steel pipe, wherein the stress value in the axial direction acting on a measurement site is obtained.
現場設置前における前記鋼管表面の測定部位の軸方向と周方向にそれぞれ励磁して測定したバルクハウゼンノイズの実効値電圧を均一にするように、前記測定部位の面内方向に前記圧縮残留応力を付与した前記鋼管を用いることを特徴とする請求項1に記載の鋼管の応力診断方法。The compressive residual stress is applied in the in-plane direction of the measurement site so that the effective voltage of the Barkhausen noise measured by exciting in the axial direction and the circumferential direction of the measurement site on the surface of the steel pipe before installation on site is uniform. The stress diagnosis method for a steel pipe according to claim 1, wherein the given steel pipe is used. 前記測定部位の面内方向に等方的に均一に前記圧縮残留応力を付与した前記鋼管を用いることを特徴とする請求項2に記載の鋼管の応力診断方法。The steel pipe stress diagnosis method according to claim 2, wherein the steel pipe to which the compressive residual stress is applied isotropically and uniformly in an in-plane direction of the measurement site is used.
JP30858499A 1999-10-29 1999-10-29 Steel pipe stress diagnosis method Expired - Fee Related JP4029119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30858499A JP4029119B2 (en) 1999-10-29 1999-10-29 Steel pipe stress diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30858499A JP4029119B2 (en) 1999-10-29 1999-10-29 Steel pipe stress diagnosis method

Publications (2)

Publication Number Publication Date
JP2001124638A JP2001124638A (en) 2001-05-11
JP4029119B2 true JP4029119B2 (en) 2008-01-09

Family

ID=17982801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30858499A Expired - Fee Related JP4029119B2 (en) 1999-10-29 1999-10-29 Steel pipe stress diagnosis method

Country Status (1)

Country Link
JP (1) JP4029119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316238B (en) * 2014-11-21 2016-09-07 国家电网公司 A kind of penstock inboard wall stress measurement apparatus and method

Also Published As

Publication number Publication date
JP2001124638A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
US7690258B2 (en) Buried pipe examining method
Lindgren et al. Effect of prestraining on Barkhausen noise vs. stress relation
AU2004215154B2 (en) Measurement of residual and thermally-induced stress in a rail
EP3076153B1 (en) Method for calculating an indenter area function and quantifying a deviation from the ideal shape of an indenter
JP5858493B2 (en) Apparatus and method for indicating whether a fastening element has reached a tensile yield limit load
EP0699301B1 (en) Stress measurement
EP3299806B1 (en) Surface characteristics evaluation method for steel material
JP4128297B2 (en) Steel pipe stress diagnosis method
JP4029119B2 (en) Steel pipe stress diagnosis method
CN108760117A (en) The method that electromagnetic acoustic based on magnetostrictive effect measures plate stress
Stashkov et al. Studying field dependence of reversible magnetic permeability in plastically deformed low-carbon steels
JP5026195B2 (en) Metal fatigue identification device and metal fatigue identification method
EP0703439B1 (en) Rail axial force measuring method and rail whose axial force can be measured
JP2019109164A (en) Stress monitoring sensor and stress monitoring method
JP4128294B2 (en) Stress diagnosis method
JP3130106B2 (en) Stress measurement method using magnetostrictive sensor
EP1636578B1 (en) Detecting failures of flexible multistrand steel structures
JP3159132B2 (en) Method for measuring stress in steel pipes
Shen et al. Prediction of residual stress components and their directions from pile-up morphology: An experimental study
RU2654154C2 (en) Method of determining the residual life of the pipelines
JP3759289B2 (en) Stress sensor plate and stress measurement method using the same
JPS63158437A (en) Diagnosis of resistant force against compressive load for corroded steel pipe member
JP4634628B2 (en) Degradation diagnosis method for steel
JP2005207800A (en) Method and apparatus for calibrating magnetostriction sensitivity
Lasn et al. Sensing of Structural Damage with OBR Based Fibre-Optic Networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R151 Written notification of patent or utility model registration

Ref document number: 4029119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees