JP2000219933A - High strength steel tube excellent in liquid pressure formability - Google Patents
High strength steel tube excellent in liquid pressure formabilityInfo
- Publication number
- JP2000219933A JP2000219933A JP11023922A JP2392299A JP2000219933A JP 2000219933 A JP2000219933 A JP 2000219933A JP 11023922 A JP11023922 A JP 11023922A JP 2392299 A JP2392299 A JP 2392299A JP 2000219933 A JP2000219933 A JP 2000219933A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- steel
- formability
- strength
- strength steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液圧成形に用いた
場合に優れた成形性を示す高強度鋼管に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel pipe which exhibits excellent formability when used in hydroforming.
【0002】[0002]
【従来の技術】金属製の管を所定の金型にて保持した
後、内部に液体を満たし、その液体の圧力を必要な値に
制御することによって、あるいはそれに加えて、管の端
面を押し込んでいくことによって所望の形状に膨出成形
する加工方法が、液圧バルジ加工、または、ハイドロフ
ォーム加工として知られている。2. Description of the Related Art After holding a metal tube in a predetermined mold, the inside of the tube is pushed in by filling a liquid therein and controlling the pressure of the liquid to a required value or in addition thereto. A processing method of bulging into a desired shape by performing the process is known as hydraulic bulging or hydroforming.
【0003】従来この加工方法は、配管用突き合わせ溶
接継手や自転車のフレームの接続部材などの製造に専ら
用いられていたが、最近、板材を曲げ加工などした複数
部品を組み合わせて閉断面を有する形状に作られている
部品などを、該加工方法によって管材から作製した部品
に置換しようとする試みを中心に、自動車部品への適用
が検討されるようになってきた。Conventionally, this processing method has been used exclusively for the production of butt-welded joints for piping and connection members for bicycle frames. Recently, however, a shape having a closed cross section by combining a plurality of parts obtained by bending a plate material or the like has been used. Application to automobile parts has been studied, mainly focusing on attempts to replace parts and the like made from tubing by the processing method.
【0004】その結果、溶接用継手や自転車のフレーム
部材では、被接続管と同材質管を用いることが一般的で
あったため、ほとんど検討されて来なかった素管の材質
が問題とされるようになってきた。As a result, in the case of welding joints and bicycle frame members, it is common to use the same material pipe as the pipe to be connected, so that the material of the bare pipe, which has hardly been studied, may be a problem. It has become
【0005】ところで、自動車部品に求められる代表的
要素は軽量かつ高剛性であり、これを適えるには、部品
用素材、すなわち加工用素管は、高強度鋼から成る薄肉
管であることが望ましい。しかし、一般に、鋼の高強度
化は延性の劣化を伴うため、高強度鋼を用いることは、
管の液圧による膨出成形性の劣化に繋がることが多い。
そこで同強度の鋼管の中で少しでも液圧による膨出成形
性に優れた鋼管を得るためには延性に優れた鋼を用いて
鋼管を作製することが有利となる。[0005] By the way, a typical element required for automobile parts is light weight and high rigidity. To meet this requirement, the material for the parts, that is, the raw pipe for processing, is a thin-walled pipe made of high-strength steel. desirable. However, in general, since high strength of steel involves deterioration of ductility, using high strength steel
It often leads to deterioration of the bulging formability due to the liquid pressure of the tube.
Therefore, in order to obtain a steel pipe excellent in swelling formability by hydraulic pressure even among steel pipes of the same strength, it is advantageous to produce a steel pipe using steel excellent in ductility.
【0006】そのような高強度高延性鋼のひとつとし
て、残留オーステナイト相(以下、γ R)の変態誘起塑
性(以下、TRIP)を利用するいわゆるTRIP鋼が
知られており、鋼板や鋼管の製造方法が提案されてい
る。One of such high strength and high ductility steels is
And the residual austenite phase (hereinafter γ RTransformation induced plasticity
So-called TRIP steel that utilizes the properties (hereinafter referred to as TRIP)
Known, methods for producing steel plates and pipes have been proposed.
You.
【0007】例えば特開昭61−157625号公報に
はTRIP薄鋼板を得るための製造方法が開示されてい
る。特開平6−88129号公報には曲げ特性を向上さ
せた高強度TRIP鋼鋼管の製造方法が記載されてい
る。一方、TRIP鋼鋼管ではないが類似の例として特
開平10−88278号公報には、組織をフェライト相
とベイナイト相の二層複合にすることによって液圧バル
ジ成形性に優れた電縫鋼管を得る方法が、特開平6−1
58163号公報には、フェライト相とマルテンサイト
相の複合組織化による耐摩耗性に優れた鋼管の製造方法
が述べられている。For example, Japanese Patent Application Laid-Open No. 61-157625 discloses a manufacturing method for obtaining a TRIP thin steel sheet. JP-A-6-88129 describes a method of manufacturing a high-strength TRIP steel pipe with improved bending characteristics. On the other hand, Japanese Patent Application Laid-Open No. Hei 10-88278 discloses an ERW pipe excellent in hydraulic bulge formability by forming a two-layer composite of a ferrite phase and a bainite phase as a similar example, but not a TRIP steel pipe. The method is disclosed in
No. 58163 describes a method for producing a steel pipe having excellent wear resistance by forming a composite structure of a ferrite phase and a martensite phase.
【0008】[0008]
【発明が解決しようとする課題】本発明者らは、液圧成
形にはTRIP鋼鋼管が適しているとの考えに基づいて
化学成分や「強度と伸びの積」(以下、強度延性バラン
ス)、および「γRの体積百分率」(以下、Vg)の異な
る複数のTRIP鋼鋼管を用いて液圧成形試験を行っ
た。その結果、強度延性バランスが高いことの重要性に
加えて、Vgがほとんど同じであっても液圧成形性が大
きく異なる場合のあることを見出した。このことは、
「Vgが多ければTRIP現象の発現が増え、それによ
ってより大きな延性が得られ高成形性をもたらす」とす
る従来薄鋼板の成形分野で用いられていたTRIP鋼の
評価指標のみでは管の液圧成形性は計れないことを意味
しているものと思われる。すなわち、管の液圧成形の場
合にはVgの大小のみならずγRの特性自体もが成形性に
関与していると考えられるのだが、このような視点に立
って液圧成形用の高強度鋼管について検討した例は見当
たらない。SUMMARY OF THE INVENTION The present inventors have considered that TRIP steel pipes are suitable for hydroforming and have considered chemical components and "product of strength and elongation" (hereinafter referred to as strength-ductility balance). , and "γ volume percentage of R" (hereinafter, V g) was hydroforming test using a plurality of TRIP steel pipe of different. As a result, in addition to the importance of having a high strength-ductility balance, it has been found that even when V g is almost the same, the hydraulic formability may be significantly different. This means
"The more V g increases expression of TRIP phenomenon, whereby a greater ductility is obtained resulting in high moldability" liquid metrics alone tubes TRIP steel which has been used in molding the field of conventional steel sheets and It seems that the press formability means that it cannot be measured. That is, in the case of hydraulic forming of a pipe, not only the magnitude of V g but also the characteristics of γ R itself are considered to be involved in the formability. No examples have been found for high-strength steel pipes.
【0009】特開昭61−157625号公報ではγR
の特性についての検討は為されておらず、かつ鋼管とし
ての使用に関する記載もない。特開平6−88129号
公報の発明は、残留応力を低減させて曲げ特性の向上を
図るために所定量以上のVgを確保することを提案した
ものであるが、γRの特性についての検討は全く行われ
ていない。また特開平10−88278号公報や特開平
6−158163号公報にはγRに関する記述は為され
ていない。管状試験片での強度延性バランスに言及した
例も見当たらない。Japanese Patent Application Laid-Open No. 61-157625 discloses that γ R
No studies have been made on the properties of the steel pipe, and there is no description regarding use as a steel pipe. Invention of JP-A-6-88129 Patent Publication, although those proposed to secure a predetermined amount or more of V g in order to improve the bending properties by reducing the residual stress, examination of the characteristics of gamma R Is not done at all. Also in JP-A-10-88278 and JP 6-158163 not descriptions made about the gamma R. There is no example referring to the strength-ductility balance in a tubular specimen.
【0010】そこで本発明は、液圧成形に用いた場合に
優れた成形性を示す高強度鋼管を提供することを目的と
する。Accordingly, an object of the present invention is to provide a high-strength steel pipe which exhibits excellent formability when used in hydroforming.
【0011】[0011]
【課題を解決するための手段】本発明者らは管状態での
強度延性バランスと、どのような特性を有するγRが液
圧成形性にとって有効であるのかを詳細に検討し、必要
な強度延性バランス量を明らかにするとともに、更に加
えてVgとγR特性が適切に組み合わされている場合に優
れた液圧成形性を示すことを見出すに至った。The present inventors have SUMMARY OF THE INVENTION can review and strength ductility balance in the tube state, gamma R having any characteristics whether it is effective for hydroformed property detail required strength clarified ductility balance amount, leading to further added V g and gamma R characteristics finds to exhibit excellent hydroformed properties if they are appropriately combined.
【0012】すなわち本発明は、(1) 質量百分率に
て、C:0.05〜0.3%、Si:0.5〜3.0
%、Mn:0.5〜2.5%を含み、残部がFeおよび
不可避的不純物から構成され、管状試験片による引張強
度と伸びの積が15000[MPa・%]以上であり、加
えて体積百分率にて2.5%以上の残留オーステナイト
相を有し、かつ残留オーステナイト相中のC濃度が全体
平均値の5倍以上であることを特徴とする液圧成形性に
優れた高強度鋼管。That is, according to the present invention, (1) in terms of mass percentage, C: 0.05 to 0.3%, Si: 0.5 to 3.0%
%, Mn: 0.5 to 2.5%, the balance being Fe and inevitable impurities, the product of tensile strength and elongation of the tubular test piece being 15000 [MPa ·%] or more, and the volume A high-strength steel pipe excellent in hydraulic formability, having a retained austenite phase of 2.5% or more in percentage and having a C concentration in the retained austenite phase of 5 times or more of the overall average value.
【0013】および、(2) 上記に加えてCr、N
i、Mo、Cu、Ti、Nbのうちの1種または2種以
上を質量百分率の合計で3%以下含有することを特徴と
する液圧成形性に優れた高強度鋼管。を要旨とするもの
である。And (2) In addition to the above, Cr, N
A high-strength steel pipe excellent in hydraulic formability, comprising one or more of i, Mo, Cu, Ti, and Nb in a total of 3% or less in terms of mass percentage. It is the gist.
【0014】[0014]
【発明の実施の形態】本発明を見出すに至った実験につ
いて説明する。まず質量百分率(以下、%)でC:0.
15%、Si:1.95%、Mn:1.70%を含み、
残部がFeおよび不可避的不純物から成る鋼を常法に基
づいて1.6mmの冷延鋼板とした。これを830℃に
60秒間保持後700℃まで10℃/秒で除冷、更に4
00℃まで65℃/秒で急冷し、引き続き同温度に10
秒間〜1000秒間保持し、以後空冷した。次に所定の
寸法に切断し、歪の導入が円周方向で出来るだけ均一と
なるようにしてVgとγRの異なった短尺鋼管を多数作製
した。鋼管の仕上がり寸法は60.5φ×300mmで
あり、シーム部はレーザーにて溶接した。同じ条件で熱
処理した鋼管を複数本ずつ用意し、管状試験片(JIS
11号試験片)での引張強度と伸びの測定、Vgの定
量、γRの特性の調査、および成形性の評価に供した。DESCRIPTION OF THE PREFERRED EMBODIMENTS An experiment which led to the discovery of the present invention will be described. First, C: 0.1 in mass percentage (hereinafter,%).
15%, Si: 1.95%, Mn: 1.70%,
A steel having a balance of Fe and inevitable impurities was formed into a 1.6 mm cold-rolled steel sheet based on a conventional method. After maintaining this at 830 ° C. for 60 seconds, it is cooled down to 700 ° C. at 10 ° C./sec.
Rapidly cool to 00 ° C at 65 ° C / sec.
The temperature was maintained for 秒 間 seconds to 1000 seconds, and then air-cooled. Then cut to a predetermined size, the introduction of strain to produce a large number of different short steel pipe V g and gamma R as the only uniform possible in the circumferential direction. The finished dimension of the steel pipe was 60.5φ × 300 mm, and the seam was welded by laser. A plurality of steel tubes heat-treated under the same conditions were prepared, and a tubular test piece (JIS
Tensile strength and elongation measurements of 11 test piece No.) Determination of V g, gamma investigation of characteristics of R, and was subjected to evaluation of formability.
【0015】液圧成形試験は、図1にその主要部分の断
面図を模式的に示す装置を用いて行った。金型形状は上
金型1及び下金型4から成るT型継手とし、溶接線が膨
出方向と180°をなすように鋼管(成形前の鋼管の断
面2を示す)をセットして軸押し込み用シリンダー5を
押し込み、成形を開始した。軸押し込み量は両側とも1
0mmとし、内圧は軸押し込み量に比例して増加させ、
成形後の鋼管の断面3が形成されるように成形した。最
終負荷内圧を等間隔で段階的に高めていき管がバースト
するまで行った。The hydraulic forming test was performed using an apparatus schematically showing a sectional view of the main part in FIG. The mold shape is a T-shaped joint consisting of an upper mold 1 and a lower mold 4, and a steel pipe (showing a cross section 2 of the steel pipe before forming) is set so that the welding line forms 180 ° with the bulging direction. The pushing cylinder 5 was pushed in to start molding. Shaft pushing amount is 1 on both sides
0 mm, the internal pressure is increased in proportion to the amount of shaft pushing,
The steel pipe was formed so that the cross section 3 of the formed steel pipe was formed. The final load internal pressure was increased stepwise at regular intervals until the pipe burst.
【0016】バーストした内圧よりも一段階低い圧力で
成形された管の膨出部の最大周長L maxを求め、それを
成形前の周長L0で除した値(Lmax/L0)を以って各
々の管の成形性を評価した。At a pressure one step lower than the burst internal pressure
Maximum perimeter L of the bulge of the formed tube maxAnd ask for it
Perimeter L before molding0Divided by (Lmax/ L0) With each
The formability of each tube was evaluated.
【0017】強度延性バランスは19500〜2600
0MPa・%であり、Lmax/L0との間に相関は認めら
れなかった。一方、(Lmax/L0)は概ねVgに比例し
て増加するが、Vgがほぼ同じ管であってもLmax/L0
が大きく異なることがあり、その差は最大で約2倍に達
した。The strength-ductility balance is 19500-2600
0 MPa ·%, and no correlation was observed with L max / L 0 . On the other hand, (L max / L 0) is generally increases in proportion to V g, be substantially the same tube is V g L max / L 0
Can vary widely, up to a factor of about two.
【0018】本発明者らはこうした差違が何故生じるの
かを詳細に調査した。その結果γR中に濃化されている
C濃度(以下、Cg)の大小がLmax/L0の大小に極め
て強い相関を持つことを見出した。そして更に鋭意研究
を行った結果、管状態での強度延性バランスが1500
0MPa・%以上であり、加えてCgが鋼全体の平均C
濃度(以下C0)の5倍以上である場合で、かつVgが体
積百分率(以下、vol%)で2.5以上である場合に
該TRIP鋼鋼管は優れた液圧成形性を有するとの結論
を得、本発明を完成させた。The present inventors have investigated in detail why such a difference occurs. As a result, it has been found that the magnitude of the C concentration (hereinafter, C g ) concentrated in γ R has an extremely strong correlation with the magnitude of L max / L 0 . As a result of further intensive research, it was found that the strength-ductility balance in a tubular state was 1500.
0 MPa ·% or more, and C g is the average C of the entire steel.
When the concentration is 5 times or more of the concentration (hereinafter C 0 ) and V g is 2.5 or more by volume percentage (hereinafter, vol%), the TRIP steel pipe has excellent hydraulic formability. And completed the present invention.
【0019】以下に本発明の限定理由を述べる。The reasons for limiting the present invention will be described below.
【0020】まず鋼材の化学成分について、CはγRを
室温で安定に存在させるために必須の元素である。γR
を2.5vol%以上とするためには0.05%以上が
必要であるのでこれを下限とする。一方、同0.3%超
では溶接性を劣化させるのでこれを上限とする。First, as for the chemical composition of the steel material, C is an essential element for allowing γ R to exist stably at room temperature. γ R
Is set to 2.5 vol% or more, 0.05% or more is required, so this is set as the lower limit. On the other hand, if it exceeds 0.3%, the weldability deteriorates, so this is made the upper limit.
【0021】Siは脱酸元素として有効であり、かつ鋼
の強化にも寄与する。しかし3.0%を越えて添加する
と圧延が困難となるのでこれを上限とする。一方、本元
素はオーステナイト相(以下、γ)へのCの濃化を促進
する効果を有する。その効果は0.5%以上で顕著とな
るので0.5%を下限とする。[0021] Si is effective as a deoxidizing element and also contributes to strengthening of steel. However, if the content exceeds 3.0%, rolling becomes difficult, so this is made the upper limit. On the other hand, this element has an effect of promoting the enrichment of C in an austenite phase (hereinafter, γ). The effect becomes significant at 0.5% or more, so 0.5% is made the lower limit.
【0022】Mnは高強度化とγRの確保に必要な元素
である。しかし0.5%未満では十分な効果が得られ
ず、一方、2.5%を越えて添加しても材質の向上は見
られず、むしろ溶接欠陥の原因となり得るのでこれを上
限とする。[0022] Mn is an element necessary to ensure high strength and γ R. However, if the content is less than 0.5%, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 2.5%, no improvement in the material is observed, and it may cause welding defects.
【0023】その他の選択添加元素のうちCr、Ni、
およびMoは、γの安定化に寄与するのでVgの確保に
は有効な元素であるため、それぞれ0.06%、0.0
8%、および0.13%以上添加することが好ましい。
CuはγへのCの濃化を助ける働きをする以外に強度調
整用としても利用出来るので、0.07%以上添加する
ことが好ましい。Ti、Nbは炭化物の形成を通しての
強度調整用に有効であるので、いずれも0.01%以上
添加することが好ましい。しかしこれらの元素の添加は
製造コストを高めるのみならず、過剰な添加は延性の低
下に繋がるので合計での上限を3%とする。Among the other optional elements, Cr, Ni,
And Mo are effective elements for securing V g because they contribute to stabilization of γ, and are therefore 0.06% and 0.06%, respectively.
It is preferable to add 8% and 0.13% or more.
Since Cu can be used for adjusting the strength in addition to assisting the concentration of C into γ, it is preferable to add 0.07% or more. Since Ti and Nb are effective for adjusting the strength through the formation of carbide, it is preferable to add 0.01% or more of both. However, the addition of these elements not only increases the production cost, but excessive addition leads to a decrease in ductility, so the total upper limit is set to 3%.
【0024】実施例の中で述べるように、Cg/C0が5
未満では優れた液圧成形性は得られないので残留γ中の
C濃度の下限を全体平均の5倍とする。また、管状試験
片による強度延性バランスが15000未満、またはV
gが2.5%未満の場合にはCg/C0が5以上であって
も優れた液圧成形性は得られないのでそれぞれの値を下
限値とする。As described in the embodiment, C g / C 0 is 5
If it is less than 5, excellent hydraulic formability cannot be obtained, so the lower limit of the C concentration in the residual γ is set to 5 times the overall average. Further, the strength-ductility balance by the tubular test piece is less than 15,000, or V
When the g is less than 2.5%, even if C g / C 0 is 5 or more, excellent hydraulic formability cannot be obtained, so each value is set as the lower limit.
【0025】一方、強度延性バランスが大きい程成形は
容易となるのでその上限は特に定めない。On the other hand, as the strength-ductility balance is larger, molding becomes easier, so the upper limit is not particularly defined.
【0026】VgとCgはそれぞれ独立に制御出来る量で
はなく他方の影響を受ける。どちらか一方を過度に高め
ることは他方を引き下げることに繋がり望ましくない。
しかし、その上限値は鋼の化学成分や熱処理条件によっ
て異なり、製造者が自らの製鋼能力や熱処理能力に応じ
て設定すれば良いものでのあるから特に限定しない。V g and C g are not independently controllable quantities but are affected by the other. Excessively increasing either one leads to lowering the other, which is not desirable.
However, the upper limit depends on the chemical composition of the steel and the heat treatment conditions, and is not particularly limited since the manufacturer may set the upper limit in accordance with his or her own steel making ability or heat treatment ability.
【0027】本発明の鋼管の製造条件はTRIP鋼の一
般的な製造方法に準じてなされればよく、特に限定され
るものではない。熱間圧延は、連続鋳造後直接、また
は、冷却再加熱後のいずれで為されてもよい。仕上圧延
の終了温度(以下、FT)は、鋼板表層部が剪断変形を
受けるのを避けるために出来ればAr3点以上とするこ
とが望ましい。熱間圧延材から鋼管を製造する場合には
圧延終了から巻き取りまでの間の温度履歴を適宜制御し
VgとCgを所定量となるようにする。The conditions for producing the steel pipe according to the present invention may be determined according to a general method for producing TRIP steel, and are not particularly limited. Hot rolling may be performed either directly after continuous casting or after cooling and reheating. The finish temperature of the finish rolling (hereinafter, FT) is desirably set to three or more Ar points if possible in order to prevent the steel sheet surface layer from being subjected to shear deformation. When a steel pipe is manufactured from a hot-rolled material, the temperature history from the end of rolling to the winding is appropriately controlled so that Vg and Cg become predetermined amounts.
【0028】冷延鋼板を用いて鋼管を製造する場合に
は、酸洗後に冷間圧延する。冷間圧延率は設備の能力と
作業性を考慮して設定すればよく特に限定しない。望ま
しくは50〜90%とする。When a steel pipe is manufactured using a cold-rolled steel sheet, cold rolling is performed after pickling. The cold rolling reduction is not particularly limited as long as it is set in consideration of the capacity and workability of the equipment. Desirably, it is 50 to 90%.
【0029】冷延板を熱処理してVgとCgを制御する。
まずAc1点以上に加熱・保持し、次いでMs点以下の
適切な温度まで冷却後保持する。この過程における温
度、保持時間、および加熱・冷却の速度は多くの組み合
わせが考えられるが、その中から製造設備の能力に鑑み
最も効率の良いものを選択すればよい。The cold rolled sheet is heat-treated to control V g and C g .
First heated and held at least Ac 1 point and then hold mixture was cooled to below a suitable temperature Ms point. Many combinations of the temperature, the holding time, and the heating / cooling speed in this process are conceivable, and the most efficient one may be selected from these in consideration of the capacity of the manufacturing equipment.
【0030】鋼管原板を所定の寸法に切断後、シーム溶
接して鋼管を製造する。この際、後の成形性を出来るだ
け損なわないように局所的な変形を与えないように造管
することが望ましい。シーム溶接はどのような方法で行
ってもよい。After cutting the steel pipe blank into a predetermined size, the steel pipe is manufactured by seam welding. At this time, it is desirable to form the tube so as not to give local deformation so as not to impair the subsequent formability as much as possible. Seam welding may be performed by any method.
【0031】一方、原板から鋼管を製造した後、管全体
に対して熱処理を行い、組織をTRIP鋼としても良
い。また鋼管をシームレス圧延にて製造した後、熱処理
する方法も可能である。On the other hand, after the steel pipe is manufactured from the original sheet, heat treatment is performed on the entire pipe, and the structure may be TRIP steel. Further, a method in which a steel pipe is manufactured by seamless rolling and then heat-treated is also possible.
【0032】Cgが液圧成形性に影響を与える理由は必
ずしも明確ではない。一般に、Cgが高いとγRのMs点
が低下しγRの熱力学的安定度が増すことが知られてい
る。このことはCgの高いγRにおけるTRIPは高歪域
において発現され易いことを意味している。管の液圧成
形では母管に対して広い範囲の歪が負荷されることから
高歪域でTRIPを示す高CgのγRを有する鋼管が優れ
た成形性を示すものと推測される。The reason why C g affects the hydraulic formability is not always clear. In general, Ms point C g and a high gamma R is known to increase thermodynamic stability of reduced gamma R. This means that TRIP in γ R having a high C g is easily expressed in a high strain region. The hydroforming of the tube is assumed that indicates the moldability of the steel pipe is excellent with a gamma R of high C g illustrating the TRIP at high strain range since distortion of a wide range with respect to the substrate tube are loaded.
【0033】[0033]
【実施例】本発明の実施例を比較例とともに説明する。EXAMPLES Examples of the present invention will be described together with comparative examples.
【0034】(実施例1)質量百分率で、C:0.18
%、Si:1.98%、Mn:1.82%、P:0.0
1%、S:0.002%、Al:0.030%を含有す
る鋼片を加熱して2.6mmに熱間圧延した。その際、
FTと巻き取り温度(以下、CT)、およびその間の冷
却速度を複数の組み合わせにて行った。それらの鋼板を
酸洗した後、60.5mmφの鋼管を作製した。シーム
方法はTIG溶接とした。JIS11号引張試験片で引
張強度、伸びを測定してこれらの鋼管の強度延性バラン
スを求めるとともに成形性を既に述べたものと同じ方法
で評価した。またVgとCgの測定も行った。鋼管の非溶
接部からその一部を切り出し、機械切削と化学研磨を施
した試料に対して、X線(MoのKα線)を用いてフェ
ライト相(以下、α)の(200)面と(211)面、
γRの(220)面と(311)面の回折強度(積分
値)を測定し、次の4式から得られる値の平均を以って
Vg(vol%)とした。Example 1 C: 0.18 by mass percentage
%, Si: 1.98%, Mn: 1.82%, P: 0.0
A slab containing 1%, S: 0.002%, and Al: 0.030% was heated and hot-rolled to 2.6 mm. that time,
The FT, the winding temperature (hereinafter, CT), and the cooling rate between them were performed in plural combinations. After pickling these steel plates, a 60.5 mmφ steel pipe was produced. The seam method was TIG welding. The tensile strength and elongation were measured with a JIS No. 11 tensile test piece to determine the strength-ductility balance of these steel pipes, and the formability was evaluated by the same method as described above. V g and C g were also measured. Cut out a portion from the non-welded portion of the steel pipe, the sample subjected to mechanical cutting and chemical polishing, a ferrite phase with an X-ray (K alpha line Mo) (hereinafter, alpha) of (200) plane and (211) plane,
The diffraction intensity (integral value) of the (220) plane and the (311) plane of γ R was measured, and V g (vol%) was obtained by averaging the values obtained from the following four equations.
【0035】 I(220) γ/(1.35×I(200) α+I(220) γ) I(220) γ/(0.70×I(211) α+I(220) γ) I(311) γ/(1.50×I(200) α+I(311) γ) I(311) γ/(0.78×I(211) α+I(311) γ) ここでI(200) α、I(211) α、I(220) γ、およびI
(311) γは、それぞれ、αの(200)面、αの(21
1)面、γRの(220)面、およびγRの(311)面
の回折強度を示す。I (220) γ / ( 1.35 × I (200) α + I (220) γ ) I (220) γ / ( 0.70 × I (211) α + I (220) γ ) I (311 ) γ / ( 1.50 × I (200) α + I (311) γ ) I (311) γ / ( 0.78 × I (211) α + I (311) γ ) where I (200) α , I (211) α , I (220) γ , and I
(311) γ is the (200) plane of α and (21) of α, respectively.
1) plane, a diffraction intensity of gamma (220) plane of R, and gamma of the R (311) plane.
【0036】またCgは、まずCuのKα線によりγRの
格子定数aγを精密に測定し、それを次式に代入して決
定した。The C g was determined by precisely measuring the lattice constant a γ of γ R using the K α ray of Cu, and substituting it into the following equation.
【0037】すなわち、 Cg(%)=(aγ−3.572)/0.033 である。ここでaγの単位はÅ(オングストローム)で
ある。That is, C g (%) = (a γ -3.572) /0.033. Units where a gamma are Å (Angstroms).
【0038】表1に強度延性バランス、Vg、Cg、Cg
/C0および成形性指標であるLmax/L0を示す。Table 1 shows the strength-ductility balance, V g , C g , and C g.
/ C 0 and L max / L 0 which is a formability index.
【0039】No.1、4、5、7および10は本発明
の範囲外である。特にNo.10は造管後500℃に再
加熱してγRを分解させVgをほとんど無くしたものであ
る。このように本発明の範囲内の鋼管であればLmax/
L0が1.5以上の高い成形性を有することが明らかと
なった。No. 1, 4, 5, 7, and 10 are outside the scope of the present invention. In particular, no. Reference numeral 10 denotes a tube which was reheated to 500 ° C. after pipe formation to decompose γ R and almost eliminate V g . Thus, if the steel pipe is within the scope of the present invention, Lmax /
L 0 was found to have 1.5 or more high moldability.
【0040】[0040]
【表1】 [Table 1]
【0041】(実施例2)表2に主要な化学成分を示す
鋼片を常法に基づいて加工し1.6mmの冷延鋼板とし
た。それらを加工して60.5φの鋼管を作製した。シ
ーム溶接にはレーザーを用いた。得られた鋼管を光輝焼
鈍炉を用いて熱処理し、強度延性バランス、Vg、およ
びCgの異なるTRIP鋼管を作り分けた。その後長さ
300mmに切断し、熱処理時に生成したスケールの影
響を除くため鋼管外面に金属用塗料を均一に塗布して成
形試験に供した。Example 2 A steel slab having the main chemical components shown in Table 2 was processed according to a conventional method to obtain a 1.6 mm cold-rolled steel sheet. These were processed to produce a 60.5φ steel pipe. Laser was used for seam welding. The obtained steel pipe was heat-treated using a bright annealing furnace, and TRIP steel pipes having different strength-ductility balance, V g and C g were separately formed. Thereafter, the steel pipe was cut into a length of 300 mm, and a metal coating was uniformly applied to the outer surface of the steel pipe in order to remove the influence of the scale generated during the heat treatment, and was subjected to a forming test.
【0042】成形試験は図2にその主要部分の断面図を
模式的に示す装置を用いて行った。金型形状は上金型1
及び下金型4から成る単純(全周方法)拡管型とし、軸
押し込み用シリンダー5の軸押し込み量は両側とも15
mmとした。それ以外の成形条件、およびVg、Cgの測
定は実施例1と同様である。The molding test was performed using an apparatus schematically showing a sectional view of the main part in FIG. Mold shape is upper mold 1
And a lower mold 4 (simple (peripheral method)), and the axial pushing amount of the shaft pushing cylinder 5 is 15 on both sides.
mm. The other molding conditions and the measurement of V g and C g are the same as in Example 1.
【0043】成形試験の結果をVgおよびCg/C0を座
標軸として図3に示す。黒丸(●)は強度延性バランス
が15000MPa・%以上であることを、白丸(○)
はそれが15000MPa・%未満であることを表す。
また各記号に鋼名とともに付した数値はLmax/L0であ
る。このように本発明の範囲内の鋼管はLmax/L0が
2.0以上の高い成形性を有することが明らかとなっ
た。FIG. 3 shows the results of the molding test using V g and C g / C 0 as coordinate axes. The solid circles ()) indicate that the strength-ductility balance is 15000 MPa ·% or more.
Represents that it is less than 15000 MPa ·%.
The numerical value given to each symbol together with the steel name is L max / L 0 . Thus, it became clear that the steel pipe within the range of the present invention has high formability with L max / L 0 of 2.0 or more.
【0044】[0044]
【表2】 [Table 2]
【0045】[0045]
【発明の効果】本発明によれば、液圧成形性に優れたT
RIP鋼高強度鋼管を得ることが出来る。According to the present invention, T having excellent hydraulic formability is obtained.
A RIP steel high strength steel pipe can be obtained.
【図1】T型継手の成形試験に用いた液圧成形装置の主
要部分を示す模式図である。FIG. 1 is a schematic view showing a main part of a hydraulic forming apparatus used for a forming test of a T-shaped joint.
【図2】単純拡管型の成形試験に用いた液圧成形装置の
主要部分を示す模式図である。FIG. 2 is a schematic view showing a main part of a hydraulic forming apparatus used in a simple expansion type forming test.
【図3】成形性指標Lmax/L0をVgおよびCg/C0を
座標軸として示すグラフである。FIG. 3 is a graph showing a formability index L max / L 0 as V g and C g / C 0 as a coordinate axis.
1 上金型 2 成形前の鋼管の断面 3 成形後の鋼管の断面 4 下金型 5 軸押し込み用シリンダー DESCRIPTION OF SYMBOLS 1 Upper die 2 Section of steel pipe before forming 3 Section of steel pipe after forming 4 Lower die 5 Cylinder for axial pushing
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 展弘 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 横井 龍雄 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 岸田 宏司 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuhiro Fujita 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division (72) Inventor Tatsuo Yokoi 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division (72) Koji Kishida, Inventor 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division
Claims (2)
%、Si:0.5〜3.0%、Mn:0.5〜2.5%
を含み、残部がFeおよび不可避的不純物から構成さ
れ、管状試験片による引張強度と伸びの積が15000
[MPa・%]以上であり、加えて体積百分率にて2.5
%以上の残留オーステナイト相を有し、かつ残留オース
テナイト相中のC濃度が全体平均値の5倍以上であるこ
とを特徴とする液圧成形性に優れた高強度鋼管。1. C: 0.05 to 0.3 in mass percentage
%, Si: 0.5 to 3.0%, Mn: 0.5 to 2.5%
And the balance is composed of Fe and inevitable impurities, and the product of tensile strength and elongation by the tubular test piece is 15000.
[MPa ·%] or more, and 2.5% by volume
%. A high-strength steel pipe excellent in hydraulic formability, having a retained austenite phase of at least 5% and a C concentration in the retained austenite phase being at least 5 times the overall average value.
うちの1種または2種以上を質量百分率の合計で3%以
下含有することを特徴とする請求項1記載の液圧成形性
に優れた高強度鋼管。2. The hydraulic formability according to claim 1, wherein one or more of Cr, Ni, Mo, Cu, Ti, and Nb are contained in a total mass percentage of 3% or less. Excellent high strength steel pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02392299A JP3563988B2 (en) | 1999-02-01 | 1999-02-01 | High-strength steel pipe with excellent hydraulic formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02392299A JP3563988B2 (en) | 1999-02-01 | 1999-02-01 | High-strength steel pipe with excellent hydraulic formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000219933A true JP2000219933A (en) | 2000-08-08 |
JP3563988B2 JP3563988B2 (en) | 2004-09-08 |
Family
ID=12124018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02392299A Expired - Fee Related JP3563988B2 (en) | 1999-02-01 | 1999-02-01 | High-strength steel pipe with excellent hydraulic formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3563988B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002294403A (en) * | 2001-03-29 | 2002-10-09 | Kawasaki Steel Corp | Steel tube with high strength and high workability and production method therefor |
CN1312006C (en) * | 2002-12-25 | 2007-04-25 | 新日本制铁株式会社 | High-impact electric welding steel pipe |
JP2013060652A (en) * | 2011-08-25 | 2013-04-04 | Jfe Steel Corp | Hollow member for vehicle reinforcement |
KR101384390B1 (en) | 2009-07-15 | 2014-04-14 | 가부시키가이샤 고베 세이코쇼 | Method for producing alloy ingots |
-
1999
- 1999-02-01 JP JP02392299A patent/JP3563988B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002294403A (en) * | 2001-03-29 | 2002-10-09 | Kawasaki Steel Corp | Steel tube with high strength and high workability and production method therefor |
JP4529307B2 (en) * | 2001-03-29 | 2010-08-25 | Jfeスチール株式会社 | High-strength and high-workability steel pipe and method for producing the same |
CN1312006C (en) * | 2002-12-25 | 2007-04-25 | 新日本制铁株式会社 | High-impact electric welding steel pipe |
KR101384390B1 (en) | 2009-07-15 | 2014-04-14 | 가부시키가이샤 고베 세이코쇼 | Method for producing alloy ingots |
JP2013060652A (en) * | 2011-08-25 | 2013-04-04 | Jfe Steel Corp | Hollow member for vehicle reinforcement |
Also Published As
Publication number | Publication date |
---|---|
JP3563988B2 (en) | 2004-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030066580A1 (en) | Method for making high-strength high-toughness martensitic stainless steel seamless pipe | |
JP5005543B2 (en) | High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same | |
JP4957854B1 (en) | High-strength ERW steel pipe and manufacturing method thereof | |
CN110088331B (en) | Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same | |
US7591914B2 (en) | High-workability steel pipe and method of producing same | |
JP5732999B2 (en) | High-strength ERW steel pipe and manufacturing method thereof | |
CN111511949B (en) | Hot-rolled steel sheet having excellent expansibility and method for producing same | |
JPH09118952A (en) | Member made of high-strength hot rolled steel sheet having lower yield ratio | |
JP6926247B2 (en) | Cold-rolled steel sheet for flux-cored wire and its manufacturing method | |
JP3563988B2 (en) | High-strength steel pipe with excellent hydraulic formability | |
JPH09143612A (en) | High strength hot rolled steel plate member low in yield ratio | |
JP2003105441A (en) | METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS | |
JP4171296B2 (en) | Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability | |
CN111511935B (en) | Hot-rolled steel sheet having excellent durability and method for producing same | |
JP3549483B2 (en) | Hydroform forming steel pipe excellent in processability and manufacturing method | |
JP6123734B2 (en) | Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same | |
JP2004292922A (en) | Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability | |
JP3887155B2 (en) | Steel pipe excellent in formability and manufacturing method thereof | |
JP2824779B2 (en) | Manufacturing method of hot-rolled high-tensile steel sheet | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JPH08325644A (en) | Production of high strength hot rolled steel sheet | |
JP3937964B2 (en) | High strength and high toughness martensitic stainless steel seamless pipe manufacturing method | |
JP3695233B2 (en) | ERW steel pipe for hydroforming | |
JP2003286544A (en) | Thin-walled steel pipe showing excellent hydroforming property and its manufacturing process | |
JP4567907B2 (en) | Steel pipe excellent in hydroformability and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040604 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080611 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090611 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090611 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100611 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100611 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120611 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |