JP2000219929A - Aluminum alloy sheet excellent in formability and its production - Google Patents
Aluminum alloy sheet excellent in formability and its productionInfo
- Publication number
- JP2000219929A JP2000219929A JP11023999A JP2399999A JP2000219929A JP 2000219929 A JP2000219929 A JP 2000219929A JP 11023999 A JP11023999 A JP 11023999A JP 2399999 A JP2399999 A JP 2399999A JP 2000219929 A JP2000219929 A JP 2000219929A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- formability
- temperature
- hot rolling
- alloy sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、飲料缶などの2ピ
ースアルミニウム缶の缶胴体に好適に使用される成形性
(ネック・フランジ成形)に優れたアルミニウム合金板
及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy plate excellent in formability (neck / flange forming) and preferably used for a two-piece aluminum can body such as a beverage can.
【0002】[0002]
【従来の技術】アルミニウム缶の缶胴体には、Al−M
n−Mg系のJIS3004合金硬質板が従来から使用
される。JIS3004合金は強度を上げるためとして
高圧延率の冷間圧延を行っても良好な成形性を有してい
るため、キャンボディ材に広く使用されている。この種
合金は、典型的な先行技術である特開平 3− 90549号公
報によって挙示されるように、鋳造後、加熱による均質
化処理を施し、偏析の低減、Al−Fe−Mn−Si相
(以下、析出相(α相)という)の成長を促進させてい
る。2. Description of the Related Art Aluminum can bodies have Al-M bodies.
An n-Mg-based JIS3004 alloy hard plate is conventionally used. JIS3004 alloy is widely used as a can body material because it has good formability even when cold rolling is performed at a high rolling ratio in order to increase strength. As disclosed in Japanese Patent Application Laid-Open No. 3-90549, which is a typical prior art, this kind of alloy is subjected to a homogenization treatment by heating after casting to reduce segregation and reduce the Al—Fe—Mn—Si phase ( Hereafter, the growth of the precipitated phase (α phase) is promoted.
【0003】析出相はそのサイズ・分布状態により熱間
圧延終了後の再結晶挙動に影響するため、析出相のコン
トロールは重要である。均熱処理では均熱温度を高くす
るほど、また均熱時間を長くするほど析出物の成長が認
められるため、生産性を考慮して均熱条件が決められて
いる。[0003] Control of the precipitated phase is important because the size and distribution of the precipitated phase affect the recrystallization behavior after hot rolling. In the soaking heat treatment, the higher the soaking temperature and the longer the soaking time, the more the growth of precipitates is observed. Therefore, the soaking condition is determined in consideration of productivity.
【0004】[0004]
【発明が解決しようとする課題】缶胴体の加工に際して
は、成形速度の上昇、潤滑コストの低減などにより近年
頓に処理条件が厳しくなっており、加工性の向上が要求
されている。この場合、絞り加工性、しごき(扱き)加
工性に影響を及ぼす因子として結晶粒のサイズがあり、
この結晶粒サイズが大きいと加工性の低下を招くため、
熱間圧延終了後の再結晶において結晶粒を小さくするこ
とが望ましい。In the processing of a can body, the processing conditions have recently become stricter due to an increase in molding speed and a reduction in lubrication cost, and there has been a demand for improved workability. In this case, the size of the crystal grains is a factor that affects the drawing workability and the ironing (handle) workability,
If the crystal grain size is large, the workability is reduced.
It is desirable to reduce crystal grains in recrystallization after the completion of hot rolling.
【0005】再結晶が発生する核には晶出物、析出物、
歪み(転位)があり、これらの分布を適切にして再結晶
の発生を促すことによって、結晶粒サイズを小さくコン
トロールすることが可能である。析出物を成長させる上
で、従来では均熱温度、均熱時間のコントロールを行っ
てきたが、前述するように生産性の面からの制限がある
点から、更なる再結晶の発生の促進を期することは決し
て容易ではない。[0005] Crystals, precipitates,
There is a strain (dislocation), and it is possible to control the crystal grain size to be small by optimizing the distribution and promoting recrystallization. In growing the precipitates, conventionally, the soaking temperature and soaking time were controlled.However, as described above, there is a limitation in terms of productivity. It's never easy.
【0006】本発明は、このような従来の実情に鑑み
て、より一層の結晶粒サイズの小粒化を図るべく案出さ
れたものであり、本発明者等は、均熱処理後の冷却過程
に着目して冷却温度域及び冷却速度が再結晶の発生条件
に及ぼす影響に関して詳細に調査を行った結果、均熱処
理後における冷却条件を適切にすることによって結晶粒
サイズを小さくし得る点を知見するに至ったものであ
る。しかして、本発明の目的は、上述する技術的背景に
基づいて適正な冷却条件を設定することにより結晶粒サ
イズをより一層小さくすることを可能とし、以て、成形
性に優れたアルミニウム合金板及び該合金板を製造する
方法を提供しようとすることにある。The present invention has been devised in view of such a conventional situation in order to further reduce the crystal grain size. Focusing on the effects of the cooling temperature range and cooling rate on the conditions of recrystallization, we found that the grain size can be reduced by setting the cooling conditions after soaking. It has been reached. Thus, an object of the present invention is to make it possible to further reduce the crystal grain size by setting appropriate cooling conditions on the basis of the above-mentioned technical background, and thus to form an aluminum alloy sheet having excellent formability. And a method of manufacturing the alloy plate.
【0007】[0007]
【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明における請求項1の発明は、化学成分として
重量%で、Mn:0.85〜1.50%、Mg:0.5
0〜1.50%、Fe:0.30〜0.70%、Si:
0.10〜0.50%、Cu:0.15〜0.50%を
含有し、残部がAlおよび不可避的不純物からなる板体
に形成されることを特徴とする成形性に優れたアルミニ
ウム合金板である。The present invention has the following configuration to achieve the above object. That is, in the invention of claim 1 of the present invention, Mn: 0.85 to 1.50%, Mg: 0.5% by weight as a chemical component.
0 to 1.50%, Fe: 0.30 to 0.70%, Si:
An aluminum alloy containing 0.10 to 0.50% and Cu: 0.15 to 0.50%, with the balance being formed into a plate composed of Al and inevitable impurities. It is a board.
【0008】また、本発明に係る請求項2の発明は、上
記請求項1記載の成形性に優れたアルミニウム合金板に
関して、均質化処理、熱間圧延及び冷間圧延により板体
に形成され、熱間圧延終了後の表面結晶粒サイズが17
〜20μmである構成としたことを特徴とする。According to a second aspect of the present invention, there is provided an aluminum alloy sheet having excellent formability according to the first aspect, wherein the aluminum alloy sheet is formed into a plate by homogenization, hot rolling and cold rolling. Surface grain size after hot rolling is 17
2020 μm.
【0009】また、本発明に係る請求項3の発明は、化
学成分として重量%で、Mn:0.85〜1.50%、
Mg:0.50〜1.50%、Fe:0.30〜0.7
0%、Si:0.10〜0.50%、Cu:0.15〜
0.50%を含有し、残部がAlおよび不可避的不純物
からなるアルミニウム合金鋳塊を、590〜630℃で
通常の方法にて均質化処理した後、冷却速度50℃/h
以下で550℃以下まで冷却し、熱間圧延を開始温度4
00〜550℃、終了温度300〜350℃で行った
後、冷間圧延を施すことを特徴とする成形性に優れたア
ルミニウム合金板の製造方法である。Further, the invention of claim 3 according to the present invention is characterized in that Mn: 0.85 to 1.50% by weight as a chemical component;
Mg: 0.50 to 1.50%, Fe: 0.30 to 0.7
0%, Si: 0.10 to 0.50%, Cu: 0.15
An aluminum alloy ingot containing 0.50%, the balance being Al and unavoidable impurities, is homogenized at 590-630 ° C by a usual method, and then cooled at a cooling rate of 50 ° C / h.
Then, the temperature is lowered to 550 ° C. or less, and hot rolling is started at a temperature of 4 ° C.
This is a method for producing an aluminum alloy sheet excellent in formability, characterized in that cold rolling is performed after performing at a temperature of 00 to 550 ° C and an end temperature of 300 to 350 ° C.
【0010】[0010]
【発明の実施の形態】以下、本発明の好ましい実施形態
について具体的に説明する。先ず、本発明に係るアルミ
ニウム合金板における各成分の限定理由について説明す
る。この場合の各合金成分は、アルミニウムの強度を高
めると同時に耳率(軸対称絞り時に材料が持つ面内異方
性により発生する耳の方向性の度合い)や成形性のコン
トロールを目的として添加するものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below. First, the reasons for limiting each component in the aluminum alloy sheet according to the present invention will be described. In this case, each alloy component is added for the purpose of increasing the strength of the aluminum and at the same time controlling the ear ratio (the degree of directionality of the ear generated by the in-plane anisotropy of the material at the time of axisymmetric drawing) and the formability. Things.
【0011】◆Mn:Mnは強度向上に寄与するととも
に、化合物であるAl−Fe−Mn−Si相(α相)の
適正分布によってしごき加工性の向上に有効である。M
nが0.85%未満では何れの効果も少なく、また、
1.50%超過ではMnAl6 の初晶巨大金属化合物が
晶出し、成形性の低下につながる。従って、Mnは0.
85%〜1.50%とする。◆ Mn: Mn contributes to improvement in strength and is effective in improving ironing workability by proper distribution of the compound Al—Fe—Mn—Si phase (α phase). M
When n is less than 0.85%, both effects are small, and
If it exceeds 1.50%, a primary crystal giant metal compound of MnAl 6 is crystallized, leading to a reduction in formability. Therefore, Mn is 0.1.
85% to 1.50%.
【0012】◆Mg:Mgは単独で固溶強化による強度
向上に有効であるとともに、Cuとの組合せ(CAL使
用時:製品コイルを巻きほどしながら急速加熱・冷却に
より短時間焼鈍する)によりAl−Cu−Mgが析出
し、製缶時のベーキング(焼付け印刷)による軟化防止
に効果がある。Mgが0.50%未満では何れの効果も
なく、また、1.50%を超えると加工硬化が大きくな
り成形性の低下につながる。従って、Mgは0.50%
〜1.50%とする。(1) Mg: Mg alone is effective for improving strength by solid solution strengthening, and is combined with Cu (when using CAL: annealing for a short time by rapid heating and cooling while unwinding a product coil) to form Al. -Cu-Mg is precipitated, and is effective in preventing softening due to baking (baking printing) during can making. If Mg is less than 0.50%, there is no effect, and if Mg exceeds 1.50%, work hardening is increased, leading to a reduction in moldability. Therefore, Mg is 0.50%
To 1.50%.
【0013】◆Fe:Feは結晶粒の微細化及び化合物
(α相)の適正分布による成形性の向上に効果がある。
Feが0.30%未満ではその効果がなく、また、0.
70%を超える場合は化合物(α相)の粗大化による成
形性の低下につながる。従って、Feは0.30%〜
0.70%とする。◆ Fe: Fe is effective in reducing the crystal grain size and improving the formability by proper distribution of the compound (α phase).
If Fe is less than 0.30%, the effect is not obtained.
If it exceeds 70%, the moldability is reduced due to the coarsening of the compound (α phase). Therefore, Fe is 0.30% or more.
0.70%.
【0014】◆Si:Siは化合物(α相)の形成によ
る成形性の向上に効果がある。Siが0.10%未満で
はその効果がなく、また、0.50%を超える場合はM
g2 Siによる強度上昇が大きくなり、成形性の低下に
つながる。従って、Siは0.10%〜0.50%とす
る。◆ Si: Si is effective in improving the formability by forming a compound (α phase). If the Si content is less than 0.10%, the effect is not obtained, and if the Si content exceeds 0.50%, M
The increase in strength due to g 2 Si increases, leading to a decrease in formability. Therefore, Si is set to 0.10% to 0.50%.
【0015】◆Cu:Cuは強度上昇及びMgとの組合
せ(CAL使用時)により製缶時のベーキングによる軟
化防止に効果がある。Cuが0.15%未満では何れも
効果がなく、0.50%超過では強度上昇が大きく、成
形性の低下につながる。従って、Cuは0.15%〜
0.50%とする。(4) Cu: Cu has an effect of increasing the strength and preventing softening due to baking at the time of can making when combined with Mg (when CAL is used). If Cu is less than 0.15%, there is no effect, and if Cu exceeds 0.50%, the strength increases greatly, leading to a decrease in formability. Therefore, Cu is 0.15% or more.
0.50%.
【0016】なお、その他の不可避的不純物として、T
iは0.10%以下、Bは0.05%以下等、不純物レ
ベルであれば、本発明の効果を妨げるものではない。As other unavoidable impurities, T
If i is an impurity level such as 0.10% or less and B is 0.05% or less, the effects of the present invention are not hindered.
【0017】次に本発明における製造工程について説明
する。 ◆鋳造:前述の合金組成を有するアルミニウム合金鋳塊
を常法に従ってDC鋳造法(半連続鋳造法)により製作
する。Next, the manufacturing process in the present invention will be described. ◆ Casting: An aluminum alloy ingot having the above-mentioned alloy composition is manufactured by a DC casting method (semi-continuous casting method) according to a conventional method.
【0018】◆均熱:鋳塊に対して、先ず均質化処理を
行う。均質化処理は、ミクロ偏析の均質化、過飽和元素
の析出に加えてAl−Fe−MnからAl−Fe−Mn
−Si相(α相)への相変態を促し、しごき加工性を向
上させることに有効である。この場合、590℃未満で
は析出物の成長が十分ではないため再結晶形成の核にな
り難く、630℃超過では炉内でバーニングを起こす恐
れがある。従って、均質化処理は590〜630℃の温
度範囲内で行う。また、2時間未満の均熱保持では十分
な均質化が得られないことから、均熱保持時間は2時間
以上とすることが望ましい。(1) Soaking: First, the ingot is subjected to a homogenizing treatment. The homogenization treatment includes homogenization of micro-segregation, precipitation of a supersaturated element, and Al-Fe-Mn to Al-Fe-Mn.
-It is effective in promoting the phase transformation to the Si phase (α phase) and improving ironing workability. In this case, if the temperature is lower than 590 ° C., the growth of the precipitate is not sufficient, so that it does not easily become a nucleus for recrystallization. If the temperature exceeds 630 ° C., burning may occur in the furnace. Therefore, the homogenization treatment is performed within a temperature range of 590 to 630 ° C. In addition, since a sufficient homogenization cannot be obtained by holding the heat soak for less than 2 hours, the soaking time is desirably 2 hours or more.
【0019】◆冷却:均熱処理後に行う冷却では、均熱
によって固溶した元素が温度の低下と共に析出し、均熱
中に生成した析出物がさらに成長する。この場合の冷却
速度が50℃/hより速いと、析出に要する時間が得ら
れなくなり、析出物の成長が十分ではない。また、冷却
到達温度が550℃より高いと、均熱終了温度との差が
小さくなり、固溶限の変化が少なくなるため、析出の駆
動力が得られず、析出物の成長に対して効果が小さい。
よって、冷却速度は50℃/h以下で、かつ、550℃
以下まで冷却する。冷却到達温度については、望ましく
は480℃まで冷却することにより析出物の成長が認め
られる。(4) Cooling: In the cooling performed after the soaking, the elements dissolved by the soaking are precipitated as the temperature decreases, and the precipitates generated during the soaking further grow. If the cooling rate in this case is higher than 50 ° C./h, the time required for precipitation cannot be obtained, and the growth of precipitates is not sufficient. On the other hand, if the cooling temperature is higher than 550 ° C., the difference from the soaking end temperature is small, and the change in the solid solubility limit is small, so that a driving force for precipitation cannot be obtained and the effect on the growth of precipitates is not obtained. Is small.
Therefore, the cooling rate is 50 ° C./h or less and 550 ° C.
Cool to below. Regarding the temperature at which cooling is achieved, the growth of precipitates is preferably observed by cooling to 480 ° C.
【0020】◆熱間圧延:上述する冷却処理が終わると
熱間圧延を行う。熱延開始温度を低温にすることは、熱
延時に再結晶の駆動力となる歪みを積極的に導入し、結
晶粒を微細化させる効果がある。また、板表面の焼付き
を低減させることができる。550℃超過ではその効果
は少なく、400℃未満では効果はあるものの粗圧延の
パス数が増え、生産性に劣る。従って、熱延開始温度は
400〜550℃とする。(4) Hot rolling: After the above-mentioned cooling treatment is completed, hot rolling is performed. Reducing the hot rolling start temperature to a low temperature has the effect of positively introducing strain that is a driving force for recrystallization during hot rolling and making crystal grains fine. In addition, seizure on the plate surface can be reduced. If the temperature exceeds 550 ° C., the effect is small. If the temperature is lower than 400 ° C., the effect is increased, but the number of rough rolling passes increases, and the productivity is poor. Therefore, the hot rolling start temperature is set to 400 to 550 ° C.
【0021】熱間圧延の終了温度は300〜350℃に
する必要がある。300℃未満では熱延板全体を再結晶
させることができず、350℃超過では再結晶するもの
の、結晶粒の粗大化を招く。The end temperature of the hot rolling needs to be 300 to 350 ° C. If the temperature is lower than 300 ° C., the entire hot rolled sheet cannot be recrystallized. If the temperature exceeds 350 ° C., recrystallization occurs, but the crystal grains become coarse.
【0022】◆冷間圧延:熱間圧延の終了後、通常の方
法によって冷間圧延を行い、所要の厚さのアルミニウム
合金板を得る。(5) Cold rolling: After the completion of hot rolling, cold rolling is performed by a usual method to obtain an aluminum alloy plate having a required thickness.
【0023】[0023]
【実施例】以下、本発明の実施例について下記表1、表
2を参照しながら説明する。Examples of the present invention will be described below with reference to Tables 1 and 2 below.
【0024】表1に示すような化学成分を持つアルミニ
ウム合金を鋳造し、表2に示す各製造条件での製造方法
により、均質化処理、冷却、熱間圧延を行った。表1の
A,Bは本発明に係る合金であり、CはMgが本発明の
範囲よりも低い合金である。表2には、各製造方法によ
り、均質化処理、冷却、熱間圧延を行ったアルミニウム
板の析出物サイズ及び熱間圧延終了後の表面結晶粒サイ
ズが示される。An aluminum alloy having a chemical composition as shown in Table 1 was cast and homogenized, cooled and hot rolled by the production method under each production condition shown in Table 2. A and B in Table 1 are alloys according to the present invention, and C is an alloy in which Mg is lower than the range of the present invention. Table 2 shows the precipitate size of the aluminum plate subjected to the homogenization treatment, cooling, and hot rolling and the surface crystal grain size after the completion of the hot rolling by each manufacturing method.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】No.1、2、3は本発明例であり、ホッ
トコイルの表面結晶粒サイズが20μm以下と細かい再
結晶粒が得られており、ボディ材として良好な成形性を
示した。No.4は、合金Cを用いた比較例であり、M
gが少ないために熱間圧延時に歪みの導入が少ない。そ
のため再結晶の発生が疎になり、結晶粒が粗大化してい
る。No.5は、均熱温度が520℃と本発明の範囲よ
り低く、均熱中の析出物の成長が十分でなく、また固溶
量も少ないために冷却中に析出物が殆ど成長していな
い。No. Examples 1, 2, and 3 are examples of the present invention, in which fine recrystallized grains having a surface crystal grain size of the hot coil of 20 μm or less were obtained, and showed good formability as a body material. No. 4 is a comparative example using alloy C, and M
Since g is small, the introduction of distortion during hot rolling is small. For this reason, the occurrence of recrystallization is reduced, and the crystal grains are coarsened. No. Sample No. 5 has a soaking temperature of 520 ° C., which is lower than the range of the present invention, and the growth of precipitates during soaking is not sufficient, and the amount of solid solution is small, so that the precipitates hardly grow during cooling.
【0028】No.6では、均熱温度が640℃と本発
明の範囲より高く、均熱中にバーニングを起こしてしま
い、使用不可となった。No.7では、均熱終了後の冷
却速度が100℃/hと本発明の範囲の外であり、析出
物の成長に必要な時間及び温度域が不足しており、結晶
粒が細かくならなかった。No. In No. 6, the soaking temperature was 640 [deg.] C., which was higher than the range of the present invention, and burning occurred during the soaking, making it unusable. No. In No. 7, the cooling rate after the end of the soaking was 100 ° C./h, which was outside the range of the present invention, and the time and temperature range necessary for growing the precipitate were insufficient, and the crystal grains did not become fine.
【0029】No.8は、同じく冷却時の到達温度が本
発明の範囲より高く、均熱温度との差が小さく析出の駆
動力が十分ではない。そのため析出物が細かくなり、結
晶粒の微細化が得られなかった。No.9では、熱延開
始温度が高いため、熱間圧延時の歪みの導入が不足し、
再結晶の発生が十分出はなかった。No. In No. 8, the ultimate temperature during cooling is higher than the range of the present invention, the difference from the soaking temperature is small, and the driving force for precipitation is not sufficient. As a result, the precipitate became fine, and the crystal grains could not be refined. No. In No. 9, since the hot rolling start temperature is high, the introduction of distortion during hot rolling is insufficient,
Recrystallization was not sufficiently generated.
【0030】No.10では、熱延開始温度が低いた
め、熱延終了温度も本発明の範囲より低くなり、再結晶
温度に達せず、圧延集合組織が残っていた。No.11
では、熱延終了温度が高いため、再結晶の粗大化を招い
てしまい、細かい結晶粒は得られなかった。No. In No. 10, since the hot rolling start temperature was low, the hot rolling end temperature was also lower than the range of the present invention, did not reach the recrystallization temperature, and the rolling texture remained. No. 11
In this case, since the hot rolling end temperature was high, recrystallization was coarsened, and fine crystal grains could not be obtained.
【0031】[0031]
【発明の効果】以上説明したように本発明によれば、均
熱条件、熱延条件を適正にし、析出物及び歪みをコント
ロールすることにより、再結晶の発生を促進させること
ができ、その結果、結晶粒が小さくて高強度かつ成形性
の良好なアルミニウム合金板を提供することが可能とな
り、また、製造過程においては生産性の向上に寄与する
ところが大である。As described above, according to the present invention, the occurrence of recrystallization can be promoted by optimizing the soaking conditions and hot rolling conditions and controlling the precipitates and strains. In addition, it is possible to provide an aluminum alloy plate having small crystal grains, high strength and good formability, and greatly contributes to improvement of productivity in a manufacturing process.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 682 C22F 1/00 682 683 683 684 684A 685 685Z 691 691B 692 692A 694 694B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 682 C22F 1/00 682 683 683 684 684A
Claims (3)
5〜1.50%、Mg:0.50〜1.50%、Fe:
0.30〜0.70%、Si:0.10〜0.50%、
Cu:0.15〜0.50%を含有し、残部がAlおよ
び不可避的不純物からなる板体に形成されることを特徴
とする成形性に優れたアルミニウム合金板。1. Mn: 0.8% by weight as a chemical component
5 to 1.50%, Mg: 0.50 to 1.50%, Fe:
0.30 to 0.70%, Si: 0.10 to 0.50%,
Cu: An aluminum alloy plate excellent in formability, containing 0.15 to 0.50%, with the balance being formed into a plate composed of Al and unavoidable impurities.
り板体に形成され、熱間圧延終了後の表面結晶粒サイズ
が17〜20μmである請求項1記載の成形性に優れた
アルミニウム合金板。2. The aluminum having excellent formability according to claim 1, wherein the aluminum is formed into a plate by homogenization treatment, hot rolling and cold rolling, and has a surface crystal grain size of 17 to 20 μm after completion of hot rolling. Alloy plate.
5〜1.50%、Mg:0.50〜1.50%、Fe:
0.30〜0.70%、Si:0.10〜0.50%、
Cu:0.15〜0.50%を含有し、残部がAlおよ
び不可避的不純物からなるアルミニウム合金鋳塊を、5
90〜630℃で通常の方法にて均質化処理した後、冷
却速度50℃/h以下で550℃以下まで冷却し、熱間
圧延を開始温度400〜550℃、終了温度300〜3
50℃で行った後、冷間圧延を施すことを特徴とする成
形性に優れたアルミニウム合金板の製造方法。3. Mn: 0.8% by weight as a chemical component.
5 to 1.50%, Mg: 0.50 to 1.50%, Fe:
0.30 to 0.70%, Si: 0.10 to 0.50%,
Cu: An aluminum alloy ingot containing 0.15 to 0.50%, with the balance being Al and unavoidable impurities,
After homogenizing at 90 to 630 ° C. by a usual method, it is cooled to 550 ° C. or less at a cooling rate of 50 ° C./h or less, and hot rolling is started at a temperature of 400 to 550 ° C. and finished at a temperature of 300 to 3 °.
A method for producing an aluminum alloy sheet having excellent formability, comprising performing cold rolling at 50 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02399999A JP3897926B2 (en) | 1999-02-01 | 1999-02-01 | Method for producing aluminum alloy sheet with excellent formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02399999A JP3897926B2 (en) | 1999-02-01 | 1999-02-01 | Method for producing aluminum alloy sheet with excellent formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000219929A true JP2000219929A (en) | 2000-08-08 |
JP3897926B2 JP3897926B2 (en) | 2007-03-28 |
Family
ID=12126285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02399999A Expired - Lifetime JP3897926B2 (en) | 1999-02-01 | 1999-02-01 | Method for producing aluminum alloy sheet with excellent formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3897926B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254874A (en) * | 2006-03-24 | 2007-10-04 | Kobe Steel Ltd | Aluminum alloy sheet for packaging container and method of manufacturing the same |
EP1944384A1 (en) * | 2005-11-02 | 2008-07-16 | Kabushiki Kaisha Kobe Seiko Sho | Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet |
DE102012004373A1 (en) | 2011-03-10 | 2012-09-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy sheet and process for its production |
DE102012004375A1 (en) | 2011-03-10 | 2012-09-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy sheet and process for its production |
CN111589891A (en) * | 2020-05-22 | 2020-08-28 | 上海华峰铝业股份有限公司 | Core material, composite pipe plate material containing core material and manufacturing method of composite pipe plate material |
CN112204160A (en) * | 2018-05-29 | 2021-01-08 | 株式会社Uacj | Aluminum alloy sheet having excellent formability, strength and appearance quality, and method for producing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2622649C (en) | 2007-03-09 | 2018-04-24 | Riken | Nucleic acid amplification method using primer exhibiting exciton effect |
-
1999
- 1999-02-01 JP JP02399999A patent/JP3897926B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1944384A1 (en) * | 2005-11-02 | 2008-07-16 | Kabushiki Kaisha Kobe Seiko Sho | Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet |
EP1944384A4 (en) * | 2005-11-02 | 2009-10-28 | Kobe Steel Ltd | Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet |
JP2007254874A (en) * | 2006-03-24 | 2007-10-04 | Kobe Steel Ltd | Aluminum alloy sheet for packaging container and method of manufacturing the same |
DE102012004373A1 (en) | 2011-03-10 | 2012-09-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy sheet and process for its production |
DE102012004375A1 (en) | 2011-03-10 | 2012-09-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy sheet and process for its production |
US9546411B2 (en) | 2011-03-10 | 2017-01-17 | Kobe Steel, Ltd. | Aluminum-alloy sheet and method for producing the same |
US9574258B2 (en) | 2011-03-10 | 2017-02-21 | Kobe Steel, Ltd. | Aluminum-alloy sheet and method for producing the same |
DE102012004375B4 (en) | 2011-03-10 | 2018-07-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for producing an aluminum alloy sheet |
CN112204160A (en) * | 2018-05-29 | 2021-01-08 | 株式会社Uacj | Aluminum alloy sheet having excellent formability, strength and appearance quality, and method for producing same |
CN112204160B (en) * | 2018-05-29 | 2022-04-12 | 株式会社Uacj | Aluminum alloy sheet having excellent formability, strength and appearance quality, and method for producing same |
CN111589891A (en) * | 2020-05-22 | 2020-08-28 | 上海华峰铝业股份有限公司 | Core material, composite pipe plate material containing core material and manufacturing method of composite pipe plate material |
Also Published As
Publication number | Publication date |
---|---|
JP3897926B2 (en) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110951946B (en) | Heat treatment process of low-density steel and preparation method thereof | |
JP3897926B2 (en) | Method for producing aluminum alloy sheet with excellent formability | |
JPH06136478A (en) | Baking hardening type al alloy sheet excellent in formability and its production | |
TWI674324B (en) | Method for manufacturing aluminum-manganese alloy | |
JP2000026946A (en) | Manufacture of aluminum-base alloy sheet for deep drawing | |
JP2584615B2 (en) | Method of manufacturing hard aluminum alloy rolled sheet for forming | |
JP2004263253A (en) | Aluminum alloy hard sheet for can barrel, and production method therefor | |
JP3871462B2 (en) | Method for producing aluminum alloy plate for can body | |
JPH10330897A (en) | Production of aluminum base alloy sheet for deep drawing | |
JP3201783B2 (en) | Method of manufacturing aluminum alloy hard plate excellent in strength and formability | |
JP2005076041A (en) | Method for manufacturing hard aluminum alloy sheet for can body | |
JPH0860283A (en) | Aluminum alloy sheet for di can body and its production | |
JPS63125645A (en) | Production of aluminum alloy material having fine crystal grain | |
JP2956038B2 (en) | Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same | |
JPH062090A (en) | Manufacture of high strength aluminum alloy sheet for forming small in anisotropy | |
JP4077997B2 (en) | Manufacturing method of aluminum alloy hard plate for can lid | |
JP4121932B2 (en) | Aluminum alloy plate for cap and method for producing the same | |
JPH07150282A (en) | Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production | |
TWI690601B (en) | Method for manufacturing aluminum fin stock | |
JP2000080453A (en) | Production of aluminum alloy foil excellent in strength and formability | |
JPH08134610A (en) | Production of aluminum alloy sheet for forming | |
JPH04318144A (en) | Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture | |
JPH10265885A (en) | Aluminum alloy sheet minimal in dispersion of flange width, and its production | |
JP3600021B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing | |
JPH11256292A (en) | Manufacture of aluminum alloy sheet for can body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110105 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130105 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130105 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |