JP2000218294A - Anaerobic treatment of organic sludge - Google Patents

Anaerobic treatment of organic sludge

Info

Publication number
JP2000218294A
JP2000218294A JP11021080A JP2108099A JP2000218294A JP 2000218294 A JP2000218294 A JP 2000218294A JP 11021080 A JP11021080 A JP 11021080A JP 2108099 A JP2108099 A JP 2108099A JP 2000218294 A JP2000218294 A JP 2000218294A
Authority
JP
Japan
Prior art keywords
membrane
ozone
anaerobic treatment
separation membrane
organic sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021080A
Other languages
Japanese (ja)
Other versions
JP3483243B2 (en
Inventor
Michio Ozawa
理夫 小澤
Isao Somiya
功 宗宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP02108099A priority Critical patent/JP3483243B2/en
Publication of JP2000218294A publication Critical patent/JP2000218294A/en
Application granted granted Critical
Publication of JP3483243B2 publication Critical patent/JP3483243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic treatment method of org. sludge capable of recovering soluble org. matters (lower fatty acids). SOLUTION: In the anaerobic treatment method using membrane separation in which a separation membrane 3 is installed in a biological reaction tank 2 for subjecting the org. sludge to the anaerobic treatment and released liq. is separated by the separation membrane 3, the recovery of membrane flux and decreasing of the molecular weights of hardly decomposable org. matters are attained by treating the surface of membrane with ozone. Ozone treatment is executed preferably after stopping the circulation of fermentation liq. The recovered soluble org. matters can be effectively used as a hydrogen donor for denitrifying bacteria.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥、し尿汚
泥、農村集落排水汚泥などの有機性汚泥の嫌気処理方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic treatment method for organic sludge such as sewage sludge, human waste sludge, and sludge from village settlements.

【0002】[0002]

【従来の技術】上記のような有機性汚泥を生物反応槽で
嫌気性処理し、メタン発酵させて有機分の少ない処理水
とする嫌気処理方法は周知である。このとき処理水とと
もに嫌気性菌体が流出すると生物反応槽の菌体濃度が低
下するため、分離膜を利用して脱離液を分離することに
より、菌体濃度の低下を防止する膜分離付嫌気性消化法
が提案されている。しかしこの方法には分離膜の膜面に
有機物が蓄積して膜流束が低下し易いという大きな問題
があり、実用化の大きな妨げとなっていた。また、従来
は有機性汚泥をメタン発酵させることによって水とメタ
ンにまで分解しており、メタン発酵の前段階の酸発酵に
おいて生ずる溶解性有機物(低級脂肪酸)を回収して有
効利用するという技術思想はなかった。
2. Description of the Related Art An anaerobic treatment method of subjecting such organic sludge to anaerobic treatment in a biological reaction tank and subjecting the sludge to methane fermentation to obtain treated water having a low organic content is well known. At this time, if anaerobic bacterial cells flow out together with the treated water, the bacterial cell concentration in the biological reaction tank will decrease. Therefore, a membrane separator is used to separate the desorbed liquid using a separation membrane to prevent the bacterial cell concentration from decreasing. Anaerobic digestion has been proposed. However, this method has a serious problem that organic substances are easily accumulated on the membrane surface of the separation membrane and the membrane flux is easily reduced, which has hindered the practical application. Conventionally, organic sludge is decomposed into water and methane by methane fermentation, and the technical concept of recovering and effectively utilizing soluble organic matter (lower fatty acids) generated in acid fermentation in the previous stage of methane fermentation. There was no.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、分離膜の膜流束の低下を防止しつ
つ、溶解性有機物(低級脂肪酸)を含む脱離液を回収す
ることができる有機性汚泥の嫌気処理方法を提供するた
めになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and recovers a desorbed liquid containing a soluble organic substance (lower fatty acid) while preventing a decrease in membrane flux of a separation membrane. It has been made to provide a method for anaerobic treatment of organic sludge that can be used.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めになされた本発明は、有機性汚泥を嫌気性処理する生
物反応槽に分離膜を付設し、この分離膜により脱離液を
分離する有機性汚泥の嫌気処理方法において、分離膜の
膜面をオゾン処理することを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a biological reaction tank for anaerobically treating organic sludge, in which a separation membrane is attached, and the separation liquid is separated by the separation membrane. In the method for anaerobic treatment of organic sludge, the membrane surface of the separation membrane is treated with ozone.

【0005】このように本発明は嫌気性処理と相容れ
ず、また有機酸生成菌の活性を阻害すると考えられてき
たオゾン処理を膜分離付嫌気性消化法と組み合わせるこ
とにより、分離膜の膜面に蓄積した有機物を分解し、膜
流束の低下を防止することができる。またオゾン処理を
行うことにより有機性汚泥の嫌気性条件下における酸発
酵を促進し、低級脂肪酸を含む脱離液を分離回収するこ
とができる。この低級脂肪酸は下水等の脱窒処理工程に
おいて脱窒菌の水素供与体として用いることができ、従
来のように高価なアルコールを水素供与体として用いる
必要がなくなる。
[0005] As described above, the present invention combines ozone treatment, which is considered to be incompatible with anaerobic treatment, and which is considered to inhibit the activity of organic acid-producing bacteria, with anaerobic digestion with membrane separation, thereby providing a membrane for a separation membrane. The organic matter accumulated on the surface can be decomposed to prevent a decrease in film flux. In addition, by performing the ozone treatment, acid fermentation of the organic sludge under anaerobic conditions can be promoted, and the desorbed liquid containing lower fatty acids can be separated and collected. This lower fatty acid can be used as a hydrogen donor for denitrifying bacteria in a denitrification treatment step of sewage or the like, and it is not necessary to use an expensive alcohol as a hydrogen donor as in the related art.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施形態を示す。
図1は本発明に用いられる装置の概略図であり、1は汚
泥貯蔵槽、2は生物反応槽、3は分離膜、4はオゾン発
生器、5は脱離液貯蔵槽である。汚泥貯蔵槽1に貯蔵し
た凝集生汚泥を生物反応槽2に送り、循環ポンプ6で分
離膜3との間を循環させながら発酵させた。生物反応槽
2内の温度は35°前後に保ち、ORP(酸化還元電
位)が−350mV以下にならないように空気曝気で制
御しながら嫌気性に保持した。また生物反応槽2内には
攪拌機7を設置した。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic view of an apparatus used in the present invention, wherein 1 is a sludge storage tank, 2 is a biological reaction tank, 3 is a separation membrane, 4 is an ozone generator, and 5 is a desorbed liquid storage tank. The coagulated raw sludge stored in the sludge storage tank 1 was sent to the biological reaction tank 2 and fermented while being circulated between the separation membrane 3 and the circulation pump 6. The temperature inside the biological reaction tank 2 was maintained at about 35 °, and the anaerobic state was maintained while controlling by air aeration so that the ORP (oxidation-reduction potential) did not become −350 mV or less. A stirrer 7 was installed in the biological reaction tank 2.

【0007】分離膜3としては、オゾン処理に耐えるセ
ラミック膜が好ましく、特に図2に示したようなモノリ
ス型のセラミック膜が好ましい。この実施形態ではアル
ミナ製で孔径が1μmの精密ろ過膜を使用した。生物反
応槽2から送られる発酵液は図示のように一方の端面か
ら供給され、ろ過された脱離液は外周面から図1の吸引
ポンプ8により吸引され、脱離液貯蔵槽5に送られる。
この実施形態では分離膜3を生物反応槽2の循環ライン
内に設けたが、分離膜3を生物反応槽2の内部に設置し
てもよい。
As the separation membrane 3, a ceramic membrane that can withstand ozone treatment is preferable, and in particular, a monolithic ceramic membrane as shown in FIG. 2 is preferable. In this embodiment, a microfiltration membrane made of alumina and having a pore diameter of 1 μm was used. The fermentation liquor sent from the biological reaction tank 2 is supplied from one end face as shown, and the filtered effluent is sucked from the outer peripheral surface by the suction pump 8 in FIG. .
Although the separation membrane 3 is provided in the circulation line of the biological reaction tank 2 in this embodiment, the separation membrane 3 may be provided inside the biological reaction tank 2.

【0008】この実施形態では、オゾン発生器4で発生
させたオゾン含有空気を分離膜3の汚泥側膜面に供給す
ることにより、膜面のオゾン処理を行う。図2に示すよ
うにオゾン含有空気の供給をクロスフローで、あるいは
パラレルフローで行うことにより、膜面から付着物を掻
き取ることができる。オゾン処理は連続的に行ってもよ
いが、分離膜3への発酵液の循環を所定時間ごとに停止
して間欠的にオゾン処理を行うことが好ましい。また分
離膜3を透過水側からオゾン水で間欠的に逆洗する方法
を取ることもできる。
In this embodiment, ozone treatment is performed on the membrane surface by supplying the ozone-containing air generated by the ozone generator 4 to the sludge-side membrane surface of the separation membrane 3. As shown in FIG. 2, by supplying the ozone-containing air in a cross flow or in a parallel flow, it is possible to scrape off the deposits from the film surface. The ozone treatment may be performed continuously, but it is preferable to stop the circulation of the fermentation solution to the separation membrane 3 at predetermined time intervals and perform the ozone treatment intermittently. Alternatively, a method of intermittently backwashing the separation membrane 3 with ozone water from the permeate side may be employed.

【0009】このようなオゾン処理により、分離膜3の
膜面に蓄積したタンパク質、多糖類、アミノ酸、多水酸
化芳香属、脂肪等の付着物を物理的に剥離させるととも
に、これらの付着物を化学的に酸化分解させ、後記する
実施例に示すように膜流束の低下を回復させることがで
きる。この効果はろ過圧力のない状態でオゾンを供給す
る間欠オゾン処理の場合により顕著である。
By such an ozone treatment, proteins, polysaccharides, amino acids, polyhydroxy aromatics, fats, and other deposits accumulated on the membrane surface of the separation membrane 3 are physically peeled off, and these deposits are removed. It can be chemically oxidatively decomposed to recover the decrease in membrane flux as shown in the examples described later. This effect is more remarkable in the case of intermittent ozone treatment in which ozone is supplied without filtration pressure.

【0010】また、このようなオゾン処理により酸発酵
が促進され、従来法では難分解であった有機物をも溶解
性有機物(低級脂肪酸)へと低分子化させることができ
る。しかも殺菌力の強いオゾンを用いたにもかかわら
ず、意外にも有機酸生成菌の活性が損なわれず、低級脂
肪酸を含む脱離液を分離回収することができる。この低
級脂肪酸は下水等の脱窒処理工程において脱窒菌の水素
供与体として有効に利用することができる。以下に実施
例のデータにより、本発明の作用効果を具体的に示す。
[0010] Further, acid fermentation is promoted by such ozone treatment, and organic substances which have been hardly decomposed in the conventional method can be reduced to soluble organic substances (lower fatty acids). Moreover, despite the use of ozone having a strong bactericidal activity, the activity of the organic acid-producing bacteria is not unexpectedly impaired, and the desorbed liquid containing lower fatty acids can be separated and recovered. This lower fatty acid can be effectively used as a hydrogen donor for denitrifying bacteria in a denitrification treatment step of sewage or the like. Hereinafter, the operation and effect of the present invention will be specifically shown by the data of the examples.

【0011】[0011]

【実施例】図1に示した装置を用い、膜面に対するオゾ
ンの注入量を変化させながら、分離膜3の膜面の流束回
復の程度を測定した。その結果を図3に示す。黒丸は分
離膜3への発酵液の循環を間欠的に停止してオゾン処理
を行った場合を示し、白丸は発酵液を循環させながらオ
ゾン処理を行った場合を示す。縦軸は流束であり、横軸
は膜内部の発酵液が占めている体積当たりのオゾン注入
量である。図3のグラフから明らかなように、オゾンの
注入量が0の場合の膜面の流束は0.7m/d以下であ
るが、15〜50g/Lのオゾン注入により流束は1〜
1.3m/dにまで回復した。また間欠的なオゾン処理
の方が流束回復効果に優れることが分かる。
EXAMPLE Using the apparatus shown in FIG. 1, the degree of flux recovery on the membrane surface of the separation membrane 3 was measured while changing the amount of ozone injected into the membrane surface. The result is shown in FIG. The black circles show the case where the circulation of the fermentation liquid to the separation membrane 3 was intermittently stopped to perform the ozone treatment, and the white circles show the case where the ozone treatment was performed while circulating the fermentation liquid. The vertical axis is the flux, and the horizontal axis is the ozone injection amount per volume occupied by the fermentation liquor inside the membrane. As is clear from the graph of FIG. 3, the flux on the film surface is 0.7 m / d or less when the injection amount of ozone is 0, but the flux is 1 to 1 by injection of 15 to 50 g / L of ozone.
It recovered to 1.3 m / d. Also, it can be seen that the intermittent ozone treatment is more excellent in the flux recovery effect.

【0012】図4は、発酵液のろ過を行った後における
オゾン処理による膜面の流束回復率を示す。縦軸は純水
の流束を100%として表示した。発酵液を循環させた
場合には43g/L以上のオゾン注入によりろ過開始時
の流束まで回復させることができ、発酵液の循環を停止
した場合には27g/L以上のオゾン注入によりろ過開
始時の流束まで回復させることができた。このような差
が生じたのは、循環とオゾン注入を同時に行った場合に
は、オゾンと膜との接触効率が落ちるためと思われる。
FIG. 4 shows the flux recovery rate of the membrane surface after ozone treatment after filtering the fermentation liquor. The vertical axis indicates the pure water flux as 100%. When the fermentation liquor is circulated, the flux at the start of filtration can be recovered by injecting 43 g / L or more of ozone, and when the circulation of the fermentation liquor is stopped, filtration can be started by injecting 27 g / L or more of ozone. The flux of time could be restored. It is considered that such a difference is caused when the efficiency of contact between ozone and the film is reduced when circulation and ozone injection are performed simultaneously.

【0013】図5は縦軸に膜透過抵抗(膜面に捕捉され
た付着層による透過抵抗+液中成分と膜との相互作用に
よって形成される透過抵抗)を取り、オゾン注入量との
関係を示したグラフである。このグラフから明らかなよ
うに、発酵液の循環を停止してオゾン処理を行うことに
より、少量のオゾンで膜透過抵抗を減少させることがで
きる。
FIG. 5 shows the membrane permeation resistance (permeation resistance due to the adhered layer captured on the membrane surface + permeation resistance formed by the interaction between the components in the liquid and the membrane) on the vertical axis, and the relationship with the ozone injection amount. FIG. As is clear from this graph, by stopping the circulation of the fermentation liquid and performing the ozone treatment, the membrane permeation resistance can be reduced with a small amount of ozone.

【0014】次にオゾン注入量を最低(65g/L)の
一定値とし、オゾン濃度や接触時間を表1の通り変化さ
せて膜面の流束変化を調べた。
Next, the ozone injection amount was set to a minimum (65 g / L) constant value, and the ozone concentration and the contact time were changed as shown in Table 1, and the flux change on the film surface was examined.

【表1】 [Table 1]

【0015】その結果を図6に示す。RUN3とRUN
6で高い流束が得られたことから、発生オゾン濃度が一
定以上となる場合には、分離膜3とオゾンとの接触時間
を長くすることが流束の回復に効果的であることが分か
った。しかし長い接触時間と高い送入量にもかかわらず
RUN4が一番低い流束を示すことから、流束の回復に
は発生オゾン濃度が一定以上となる必要があることが分
かった。またRUN3とRUN5の結果から、同じ発生
オゾン濃度では送入ガス量よりも接触時間を長くするこ
との方が流束の回復に効果的であることが分かった。
FIG. 6 shows the result. RUN3 and RUN
6. Since a high flux was obtained in No. 6, it was found that, when the generated ozone concentration was equal to or higher than a certain value, increasing the contact time between the separation membrane 3 and ozone was effective in recovering the flux. Was. However, since RUN4 shows the lowest flux despite the long contact time and the high feed rate, it was found that the concentration of generated ozone needs to be higher than a certain level in order to recover the flux. Further, from the results of RUN3 and RUN5, it was found that, for the same generated ozone concentration, it was more effective to recover the flux by making the contact time longer than the amount of the supplied gas.

【0016】次に、連続運転の結果を図7に示す。最初
の30日はオゾン注入を行わず、この間の膜面の流束は
0.7〜0.8m/dであった。その後分離膜3を新し
いものと交換し、2時間の連続運転の後に発酵液の循環
を停止し、20分間のオゾン処理を行うことを2時間2
0分周期で繰り返した。その結果、膜面の流束を1m/
dを越える高いレベルに安定させることができた。
Next, the result of the continuous operation is shown in FIG. No ozone injection was performed during the first 30 days, during which the flux on the membrane surface was 0.7-0.8 m / d. Thereafter, the separation membrane 3 was replaced with a new one, and after continuous operation for 2 hours, the circulation of the fermentation liquid was stopped, and ozone treatment for 20 minutes was performed for 2 hours 2
This was repeated in a 0 minute cycle. As a result, the flux on the membrane surface was 1 m /
d could be stabilized at a high level exceeding d.

【0017】図8は上記の連続運転期間中における発酵
液の吸光度(E260 )の変化を示すグラフである。E
260 は難分解性有機物量の指標であり、膜面のオゾン処
理を伴う連続運転により、難分解性有機物の低分子化が
進んだことが確認できた。
FIG. 8 is a graph showing the change in the absorbance (E 260 ) of the fermented liquid during the continuous operation. E
260 is an index of the amount of the hardly decomposable organic matter, and it was confirmed that the molecular weight of the hardly decomposable organic matter was reduced by the continuous operation with the ozone treatment of the film surface.

【0018】図9は上記の連続運転期間中における脱離
液中のTOC(全有機炭素)濃度の変化を示すグラフで
ある。オゾン処理によりTOC濃度は高い値を示し、固
形物の可溶化による溶解性有機物の増加が見られ、流入
有機炭素量の31〜51%に相当する炭素が脱離液とし
て回収された。このように本発明は有機物の回収にも効
果があり、回収された溶解性有機物は下水等の脱窒処理
工程において脱窒菌の水素供与体として用いることがで
きる。
FIG. 9 is a graph showing a change in the TOC (total organic carbon) concentration in the desorbed liquid during the continuous operation period. The ozone treatment showed a high TOC concentration, an increase in soluble organic matter due to solubilization of solids, and recovery of carbon equivalent to 31 to 51% of the amount of inflowing organic carbon as a desorbed liquid. As described above, the present invention is also effective in recovering organic substances, and the recovered soluble organic substances can be used as a hydrogen donor of denitrifying bacteria in a denitrification treatment step of sewage or the like.

【0019】なお図10に示すように、発酵液中の有機
酸生成菌数はオゾン注入を開始すると一旦は低下する
が、その後はオゾン注入を行わないレベルにまで回復す
ることが確認されており、本発明による嫌気性消化工程
へのオゾン注入が可能であることが分かる。
As shown in FIG. 10, it has been confirmed that the number of organic acid-producing bacteria in the fermentation broth temporarily decreases when ozone injection is started, but thereafter recovers to a level at which ozone injection is not performed. It can be seen that ozone injection into the anaerobic digestion process according to the present invention is possible.

【0020】[0020]

【発明の効果】以上に説明したように、本発明によれば
膜分離付嫌気性消化法と膜面のオゾン処理とを組み合わ
せることにより、分離膜の膜流束の低下を防止しつつ、
溶解性有機物(低級脂肪酸)を含む脱離液を回収するこ
とができ、回収された溶解性有機物を水素供与体として
有効利用することができる利点がある。
As described above, according to the present invention, by combining the anaerobic digestion method with membrane separation and the ozone treatment on the membrane surface, it is possible to prevent the membrane flux of the separation membrane from being lowered.
An eluate containing a soluble organic substance (lower fatty acid) can be recovered, and there is an advantage that the recovered soluble organic substance can be effectively used as a hydrogen donor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる装置の概略図である。FIG. 1 is a schematic diagram of an apparatus used in the present invention.

【図2】モノリス型のセラミック膜の断面図である。FIG. 2 is a sectional view of a monolithic ceramic film.

【図3】オゾン注入量と膜面流束との関係を示すグラフ
である。
FIG. 3 is a graph showing a relationship between an ozone injection amount and a film surface flux.

【図4】オゾン注入量と膜面流束の回復率との関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between an ozone injection amount and a recovery rate of a film surface flux.

【図5】オゾン注入量と膜透過抵抗との関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between an ozone injection amount and a membrane permeation resistance.

【図6】オゾン濃度や接触時間を変化させたRUN1〜
RUN6における膜面流束を示すグラフである。
FIG. 6 shows RUN1 and RUN2 in which the ozone concentration and the contact time are changed.
It is a graph which shows the film surface flux in RUN6.

【図7】連続運転の場合の膜面流束の経日変化を示すグ
ラフである。
FIG. 7 is a graph showing the change over time of the film surface flux in the case of continuous operation.

【図8】連続運転の場合の発酵液吸光度の経日変化を示
すグラフである。
FIG. 8 is a graph showing the daily change of the absorbance of the fermentation liquid in the case of continuous operation.

【図9】連続運転の場合のTOCの経日変化を示すグラ
フである。
FIG. 9 is a graph showing the daily change of TOC in the case of continuous operation.

【図10】連続運転の場合の有機酸生成菌の経日変化を
示すグラフである。
FIG. 10 is a graph showing the daily change of organic acid-producing bacteria in the case of continuous operation.

【符号の説明】[Explanation of symbols]

1 汚泥貯蔵槽、2 生物反応槽、3 分離膜、4 オ
ゾン発生器、5 脱離液貯蔵槽、6 循環ポンプ、7
攪拌機、8 吸引ポンプ
1 sludge storage tank, 2 biological reaction tank, 3 separation membrane, 4 ozone generator, 5 desorbed liquid storage tank, 6 circulation pump, 7
Stirrer, 8 suction pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 F C12M 1/00 C12M 1/00 H Fターム(参考) 4B029 AA02 DA03 DB01 DB11 DF01 DF04 DF06 DF09 DF10 DG10 4D006 GA07 JA01A JA01C JA31A JA51A JA56A JA70C KA02 KA43 KA63 KA67 KB23 KC03 KC14 KC16 KD21 KE02Q KE02R MC03 PB08 PC62 4D059 AA01 AA03 BA11 BA28 BJ03 CB17 CC10 DA43 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/44 C02F 1/44 F C12M 1/00 C12M 1/00 HF Term (Reference) 4B029 AA02 DA03 DB01 DB11 DF01 DF04 DF06 DF09 DF10 DG10 4D006 GA07 JA01A JA01C JA31A JA51A JA56A JA70C KA02 KA43 KA63 KA67 KB23 KC03 KC14 KC16 KD21 KE02Q KE02R MC03 PB08 PC62 4D059 AA01 DA11 BA11 BA11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚泥を嫌気性処理する生物反応槽
に分離膜を付設し、この分離膜により脱離液を分離する
有機性汚泥の嫌気処理方法において、分離膜の膜面をオ
ゾン処理することを特徴とする有機性汚泥の嫌気処理方
法。
In a method for anaerobic treatment of organic sludge, a separation membrane is attached to a biological reaction tank for anaerobically treating organic sludge, and the separation surface is separated by the separation membrane. An anaerobic treatment method for organic sludge.
【請求項2】 分離膜を生物反応槽内または生物反応槽
の循環ライン内に設けた請求項1に記載の有機性汚泥の
嫌気処理方法。
2. The anaerobic treatment method for organic sludge according to claim 1, wherein the separation membrane is provided in the biological reaction tank or in a circulation line of the biological reaction tank.
【請求項3】 分離膜としてモノリス型のセラミック膜
を用いる請求項1または2に記載の有機性汚泥の嫌気処
理方法。
3. The method for anaerobic treatment of organic sludge according to claim 1, wherein a monolithic ceramic membrane is used as the separation membrane.
【請求項4】 分離膜のオゾン処理を間欠的に行う請求
項1〜3のいずれかに記載の有機性汚泥の嫌気処理方
法。
4. The method for anaerobic treatment of organic sludge according to claim 1, wherein the ozone treatment of the separation membrane is performed intermittently.
【請求項5】 分離膜の汚泥側膜面にオゾン含有空気を
間欠的に供給することにより、膜面をオゾン処理する請
求項4に記載の有機性汚泥の嫌気処理方法。
5. The anaerobic treatment method for organic sludge according to claim 4, wherein the ozone treatment is performed on the membrane surface by intermittently supplying air containing ozone to the sludge-side membrane surface of the separation membrane.
【請求項6】 分離膜を透過水側からオゾン水で間欠的
に逆洗することにより、膜面をオゾン処理する請求項4
に記載の有機性汚泥の嫌気処理方法。
6. The ozone treatment of the membrane surface by intermittently backwashing the separation membrane with ozone water from the permeated water side.
The method for anaerobic treatment of organic sludge according to the above item.
JP02108099A 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge Expired - Lifetime JP3483243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02108099A JP3483243B2 (en) 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02108099A JP3483243B2 (en) 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge

Publications (2)

Publication Number Publication Date
JP2000218294A true JP2000218294A (en) 2000-08-08
JP3483243B2 JP3483243B2 (en) 2004-01-06

Family

ID=12044919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02108099A Expired - Lifetime JP3483243B2 (en) 1999-01-29 1999-01-29 Anaerobic treatment of organic sludge

Country Status (1)

Country Link
JP (1) JP3483243B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066504A (en) * 2003-08-26 2005-03-17 Ataka Construction & Engineering Co Ltd Method and apparatus for treating sewage
JP2005246309A (en) * 2004-03-05 2005-09-15 Ngk Insulators Ltd Membrane separation activated sludge process
JP2006263584A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method for cleaning membrane filtration apparatus
WO2009090725A1 (en) * 2008-01-15 2009-07-23 Metawater Co., Ltd. Membrane-separation active sludge system to be located outside tank
WO2012147534A1 (en) * 2011-04-25 2012-11-01 日本碍子株式会社 Method for washing ceramic filter
JP2014233685A (en) * 2013-06-03 2014-12-15 パナソニック株式会社 Effluent treatment apparatus
CN115286192A (en) * 2022-07-08 2022-11-04 哈尔滨工业大学(深圳) Method for rapidly recovering and converting carbon source by short-distance fermentation in high quality by adopting coagulation-microfiltration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242216B (en) * 2016-08-12 2019-03-01 同济大学 A method of utilizing cow dung quick start sludge superhigh temperature anaerobic digester system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066504A (en) * 2003-08-26 2005-03-17 Ataka Construction & Engineering Co Ltd Method and apparatus for treating sewage
JP4632397B2 (en) * 2003-08-26 2011-02-16 アタカ大機株式会社 Sewage treatment method and apparatus
JP2005246309A (en) * 2004-03-05 2005-09-15 Ngk Insulators Ltd Membrane separation activated sludge process
JP2006263584A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method for cleaning membrane filtration apparatus
WO2009090725A1 (en) * 2008-01-15 2009-07-23 Metawater Co., Ltd. Membrane-separation active sludge system to be located outside tank
US7875179B2 (en) 2008-01-15 2011-01-25 Metawater Co., Ltd. Side stream type membrane bioreactor process
JP5208136B2 (en) * 2008-01-15 2013-06-12 メタウォーター株式会社 Outside-tank membrane separation activated sludge method
WO2012147534A1 (en) * 2011-04-25 2012-11-01 日本碍子株式会社 Method for washing ceramic filter
JP6060074B2 (en) * 2011-04-25 2017-01-11 日本碍子株式会社 Cleaning method of ceramic filter
US10166512B2 (en) 2011-04-25 2019-01-01 Ngk Insulators, Ltd. Method for cleaning ceramic filter
JP2014233685A (en) * 2013-06-03 2014-12-15 パナソニック株式会社 Effluent treatment apparatus
CN115286192A (en) * 2022-07-08 2022-11-04 哈尔滨工业大学(深圳) Method for rapidly recovering and converting carbon source by short-distance fermentation in high quality by adopting coagulation-microfiltration

Also Published As

Publication number Publication date
JP3483243B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
JP4233479B2 (en) Method and system for treatment of wastewater containing organic compounds
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
CN101918325B (en) Membrane-separation active sludge system to be located outside tank
JP2008272625A (en) Wastewater treatment system
JP4966523B2 (en) Biomass processing system
JP2000218294A (en) Anaerobic treatment of organic sludge
JPH0787914B2 (en) Membrane separation method
CN110127947A (en) A kind of system and method for landfill leachate treatment
CN104418465A (en) Landfill leachate treatment method and equipment
JP2006239627A (en) System for treatment of organic waste water containing nitrogen
JP3265456B2 (en) Treatment method and treatment equipment for methane fermentation treatment liquid
JP2003260449A (en) Method for treating high concentration organic waste
JP3608690B2 (en) Organic wastewater treatment method and equipment
CN209468283U (en) Chilled processing waste water processing unit
JP2000094000A (en) Immersion-type film-utilizing methane fermentation system
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP2008238042A (en) Method for reducing amount of organic sludge
KR100514822B1 (en) Wastewater liquid organic sludge treatment system using membrane combined with intermittent alternate injection method of air and ozone
CN203474561U (en) Treatment equipment of landfill leachate
JP3350424B2 (en) Oil-containing wastewater treatment apparatus and its treatment method
JPH0576870A (en) Separation of suspension
JP2003334592A (en) Sewage treatment apparatus
JPH0811226B2 (en) Membrane separation device
JP2003285093A (en) Biological denitrification method and apparatus therefor
KR100388937B1 (en) Method of treating the seepage water by the cyclic reverse osmosis

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031003

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term