JP2000218141A - Hollow fiber membrane and its production - Google Patents

Hollow fiber membrane and its production

Info

Publication number
JP2000218141A
JP2000218141A JP34660098A JP34660098A JP2000218141A JP 2000218141 A JP2000218141 A JP 2000218141A JP 34660098 A JP34660098 A JP 34660098A JP 34660098 A JP34660098 A JP 34660098A JP 2000218141 A JP2000218141 A JP 2000218141A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
acrylonitrile
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34660098A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishizaki
利之 石崎
Yoshinari Fujii
能成 藤井
Kazuhiko Nishimura
和彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP34660098A priority Critical patent/JP2000218141A/en
Publication of JP2000218141A publication Critical patent/JP2000218141A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a hollow fiber membrane excellent in permeability, pressure resistance, and strength and high in reliability concerning turbidity removal and bacteria removing performance by specifying the bubbling point, thickness, inside diameter, pressure resistance, and permeation coefficient of the hollow fiber membrane. SOLUTION: In a hollow fiber membrane, a bubbling point BP is made at least 250 kPa. The bubbling point means a pressure when gas is introduced from one end of the membrane with the other end closed, and the bubbles of the gas begins to appear and is an index indicating the presence/absence of minute defects. The thickness of the membrane is made 40-120 μm, the inside diameter is made 250-420 μm, the pressure resistance is made at least 400 kPa, and the permeation coefficient is made at least 4.2 m3/(m2.h.MPa). The tensile strength and the elongation are preferably at least 6 MN/m2 and at least 50% respectively. An acrylonitrile copolymer which contains 95 mole % of acrylonitrile and has limiting viscosity number of at least 0.25 m3/kg (2.5 dl/g) is preferably incorporated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、河川水や地下水の
除濁や工業用水の清澄化に好適に使用できる、中空糸膜
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber membrane which can be suitably used for turbidity of river water and groundwater and clarification of industrial water.

【0002】[0002]

【従来の技術】逆浸透膜や限外ろ過膜や精密ろ過膜など
を使用する膜分離法は、省エネルギー性や省スペース性
といった特長を有するため、様々な分野で利用されてい
る技術である。たとえば、限外ろ過法は、超純水の製造
や果汁の清澄化の目的で用いられ、平膜や中空糸膜とい
った形態の分離膜が使用されている。
2. Description of the Related Art A membrane separation method using a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane, or the like is a technique used in various fields because it has features such as energy saving and space saving. For example, the ultrafiltration method is used for the purpose of producing ultrapure water and clarifying fruit juice, and a separation membrane in the form of a flat membrane or a hollow fiber membrane is used.

【0003】中空糸膜は、単位体積あたりの膜面積を大
きくすることができ、また、処理液と原液とをシールす
ることが容易であるところから、近年、精密ろ過用ある
いは限外ろ過用の分離膜として、河川水や地下水の除
濁、工業用水の清澄化、あるいは排水の高度処理などの
分野に適用しようとする動きが活発に行われている。た
とえば、中空糸膜の外側から原液を供給する外圧型のモ
ジュールを使用して全量ろ過を行う方式が、運転に要す
るエネルギーも少なく、中空糸膜破断時における原水の
処理水への汚染も抑制され、さらに、中空糸膜の物理的
揺動(たとえばエアースクラビング)などにより容易に
膜表面に堆積した濁質分を除去できるため、上記の分野
において採用されている。
[0003] In recent years, hollow fiber membranes can be used for microfiltration or ultrafiltration because they can increase the membrane area per unit volume and can easily seal the processing solution and the stock solution. There is an active movement to apply the separation membrane to fields such as clarification of river water and groundwater, clarification of industrial water, and advanced treatment of wastewater. For example, a system that performs total filtration using an external pressure type module that supplies an undiluted solution from the outside of the hollow fiber membrane requires less energy for operation, and suppresses contamination of raw water treated water when the hollow fiber membrane breaks. Furthermore, since the suspended matter deposited on the surface of the hollow fiber membrane can be easily removed by physical swinging (for example, air scrubbing) of the hollow fiber membrane, the hollow fiber membrane is adopted in the above field.

【0004】しかし、中空糸膜は当初、長期運転を前提
とした上記のような浄水処理分野への適用は想定されて
おらず、そのような用途に用いるには、透水性、耐汚染
性、易洗浄性、耐久性、耐薬品性、除濁や除菌性能に対
する信頼性などといった特性に関し、大幅な改善の余地
があった。そこで、たとえば透水性の改善については、
平均孔径を径方向において傾斜させた多孔質層と、空洞
を含む網状多孔質層とを存在させた中空糸膜(特公昭5
2−15072号公報など)が提案されており、一定の
効果をあげているが、強度や伸度については開示されて
おらず、エアースクラビングなどのような物理洗浄に対
する耐久性については不十分であった。また、一般に均
質な膜構造を有する場合において透水性をあげるために
は、膜厚を小さくするとよいことが知られているが(た
とえば、特公平6−53976号公報)、外圧型の中空
糸膜においては、原水側と処理水側のろ過差圧によっ
て、膜が変形したり圧壊したりして、流動抵抗の増加や
処理水の品質低下が急激に起こるなどの問題があった。
さらに、このような変形は不可逆的であることが多く、
膜の再生が困難となっていた。
[0004] However, the hollow fiber membrane is not initially supposed to be applied to the above-mentioned water purification treatment field on the assumption of long-term operation. There is room for significant improvement in properties such as easy-to-clean, durability, chemical resistance, and reliability against turbidity and sterilization performance. So, for example, about improvement of water permeability,
A hollow fiber membrane having a porous layer in which the average pore diameter is inclined in the radial direction and a reticulated porous layer including cavities (Japanese Patent Publication No.
No. 2-15072) has been proposed and has a certain effect, but the strength and elongation are not disclosed, and the durability against physical cleaning such as air scrubbing is insufficient. there were. In general, it is known that, in order to increase water permeability in the case of having a uniform membrane structure, it is preferable to reduce the film thickness (for example, Japanese Patent Publication No. 6-53976). In the above, there is a problem that the membrane is deformed or crushed by the filtration pressure difference between the raw water side and the treated water side, so that the flow resistance is increased and the quality of the treated water is rapidly lowered.
Furthermore, such transformations are often irreversible,
Regeneration of the film has been difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
した問題点に鑑み、透水性や耐圧性、強度に優れ、除濁
や除菌性能の信頼性の高い中空糸膜、およびその製造方
法を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a hollow fiber membrane which is excellent in water permeability, pressure resistance and strength, and has high turbidity and sterilization performance, and its production. It is to provide a method.

【0006】[0006]

【課題を解決するための手段】上記発明を達成するため
の本発明は、次の(A)〜(E)の条件を満たしている
中空糸膜を特徴とするものである。 (A)バブルポイントが少なくとも250kPa (B)膜厚が40〜120μmの範囲 (C)内径が250〜420μmの範囲 (D)耐圧が少なくとも400kPa (E)純水の透過係数が少なくとも4. 2m3 /(m2
・h・MPa) ここで、中空糸膜の引張り強度が6MN/m2 以上で、
かつ、伸度が50%以上であることも好ましい。
The present invention for achieving the above-mentioned invention is characterized by a hollow fiber membrane satisfying the following conditions (A) to (E). (A) The bubble point is at least 250 kPa (B) The film thickness is in the range of 40 to 120 μm (C) The inner diameter is in the range of 250 to 420 μm (D) The withstand pressure is at least 400 kPa (E) The transmission coefficient of pure water is at least 4.2 m 3 / (M 2
H · MPa) Here, when the tensile strength of the hollow fiber membrane is 6 MN / m 2 or more,
It is also preferable that the elongation is 50% or more.

【0007】また、少なくともアクリロニトリルを95
mol%含有し、かつ、極限粘度が0.25m3 /kg
以上であるアクリロニトリル系重合体を含んでいる中空
糸膜も好ましい。
[0007] At least 95% of acrylonitrile
mol%, and the intrinsic viscosity is 0.25m 3 / kg
A hollow fiber membrane containing the acrylonitrile-based polymer described above is also preferable.

【0008】さらに、本発明は、複合紡糸口金を用い
て、少なくともアクリロニトリルを95mol%含有
し、かつ、極限粘度が0.25m3 /kg以上のアクリ
ロニトリル系重合体と水とを含む溶液からなる鞘成分
と、芯成分とを乾湿式紡糸した後、1.1〜3倍の範囲
の倍率で延伸する中空糸膜の製造方法を特徴とするもの
である。
Furthermore, the present invention provides a composite spinneret comprising a sheath comprising a solution containing at least 95 mol% of acrylonitrile and an acrylonitrile polymer having an intrinsic viscosity of 0.25 m 3 / kg or more and water. The method is characterized by a method for producing a hollow fiber membrane in which a component and a core component are dry-wet spun and then stretched at a magnification of 1.1 to 3 times.

【0009】ここで、上記鞘成分として、水を0. 5〜
6重量%の範囲で含むジメチルスルホキシドを溶媒とす
る溶液を用いることも好ましい。
Here, water is used as the sheath component in an amount of 0.5 to 0.5.
It is also preferable to use a solution containing dimethylsulfoxide containing 6% by weight as a solvent.

【0010】また、上記芯成分として、水を5〜25重
量%の範囲で含むジメチルスルホキシドを用いることも
好ましい。
It is also preferable to use dimethyl sulfoxide containing water in the range of 5 to 25% by weight as the core component.

【0011】さらに、本発明の中空糸膜を用いてなる浄
水用中空糸膜エレメントも好ましい。
Furthermore, a hollow fiber membrane element for water purification using the hollow fiber membrane of the present invention is also preferable.

【0012】また、上記の浄水用中空糸膜エレメントを
用いてなる浄水器も好ましい。
Further, a water purifier using the above-mentioned hollow fiber membrane element for water purification is also preferable.

【0013】[0013]

【発明の実施の形態】図1〜3は、本発明によって得ら
れた中空糸膜の走査顕微鏡写真である。図1は、本発明
の中空糸膜の横断面を示す写真(倍率1,000倍)で
あり、実質的に孔径10μm以上のマクロボイド(巨大
空孔)が含まれていないことが分かる。図2は、その外
表面を示す写真(倍率10,000倍)である。本発明
の中空糸膜の外表面においては、緻密な構造を有してい
ることが分かる。図3は、本発明の中空糸膜の内表面を
観察した写真(倍率10,000倍)である。内表面
は、写真のような網状構造を呈しており、直径が0. 1
〜5. 0μm程度の固形物が通過できる程度の空隙が形
成されている。
1 to 3 are scanning micrographs of a hollow fiber membrane obtained according to the present invention. FIG. 1 is a photograph (1,000-fold magnification) showing a cross section of the hollow fiber membrane of the present invention, and it can be seen that macrovoids (giant vacancies) having a pore diameter of 10 μm or more are not substantially contained. FIG. 2 is a photograph (magnification: 10,000 times) showing the outer surface. It can be seen that the outer surface of the hollow fiber membrane of the present invention has a dense structure. FIG. 3 is a photograph (magnification: 10,000) of the inner surface of the hollow fiber membrane of the present invention. The inner surface has a net-like structure as shown in the photograph, with a diameter of 0.1.
Voids are formed so that solids of about 5.0 μm can pass through.

【0014】本発明に係る中空糸膜は、バブルポイント
(BP)が少なくとも250kPaである。ここで、バ
ブルポイントとは、一端を封止した中空糸膜に他端から
ガスを導入し、中空糸膜の表面からそのガスの気泡が現
れ始める時の圧力をいい、中空糸膜の微小欠点の有無を
示す指標となる。すなわち、膜を貫通するようなボイド
などの欠点があると、その部分からガスがもれやすくな
り、バブルポイント値が低下する。
The hollow fiber membrane according to the present invention has a bubble point (BP) of at least 250 kPa. Here, the bubble point refers to the pressure at which gas is introduced from the other end into the hollow fiber membrane whose one end is sealed and bubbles of the gas start appearing from the surface of the hollow fiber membrane. It is an index that indicates the presence or absence of That is, if there is a defect such as a void penetrating the film, gas tends to leak from that portion, and the bubble point value decreases.

【0015】本発明においては、一端を封止した長さ5
00mmの中空糸膜を、温度25℃の水中に浸漬し、封
止していないもう一端から窒素ガスを昇圧速度10kP
a/秒で印加し、中空糸膜外表面から気泡の離脱が観測
され始めた時の印加圧力(kPa)を試料をかえて10
回測定し、その中で最も低い圧力値(kPa)をバブル
ポイントとする。
[0015] In the present invention, the length 5 with one end sealed.
A hollow fiber membrane of 00 mm is immersed in water at a temperature of 25 ° C.
a / sec, and the applied pressure (kPa) at which separation of air bubbles from the outer surface of the hollow fiber membrane began to be observed was changed to 10
Times, and the lowest pressure value (kPa) is defined as a bubble point.

【0016】通常、膜にボイドを発生させ、透水性を向
上させる手法を用いた場合、膜を貫通するボイドの存在
により、上記のバブルポイント値が低下する。本発明に
おいては、膜に実質的に孔径10μm以上のボイド(マ
クロボイド)が存在せず、外表面近傍に緻密構造を有す
るため、高いバブルポイント値を達成している。マクロ
ボイドが存在すると、中空糸膜の偏心傾向が増大し、耐
圧性や強度の低下による性能低下が起こりやすくなる。
ここで、マクロボイドとは直径が10μmの微小球が入
り込める程度の空間をいう。
Normally, when a technique for generating voids in a film and improving water permeability is used, the above bubble point value is reduced due to the presence of voids penetrating the film. In the present invention, since the film has substantially no voids (macrovoids) having a pore diameter of 10 μm or more and has a dense structure near the outer surface, a high bubble point value is achieved. When macrovoids are present, the eccentricity of the hollow fiber membrane increases, and the performance is likely to decrease due to the decrease in pressure resistance and strength.
Here, the macro void refers to a space in which microspheres having a diameter of 10 μm can enter.

【0017】また、本発明における中空糸膜は、膜厚を
40〜120μmの範囲、より好ましくは50〜110
μmの範囲とし、内径を250〜420μmの範囲と
し、さらに、耐圧を400kPa以上、かつ、透過係数
を少なくとも4.2m3 /(m2 ・h・MPa)とす
る。
The hollow fiber membrane of the present invention has a thickness in the range of 40 to 120 μm, more preferably 50 to 110 μm.
μm, the inner diameter is in the range of 250 to 420 μm, the withstand voltage is 400 kPa or more, and the transmission coefficient is at least 4.2 m 3 / (m 2 · h · MPa).

【0018】上記の耐圧は、長さ200mmの中空糸膜
1本からなる、内径10mmの金属管ミニチュアモジュ
ールを作成し、所定のろ過差圧にて原水の外圧全ろ過を
5分間行った後の中空糸膜について、20mm間隔で外
径の短径(a0 )と長径(b0 )を測定し、それぞれに
ついて下記式(A)にて真円度を算出してその平均を真
円度1 とし、これを20回繰り返したときの真円度1
平均が60%を維持できる最も高いろ過差圧をいう。
With respect to the above pressure resistance, a metal tube miniature module having an inner diameter of 10 mm made of a single hollow fiber membrane having a length of 200 mm is prepared, and after performing external pressure total filtration of raw water at a predetermined filtration pressure difference for 5 minutes. With respect to the hollow fiber membrane, the minor axis (a 0 ) and major axis (b 0 ) of the outer diameter are measured at intervals of 20 mm, and the roundness is calculated by the following formula (A) for each, and the average is roundedness 1 It means the highest filtration differential pressure that can maintain an average of roundness 1 of 60% when this is repeated 20 times.

【0019】真円度(%)={外径の短径(a0 )/外
径の長径(b0 )}×100(A) また、透過係数は、長さ200mmの中空糸膜20本か
らなるガラス管のミニチュアモジュールを作成し、温度
25℃、ろ過差圧0. 05MPaの条件下で、実質的に
微粒子などの固形分を含まない純水の外圧全ろ過を行
い、その透過水量(m3 )を単位時間(h)および有効
膜表面積(m2 )あたりの値に換算した値をいう。単位
はm3 /(m2 ・h・MPa)である。
Roundness (%) = {small diameter of outer diameter (a 0 ) / long diameter of outer diameter (b 0 )} × 100 (A) The transmission coefficient is 20 hollow fiber membranes having a length of 200 mm. A miniature module of a glass tube made of is made and subjected to an external pressure total filtration of pure water substantially free of solids such as fine particles at a temperature of 25 ° C. and a filtration pressure difference of 0.05 MPa, and the amount of permeated water ( m 3 ) in terms of a value per unit time (h) and effective membrane surface area (m 2 ). The unit is m 3 / (m 2 · h · MPa).

【0020】本発明の中空糸膜は、引張り強度が6MN
/m2 以上および伸度が50%以上であることが好まし
い。引張り強度と伸度がこの範囲にあれば、中空糸膜を
扱う際のハンドリング性が良好となり、またろ過時にお
ける膜の破断や圧壊が起こりにくくなる。
The hollow fiber membrane of the present invention has a tensile strength of 6 MN.
/ M 2 or more and the elongation are preferably 50% or more. When the tensile strength and the elongation are in this range, the handling property when handling the hollow fiber membrane is good, and the membrane is less likely to be broken or crushed during filtration.

【0021】ここで、引張り強度および伸度は、長さ5
0mmの試料を、引張り試験機を用いて、引張り速度5
0mm/分で試料をかえて30回測定し、その平均を測
定値とする。
Here, the tensile strength and elongation are 5
A 0 mm sample was pulled at a tensile speed of 5 using a tensile tester.
The measurement is performed 30 times while changing the sample at 0 mm / min, and the average is taken as the measured value.

【0022】また、本発明の中空糸膜は、少なくともア
クリロニトリルを95mol%含有し、かつ、極限粘度
が0.25m3 /kg(2. 5dl/g)以上のアクリ
ロニトリル重合体を含むことが好ましい。ここで、アク
リロニトリル重合体は、アクリロニトリルの単独重合体
が好ましいが、5mol%以下、好ましくは3mol%
以下で共重合成分を含んでいてもよい。共重合成分とし
ては、ビニル化合物などが好ましく、たとえば、アクリ
ル酸、アクリル酸メチル、メタクリル酸メチル、酢酸ビ
ニル、アクリル酸ソーダ、p−スチレンスルホン酸ソー
ダを共重合モノマとして挙げることができる。
Further, the hollow fiber membrane of the present invention preferably contains at least 95 mol% of acrylonitrile and has an intrinsic viscosity of 0.25 m 3 / kg (2.5 dl / g) or more. Here, the acrylonitrile polymer is preferably a homopolymer of acrylonitrile, but 5 mol% or less, preferably 3 mol%.
In the following, a copolymer component may be contained. The copolymer component is preferably a vinyl compound, and examples thereof include acrylic acid, methyl acrylate, methyl methacrylate, vinyl acetate, sodium acrylate, and sodium p-styrenesulfonate as copolymer monomers.

【0023】アクリロニトリル重合体の極限粘度は、
0.25m3 /kg(2. 5dl/g)以上が好ましい
が、より好ましくは0.27〜0.36m3 /kg
(2. 7〜3.6dl/g)の範囲、さらに好ましくは
0.28〜0.34m3 /kg(2. 8〜3.4dl/
g)の範囲である。極限粘度が0.25m3 /kg
(2. 5dl/g)を下回ると、中空糸膜の形成過程で
孔径が10μm以上のマクロボイドが発生しやすく粗い
構造となり、バブルポイントや強度や伸度が低下する傾
向にある。また、極限粘度が0.34m3 /kg(3.
4dl/g)を超えると、中空糸膜の形成自体が困難と
なりやすい。
The intrinsic viscosity of the acrylonitrile polymer is
It is preferably at least 0.25 m 3 / kg (2.5 dl / g), more preferably 0.27 to 0.36 m 3 / kg
(2.7 to 3.6 dl / g), more preferably 0.28 to 0.34 m 3 / kg (2.8 to 3.4 dl / g).
g). Intrinsic viscosity 0.25m 3 / kg
If it is less than (2.5 dl / g), macrovoids having a pore diameter of 10 μm or more are likely to be generated in the process of forming the hollow fiber membrane, resulting in a coarse structure, which tends to reduce bubble points, strength and elongation. In addition, the intrinsic viscosity is 0.34 m 3 / kg (3.
If it exceeds 4 dl / g), the formation of the hollow fiber membrane itself tends to be difficult.

【0024】上記の極限粘度は、ウベローデ型粘度計を
用いて、測定温度35℃にて、希釈法にて測定したとき
の値である(溶媒はジメチルホルムアミド(DMF)を
用いる)。
The above intrinsic viscosity is a value measured by a dilution method using a Ubbelohde viscometer at a measurement temperature of 35 ° C. (dimethylformamide (DMF) is used as a solvent).

【0025】次に、本発明に係る中空糸膜の製造方法に
ついて説明する。
Next, a method for producing a hollow fiber membrane according to the present invention will be described.

【0026】中空糸膜は、たとえば二重管構造を持つ複
合紡糸口金を用いて、膜を構成する物質を含む溶液から
なる鞘成分と、芯成分とを同時に吐出して乾湿式紡糸し
た後に、延伸を行うことにより得る。
The hollow fiber membrane is dried and wet-spun by, for example, simultaneously discharging a sheath component comprising a solution containing a substance constituting the membrane and a core component by using a composite spinneret having a double tube structure, and spinning. Obtained by stretching.

【0027】まず、鞘成分としての溶液には、前述のア
クリロニトリル重合体を、好ましくは10〜15重量%
の範囲、より好ましくは11〜14重量%の範囲、さら
に好ましくは12〜14重量%の範囲で含有させるとよ
い。重合体濃度が10重量%を下回ると、膜構造にマク
ロボイドが発生しやすくなり、強度や伸度は低下する傾
向にある。また、15重量%を超えると、膜構造が緻密
になり透水性が低下しやすい。
First, the acrylonitrile polymer described above is preferably added to the solution as the sheath component, preferably in an amount of 10 to 15% by weight.
, More preferably in the range of 11 to 14% by weight, even more preferably in the range of 12 to 14% by weight. If the polymer concentration is less than 10% by weight, macrovoids are likely to be generated in the film structure, and the strength and elongation tend to decrease. On the other hand, when the content exceeds 15% by weight, the membrane structure becomes dense and water permeability tends to decrease.

【0028】上記の溶液に用いる溶媒としては、たとえ
ば、ジメチルスルホキシド(DMSO)、ジメチルホル
ムアミド(DMF)、ジメチルアセトアミド(DMA
C)、エチレンカーボネート、γ−ブチルラクトンを挙
げることができる。これらの溶媒には紡糸の際の凝固沈
殿を速やかに行わせるため水を含有させる。また、水の
他にアルコール類を含有させると紡糸性が向上し好まし
い。水やアルコール類には無機塩類を含んでいてもよ
い。また、上記溶媒との組合せにおいては、ジメチルス
ルホキシドと水を用いることにより、紡糸の際の凝固沈
殿がさらに速やかに行われ好ましい。この場合、水の含
有量は0.5〜6重量%の範囲が好ましく、より好まし
くは1〜5重量%の範囲である。
As the solvent used for the above solution, for example, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMA
C), ethylene carbonate and γ-butyl lactone. These solvents contain water in order to promptly perform coagulation and precipitation during spinning. In addition, it is preferable to include an alcohol in addition to water since spinnability is improved. Water and alcohols may contain inorganic salts. In addition, in the case of the combination with the above-mentioned solvent, the use of dimethyl sulfoxide and water is preferable because the coagulation and precipitation during spinning is performed more quickly. In this case, the content of water is preferably in the range of 0.5 to 6% by weight, and more preferably in the range of 1 to 5% by weight.

【0029】紡糸を行う際の、上記鞘成分の温度は45
〜95℃の範囲が好ましいが、より好ましくは50〜9
0℃の範囲である。温度が45℃を下回ると、重合体の
ゲル化が発生し、紡糸には不適当となりやすく、またチ
クソトロピー性が顕著に現れ、中空糸膜の軸方向におい
て太さ斑が大きくなる傾向にある。また、95℃を超え
ると、糸切れなどの曳糸性不良を起こしやすくなる。
When spinning, the temperature of the sheath component is 45.
The range is preferably from 95 to 95 ° C, more preferably from 50 to 9 ° C.
It is in the range of 0 ° C. If the temperature is lower than 45 ° C., gelation of the polymer occurs, and the polymer tends to be unsuitable for spinning, and thixotropy remarkably appears, and the thickness unevenness tends to increase in the axial direction of the hollow fiber membrane. On the other hand, when the temperature exceeds 95 ° C., poor spinnability such as thread breakage tends to occur.

【0030】上記の芯成分としては、鞘成分の溶液に用
いた溶媒と、水やアルコール類や脂肪族ケトンやグリセ
リンやポリエチレングリコールなどとを混合したものを
用いるとよい。中でも、凝固力が比較的大きく取り扱い
が容易である水を用いることが好ましい。上記の溶媒濃
度は、70〜95重量%の範囲が好ましく、より好まし
くは75〜90重量%の範囲、さらに好ましくは78〜
86重量%の範囲である。濃度が70重量%を下回った
り、95重量%を超えたりすると、口金から注入液がド
リップしたり、糸切れなどを発生したりして、曳糸性に
大きな影響を与えやすくなる。
As the core component, a mixture of the solvent used for the solution of the sheath component and water, alcohols, aliphatic ketones, glycerin, polyethylene glycol, or the like is preferably used. Among them, it is preferable to use water which has a relatively large coagulation force and is easy to handle. The solvent concentration is preferably in the range of 70 to 95% by weight, more preferably in the range of 75 to 90% by weight, and still more preferably 78 to 95% by weight.
It is in the range of 86% by weight. When the concentration is lower than 70% by weight or higher than 95% by weight, the injection liquid drips from the mouthpiece, the thread breaks, or the like, and the spinnability tends to be greatly affected.

【0031】吐出は、上記鞘成分である溶液を吐出温度
が好ましくは45〜95℃の範囲、より好ましくは50
〜90℃の範囲となるように行う。次いで、乾式長が2
〜20cm、好ましくは3〜15cmの気相中を通過さ
せ、凝固浴に導く。上記気相は、雰囲気温度が20〜5
5℃の範囲で、かつ絶対湿度が2〜120kPaの範囲
にあると、膜の外表面近傍が均一な緻密構造となり好ま
しい。
For the discharge, the solution as the above-mentioned sheath component is discharged at a discharge temperature of preferably 45 to 95 ° C., more preferably 50 to 95 ° C.
It is performed so as to be in a range of up to 90 ° C. Then the dry length is 2
It is passed through a gaseous phase of 、 20 cm, preferably 3-15 cm, leading to a coagulation bath. The gas phase has an ambient temperature of 20 to 5
When the temperature is in the range of 5 ° C. and the absolute humidity is in the range of 2 to 120 kPa, the vicinity of the outer surface of the film has a uniform dense structure, which is preferable.

【0032】凝固浴温度は、鞘成分の拡散速度をコント
ロールするために60〜85℃の範囲とすることが好ま
しく、より好ましくは65〜80℃の範囲である。凝固
浴温度が60℃を下回るとマクロボイドが発生したり中
空糸が偏心する傾向を示しやすくなり、凝固浴温度が8
5℃を超えると引き取りロールでの弛みが発生し中空糸
の走行性が低下することがある。凝固浴には、たとえ
ば、上記芯成分と同様の混合溶液を使用することがで
き、また、それらの混合比を適宜調整して使用すること
により、マクロボイドを形成しない中空糸膜を得ること
ができる。
The temperature of the coagulation bath is preferably in the range of 60 to 85 ° C., more preferably in the range of 65 to 80 ° C., in order to control the diffusion rate of the sheath component. When the coagulation bath temperature is lower than 60 ° C., macrovoids tend to be generated and the hollow fiber tends to be eccentric.
If the temperature exceeds 5 ° C., the take-up roll may be loosened and the running property of the hollow fiber may be reduced. For the coagulation bath, for example, a mixed solution similar to the above-mentioned core component can be used, and a hollow fiber membrane that does not form macrovoids can be obtained by appropriately adjusting the mixing ratio thereof. it can.

【0033】次いで、上記の中空糸膜を凝固浴から曳き
だして、1.1〜3倍の延伸比にて延伸する。この時の
延伸温度は、60〜95℃の範囲であることが好まし
い。延伸方法については種々の方法を採用しうるが、た
とえば、上記の温度範囲の延伸浴を用いて、その前後に
設けられたローラ間の回転比率を変化させて湿熱延伸を
行う方法を挙げることができる。特に、延伸浴が70〜
95℃の範囲にあり、延伸比が1.1〜2倍の範囲にあ
ると、潰れや偏心や軸方向の太さ斑の少ない高品質な中
空糸膜を得ることができ好ましい。
Next, the hollow fiber membrane is pulled out of the coagulation bath and stretched at a stretching ratio of 1.1 to 3 times. The stretching temperature at this time is preferably in the range of 60 to 95 ° C. For the stretching method, various methods can be adopted, for example, a method of performing wet heat stretching by using a stretching bath in the above temperature range and changing the rotation ratio between rollers provided before and after the stretching bath. it can. In particular, the stretching bath is 70 ~
When the stretching temperature is in the range of 95 ° C. and the stretching ratio is in the range of 1.1 to 2 times, a high-quality hollow fiber membrane with less crushing, eccentricity and unevenness in the axial direction can be obtained, which is preferable.

【0034】本発明の中空糸膜は、通常、その周囲に筐
体を配してエレメントとして使用するが、特に原水を膜
の外表面側から導入し、内表面側から処理水を得る外圧
型の浄水用中空糸膜エレメントとして好適に使用でき
る。
The hollow fiber membrane of the present invention is usually used as an element with a housing disposed around it. Particularly, an external pressure type in which raw water is introduced from the outer surface side of the membrane and treated water is obtained from the inner surface side. Can be suitably used as a hollow fiber membrane element for water purification.

【0035】また、上記の浄水用中空糸膜エレメント
は、流路切換装置やポンプなどの原水供給装置と組み合
わせて、浄水器としても好適に使用できる。
The above-described hollow fiber membrane element for water purification can be suitably used as a water purifier in combination with a raw water supply device such as a flow path switching device or a pump.

【0036】[0036]

【実施例】(実施例1)極限粘度数が0.31m3 /k
g(3.1dl/g)のアクリロニトリル単独重合体を
2. 6重量%の水を含むジメチルスルホキシド溶媒で溶
解温度80℃にて調製して、重合体濃度を13. 0重量
%の鞘成分溶液を得た。この溶液を乾式長が5cmとな
る位置に設けられた複合紡糸口金(環状オリフィス外径
1.2mm、スリット間隔0. 3mm、中心パイプ内径
0. 35mm)から吐出温度85℃、吐出量7. 3g/
分で吐出し、中心パイプからジメチルスルホキシドを8
2重量%含む水溶液を芯成分として吐出量2. 1g/分
で吐出して凝固浴に紡出した後、凝固浴から曳きだされ
た中空糸を第1水洗浴槽、延伸ロール浴槽、第2水洗
槽、第3水洗槽の順で処理を行い、ワインダに巻き取っ
て中空糸膜を得た。なお、凝固浴は温度70℃のジメチ
ルスルホキシド18重量%水溶液を使用し、延伸浴は浴
温度75℃で延伸比は1.3倍とし、各水洗槽温度は6
0℃とした。
EXAMPLES (Example 1) The limiting viscosity number is 0.31 m 3 / k
g (3.1 dl / g) of an acrylonitrile homopolymer was prepared in a dimethyl sulfoxide solvent containing 2.6% by weight of water at a dissolution temperature of 80 ° C., and the polymer concentration was 13.0% by weight. I got The solution is discharged at a temperature of 85 ° C. and a discharge amount of 7.3 g from a composite spinneret (circular orifice outer diameter 1.2 mm, slit interval 0.3 mm, center pipe inner diameter 0.35 mm) provided at a position where the dry length is 5 cm. /
And discharge dimethyl sulfoxide from the center pipe in 8 minutes.
After discharging an aqueous solution containing 2% by weight as a core component at a discharge rate of 2.1 g / min and spinning into a coagulation bath, the hollow fibers drawn from the coagulation bath are washed with a first washing bath, a stretching roll bath, and a second washing bath. The treatment was performed in the order of the tank and the third washing tank, and the wound fiber was wound on a winder to obtain a hollow fiber membrane. The coagulation bath used was an 18% by weight aqueous solution of dimethyl sulfoxide at a temperature of 70 ° C. The stretching bath was at a bath temperature of 75 ° C and the stretching ratio was 1.3 times.
0 ° C.

【0037】得られた中空糸膜は、図1〜3に示す構造
を持つ膜で、外表面近傍に緻密な構造を有しており、平
均外径は498μm、平均厚みは82μmで、内表面近
傍における空隙は1. 0〜3. 5μmであった。測定結
果を表1に示す。 (実施例2)極限粘度数が0.31m3 /kg(3.1
dl/g)のアクリロニトリル単独重合体を3. 8重量
%の水を含むジメチルスルホキシド溶媒で溶解温度80
℃にて調製して、重合体濃度を12. 0重量%の紡糸溶
液を得た。この溶液を乾式長が10cmとなる位置に設
けられた環状口金(実施例1と同様の口金)から吐出温
度75℃、吐出量7. 2g/分で吐出し、中心パイプか
ら実施例1と同様に凝固液を吐出して凝固浴に紡出した
後、実施例1と同様の紡糸工程を経て中空糸膜を得た。
なお、凝固浴は温度70℃のジメチルスルホキシド1
8. 5重量%水溶液を使用し、延伸浴は浴温度75℃で
延伸比1. 4倍とし、各水洗槽温度は60℃とした。
The obtained hollow fiber membrane has the structure shown in FIGS. 1 to 3 and has a dense structure near the outer surface. The average outer diameter is 498 μm, the average thickness is 82 μm, and the inner surface is The gap in the vicinity was 1.0 to 3.5 μm. Table 1 shows the measurement results. (Example 2) The limiting viscosity number was 0.31 m 3 / kg (3.1
dl / g) of an acrylonitrile homopolymer in a dimethyl sulfoxide solvent containing 3.8% by weight of water at a melting temperature of 80%.
C. to give a spinning solution having a polymer concentration of 12.0% by weight. This solution was discharged at a discharge temperature of 75 ° C. and a discharge rate of 7.2 g / min from an annular die (same die as in Example 1) provided at a position where the dry length was 10 cm, and the same as in Example 1 from the central pipe. After the coagulating solution was discharged to spin out the coagulating bath, a hollow fiber membrane was obtained through the same spinning process as in Example 1.
The coagulation bath was dimethyl sulfoxide 1 at a temperature of 70 ° C.
An 8.5 wt% aqueous solution was used, the stretching bath was at a bath temperature of 75 ° C., the stretching ratio was 1.4 times, and the temperature of each washing bath was 60 ° C.

【0038】得られた中空糸膜は、実施例1の場合と同
様、外表面近傍に緻密な構造を有しており、平均外径は
482μm、平均厚みは77μmで、内表面近傍におけ
る空隙は1. 0〜4. 0μmであった。測定結果を表1
に示す。 (実施例3)鞘成分溶液の吐出温度を40℃としたほか
は、実施例1と同様にして紡糸し、中空糸膜を得た。測
定結果を表1に示す。 (実施例4)凝固浴の温度を40℃としたほかは、実施
例1と同様にして紡糸し、中空糸膜を得た。測定結果を
表1に示す。 (実施例5)鞘成分溶液の重合体濃度を9.0重量%と
したほかは、実施例1と同様にして紡糸し、中空糸膜を
得た。測定結果を表1に示す。
The obtained hollow fiber membrane has a dense structure near the outer surface, the average outer diameter is 482 μm, the average thickness is 77 μm, and the void near the inner surface is the same as in Example 1. It was 1.0 to 4.0 μm. Table 1 shows the measurement results.
Shown in (Example 3) A hollow fiber membrane was obtained by spinning in the same manner as in Example 1 except that the discharge temperature of the sheath component solution was 40 ° C. Table 1 shows the measurement results. (Example 4) A hollow fiber membrane was obtained by spinning in the same manner as in Example 1 except that the temperature of the coagulation bath was set to 40 ° C. Table 1 shows the measurement results. (Example 5) A hollow fiber membrane was obtained by spinning in the same manner as in Example 1 except that the polymer concentration of the sheath component solution was 9.0% by weight. Table 1 shows the measurement results.

【0039】[0039]

【比較例】(比較例1)延伸ロール浴槽を使用せず、延
伸を施さなかったほかは、実施例1と同様にして紡糸
し、中空糸膜を得た。測定結果を表1に示す。 (比較例2)鞘成分溶液の溶媒をジメチルスルホキシド
単独としたほかは、実施例2と同様に紡糸し、中空糸膜
を得た。測定結果を表1に示す。 (比較例3)アクリロニトリル93.9モル%とアクリ
ル酸メチル5. 8モル%とメタリルスルホン酸ソーダ
0. 3モル%とをDMSO中で重合して極限粘度数が
0.12m3 /kg(1.2dl/g)の共重合体を
得、その共重合体を16. 5重量%含む溶液を鞘成分溶
液として用いたほかは、実施例2と同様にして中空糸膜
を得た。測定結果を表1に示す。 (比較例4)延伸比を4.5倍としたほかは、実施例2
と同様にして紡糸し、中空糸膜を得た。測定結果を表1
に示す。
Comparative Example (Comparative Example 1) A hollow fiber membrane was obtained by spinning in the same manner as in Example 1 except that no stretching roll bath was used and stretching was not performed. Table 1 shows the measurement results. (Comparative Example 2) A hollow fiber membrane was obtained by spinning in the same manner as in Example 2 except that the solvent of the sheath component solution was dimethyl sulfoxide alone. Table 1 shows the measurement results. (Comparative Example 3) 93.9 mol% of acrylonitrile, 5.8 mol% of methyl acrylate, and 0.3 mol% of sodium methallylsulfonate were polymerized in DMSO to have an intrinsic viscosity of 0.12 m 3 / kg ( 1.2 dl / g), and a hollow fiber membrane was obtained in the same manner as in Example 2 except that a solution containing 16.5% by weight of the copolymer was used as a sheath component solution. Table 1 shows the measurement results. (Comparative Example 4) Example 2 was repeated except that the stretching ratio was 4.5 times.
Spinning was performed in the same manner as described above to obtain a hollow fiber membrane. Table 1 shows the measurement results.
Shown in

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明によれば、中空糸膜のバブルポイ
ントや膜厚、内径、耐圧、純水の透過係数を特定の範囲
としているので、浄水プロセス分野、特に河川水や地下
水の除濁、工業用水の清澄化、排水の高度処理などに好
適に使用できる中空糸膜を提供することができる。
According to the present invention, the bubble point, the film thickness, the inner diameter, the pressure resistance, and the permeability of pure water of the hollow fiber membrane are set to specific ranges. Thus, it is possible to provide a hollow fiber membrane that can be suitably used for clarification of industrial water, advanced treatment of wastewater, and the like.

【0042】また、中空糸膜の引張り強度が6MN/m
2 以上で、かつ、伸度が50%以上である場合には、長
期間にわたって除濁や除菌性能の安定した、信頼性の高
い中空糸膜を提供することができる。
Further, the tensile strength of the hollow fiber membrane is 6 MN / m
When the elongation is 2 or more and the elongation is 50% or more, a highly reliable hollow fiber membrane having stable turbidity and sterilization performance over a long period of time can be provided.

【0043】さらに、中空糸膜が少なくともアクリロニ
トリルを95mol%含有し、かつ、極限粘度が0.2
5m3 /kg以上であるアクリロニトリル系重合体を含
んでいる場合には、親水性や耐薬品性に優れるので、水
中の懸濁物質などの除去に特に好適に使用できる中空糸
膜を得ることができる。
Further, the hollow fiber membrane contains at least 95 mol% of acrylonitrile and has an intrinsic viscosity of 0.2
When an acrylonitrile-based polymer containing 5 m 3 / kg or more is contained, it is excellent in hydrophilicity and chemical resistance, so that it is possible to obtain a hollow fiber membrane that can be particularly suitably used for removing suspended substances in water. it can.

【0044】また、上記のアクリロニトリル系重合体を
用いて、延伸倍率が1.1〜3倍の範囲で乾湿式紡糸を
行う場合には、透水性や耐圧性や強度がバランス良く達
成された中空糸膜を得ることができる。
When dry-wet spinning is performed using the acrylonitrile-based polymer at a draw ratio of 1.1 to 3 times, hollow fibers having a well-balanced water permeability, pressure resistance and strength are achieved. A thread membrane can be obtained.

【0045】さらに、乾湿式紡糸を行う際に用いる鞘成
分や芯成分に、特定の範囲の水を含むジメチルスルホキ
シドを溶媒として用いた場合には、透水性や耐圧性や強
度にさらに優れた中空糸膜を得ることができる。
Further, when dimethyl sulfoxide containing water in a specific range is used as a solvent for the sheath component and the core component used in performing the dry-wet spinning, a hollow material having more excellent water permeability, pressure resistance and strength can be obtained. A thread membrane can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る中空糸膜の横断面の
写真(1,000倍)である。
FIG. 1 is a photograph (1,000 times) of a cross section of a hollow fiber membrane according to an embodiment of the present invention.

【図2】図1における中空糸膜の外表面の写真(10,
000倍)である。
FIG. 2 is a photograph (10, 10) of the outer surface of the hollow fiber membrane in FIG.
000 times).

【図3】図1における中空糸膜の内表面の写真(10,
000倍)である。
FIG. 3 is a photograph (10, 10) of the inner surface of the hollow fiber membrane in FIG.
000 times).

【符号の説明】[Explanation of symbols]

1:外表面 2:内表面 1: outer surface 2: inner surface

フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA19 MA01 MA21 MA22 MA31 MA33 MB02 MB09 MB11 MB16 MB20 MC32 MC36 MC37 MC39X MC89 NA04 NA10 NA17 NA18 NA36 NA68 PA01 PB04 PB05 PB08 PC51Continued on the front page F term (reference) 4D006 GA06 GA07 HA19 MA01 MA21 MA22 MA31 MA33 MB02 MB09 MB11 MB16 MB20 MC32 MC36 MC37 MC39X MC89 NA04 NA10 NA17 NA18 NA36 NA68 PA01 PB04 PB05 PB08 PC51

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】次の(A)〜(E)の条件を満たしている
ことを特徴とする中空糸膜。 (A)バブルポイントが少なくとも250kPa (B)膜厚が40〜120μmの範囲 (C)内径が250〜420μmの範囲 (D)耐圧が少なくとも400kPa (E)純水の透過係数が少なくとも4. 2m3 /(m2
・h・MPa)
1. A hollow fiber membrane which satisfies the following conditions (A) to (E). (A) The bubble point is at least 250 kPa (B) The film thickness is in the range of 40 to 120 μm (C) The inner diameter is in the range of 250 to 420 μm (D) The withstand pressure is at least 400 kPa (E) The transmission coefficient of pure water is at least 4.2 m 3 / (M 2
・ H ・ MPa)
【請求項2】引張り強度が6MN/m2 以上で、かつ、
伸度が50%以上である、請求項1に記載の中空糸膜。
2. Tensile strength is 6 MN / m 2 or more, and
The hollow fiber membrane according to claim 1, wherein the elongation is 50% or more.
【請求項3】少なくともアクリロニトリルを95mol
%含有し、かつ、極限粘度が0.25m3 /kg以上で
あるアクリロニトリル系重合体を含んでいる、請求項1
または2に記載の中空糸膜。
(3) at least 95 mol of acrylonitrile
%, And an acrylonitrile-based polymer having an intrinsic viscosity of 0.25 m 3 / kg or more.
Or the hollow fiber membrane according to 2.
【請求項4】複合紡糸口金を用いて、少なくともアクリ
ロニトリルを95mol%含有し、かつ、極限粘度が
0.25m3 /kg以上のアクリロニトリル系重合体と
水とを含む溶液からなる鞘成分と、芯成分とを乾湿式紡
糸した後、1.1〜3倍の範囲の倍率で延伸することを
特徴とする中空糸膜の製造方法。
4. A sheath component comprising a solution containing at least 95 mol% of acrylonitrile and having an intrinsic viscosity of 0.25 m 3 / kg or more and a acrylonitrile-based polymer and water, using a composite spinneret. A method for producing a hollow fiber membrane, comprising spin-dry spinning the components and stretching the resultant at a magnification of 1.1 to 3 times.
【請求項5】前記鞘成分として、水を0. 5〜6重量%
の範囲で含むジメチルスルホキシドを溶媒とする溶液を
用いる、請求項4に記載の中空糸膜の製造方法。
5. A water content of 0.5 to 6% by weight as the sheath component.
The method for producing a hollow fiber membrane according to claim 4, wherein a solution containing dimethyl sulfoxide contained in the range described above as a solvent is used.
【請求項6】前記芯成分として、水を5〜25重量%の
範囲で含むジメチルスルホキシドを用いる、請求項4ま
たは5に記載の中空糸膜の製造方法。
6. The method for producing a hollow fiber membrane according to claim 4, wherein dimethyl sulfoxide containing water in a range of 5 to 25% by weight is used as said core component.
【請求項7】請求項1〜3のいずれかに記載の中空糸膜
を用いてなることを特徴とする浄水用中空糸膜エレメン
ト。
7. A hollow fiber membrane element for water purification, comprising the hollow fiber membrane according to claim 1.
【請求項8】請求項7に記載の浄水用中空糸膜エレメン
トを用いてなることを特徴とする浄水器。
8. A water purifier comprising the hollow fiber membrane element for water purification according to claim 7.
JP34660098A 1998-11-18 1998-11-18 Hollow fiber membrane and its production Pending JP2000218141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34660098A JP2000218141A (en) 1998-11-18 1998-11-18 Hollow fiber membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34660098A JP2000218141A (en) 1998-11-18 1998-11-18 Hollow fiber membrane and its production

Publications (1)

Publication Number Publication Date
JP2000218141A true JP2000218141A (en) 2000-08-08

Family

ID=18384534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34660098A Pending JP2000218141A (en) 1998-11-18 1998-11-18 Hollow fiber membrane and its production

Country Status (1)

Country Link
JP (1) JP2000218141A (en)

Similar Documents

Publication Publication Date Title
US7182870B2 (en) Hollow fiber membrane and method of producing the same
JP4835221B2 (en) Hollow fiber membrane and method for producing the same
JPWO2010090183A1 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP7157790B2 (en) Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid and method for producing beer
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JPWO2008117740A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
WO2010082437A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
JP4864707B2 (en) Method for producing vinylidene fluoride resin porous water treatment membrane
JP2003320228A (en) Manufacturing method for microporous membrane and microporous membrane
JP2006281202A (en) Hollow fiber membrane, dipped type membrane module using it, separating apparatus, and production method of hollow fiber membrane
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
KR100321459B1 (en) Polyacrylonitrile-Based Filtration Membrane in a Hollow Fiber State
JP2003147629A (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP2000218141A (en) Hollow fiber membrane and its production
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof
JP6707880B2 (en) Hollow fiber membrane and hollow fiber membrane module
US20100258504A1 (en) Fabrication of asymmetric polysulfone membrane for drinking water purification
JP5423326B2 (en) Method for producing hollow fiber membrane
JP3128875B2 (en) Polyphenylene sulfide sulfone hollow fiber membrane and method for producing the same
KR20130040622A (en) The preparation method of hollow fiber membrane with high permeation using hydrophilized polyvinylidenefluoride for water treatment
JP3473202B2 (en) Manufacturing method of hollow fiber membrane
JP2006000810A (en) Method for manufacturing hollow fiber membrane, hollow fiber membrane and hollow fiber membrane module prepared by using the same
JP2006000810A5 (en)
CN114618322A (en) Polyvinylidene fluoride hollow fiber membrane and preparation method and application thereof