JP2000216548A - Electronic circuit board and manufacture thereof - Google Patents

Electronic circuit board and manufacture thereof

Info

Publication number
JP2000216548A
JP2000216548A JP1396699A JP1396699A JP2000216548A JP 2000216548 A JP2000216548 A JP 2000216548A JP 1396699 A JP1396699 A JP 1396699A JP 1396699 A JP1396699 A JP 1396699A JP 2000216548 A JP2000216548 A JP 2000216548A
Authority
JP
Japan
Prior art keywords
film
conductive film
plating
wiring groove
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1396699A
Other languages
Japanese (ja)
Inventor
Toshimitsu Noguchi
利光 野口
Setsuo Ando
節夫 安藤
Yoshihide Yamaguchi
欣秀 山口
Yasunori Narizuka
康則 成塚
Eiji Matsuzaki
永二 松崎
Masashi Nishikame
正志 西亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1396699A priority Critical patent/JP2000216548A/en
Publication of JP2000216548A publication Critical patent/JP2000216548A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily raise the density of an electronic circuit by forming a layer insulation film on a first wiring layer on a base, forming wiring trenches thereinto, filling the wiring trenches with a plating film, and removing a conductive film on the layer insulation film to separate patterns, by leaving the plating film in the wiring trenches, thus forming a second wiring layer. SOLUTION: A first wiring layer 2 is formed on a base 1, a layer insulation film 3 is formed on the wiring layer 2, wiring trenches are formed into the insulation film 3, a plating feed film 4 covers the surface of the insulation film 3 including the wiring trench bottoms, a conductive film 6 covers the wiring trench bottoms, the electric plating is made to grow a plating film from the trenches, thus forming an electric Cu plating film 7, the plating feed film 4 on the insulation film 3 is removed to separate patterns, by leaving the plating film 7 in the wiring trenches, and a second wiring layer 8 is formed so as to be electrically connected to the trenches.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気めっき法によ
る電子回路基板の製造方法およびその方法を用いて製造
した電子回路基板に係り、微細で高アスペクト比のビア
あるいは配線溝および配線を平坦に充填するのに好適な
電子回路基板の製造方法であって、特に配線密度が高い
多層配線基板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electronic circuit board by an electroplating method and an electronic circuit board manufactured by using the method. The present invention relates to a method for manufacturing an electronic circuit board suitable for filling, and particularly to a multilayer wiring board having a high wiring density and a method for manufacturing the same.

【0002】また、LSIなどの半導体素子およびその配
線形成あるいは層間接続方法にも関する。
[0002] The present invention also relates to a semiconductor device such as an LSI and a method of forming a wiring or an interlayer connection thereof.

【0003】さらに、電子回路基板の中の電気的な接続
のためだけでなく、熱伝導のためのサーマルビアの製造
方法にも関する。
[0003] Furthermore, the present invention relates to a method of manufacturing a thermal via not only for electrical connection in an electronic circuit board but also for heat conduction.

【0004】[0004]

【従来の技術】電子機器の高性能化、小型化のために
は、電子回路基板上に、LSIデバイスなどの電子部品を
高密度に実装する必要があり、そのためには、配線の微
細化、配線の多層化が要求される。このような微細配
線、微細な層間接続部を形成する方法として既に種々の
提案がなされてきており、従来の技術としては以下のよ
うな方法がある。
2. Description of the Related Art In order to improve the performance and reduce the size of electronic devices, it is necessary to mount electronic components such as LSI devices on electronic circuit boards at high density. A multilayer wiring is required. Various proposals have already been made as a method for forming such fine wiring and fine interlayer connection portions, and the following methods are known as conventional techniques.

【0005】第1は、特開平7−58201号公報に記
載の技術[例1]のように、基板上に第1の配線層、層間
絶縁膜およびビアを形成した後(図7(a))、基板表面全
体を導電膜で被覆し(図7(b))、この導電膜を電極とし
て、凹部に厚いめっき膜が形成され、平坦な表面を得る
ような条件で電気めっきを行い、表面の平坦化を行った
後(図7(c))、エッチングによって層間絶縁膜上のめっ
き膜を除去し、一方ビア内のめっき膜は選択的に残し
(図7(d)および(e))、続いてこのめっき膜に接触する
ように第2の配線層を形成する(図7(f))方法である。
[0005] First, after a first wiring layer, an interlayer insulating film and a via are formed on a substrate as in the technique [Example 1] described in JP-A-7-58201 (FIG. 7A). ), The entire surface of the substrate is covered with a conductive film (FIG. 7 (b)), and using this conductive film as an electrode, a thick plating film is formed in the concave portion, and electroplating is performed under such conditions that a flat surface is obtained. (FIG. 7 (c)), the plating film on the interlayer insulating film is removed by etching, while the plating film in the via is selectively left (FIG. 7 (d) and (e)). Then, a second wiring layer is formed so as to be in contact with the plating film (FIG. 7 (f)).

【0006】第2は、パルスめっきあるいは電流反転め
っきのように、めっき電流を制御する方法である。これ
には、特開平7-336017号公報記載の技術[例2]が挙げら
れる。
The second is a method of controlling a plating current, such as pulse plating or current reversal plating. This includes the technique [Example 2] described in JP-A-7-336017.

【0007】第3は、無電解めっき法[例3]であり、電
気鍍金研究会編 無電解めっき―基礎と応用― 日刊工
業新聞社 1994年 p.101〜130、電気鍍金研究会編 め
っき教本 日刊工業新聞社 1991年 p.207〜218、豊永
実著 プリント配線板のめっき技術 槙書店 1996年
p.102〜153および雀部俊樹著 プリント配線板のめっき
技術 日刊工業新聞社 1995年 p.61〜75に記載されて
いる。無電解めっき法では、電気力線の集中によって凸
部のめっき膜成長が著しく速くなることはないため、ビ
アあるいは配線溝開口部が塞がり、「す」が出来ること
は少ない。
The third is an electroless plating method [Example 3]. Electroless Plating-Basics and Applications-edited by the Electroplating Study Group, Nikkan Kogyo Shimbun, 1994, p.101-130, edited by the Electroplating Research Group, Plating Textbook Nikkan Kogyo Shimbun 1991 p.207-218, Minoru Toyonaga Plating technology for printed wiring boards Maki Shoten 1996
pp. 102-153 and Toshiki Suzube Plating technology for printed wiring boards Nikkan Kogyo Shimbun, 1995, pp. 61-75. In the electroless plating method, the concentration of the lines of electric force does not significantly increase the growth of the plating film on the projections, so that the openings of the vias or the wiring grooves are closed, and there is little chance that "spot" can be formed.

【0008】[0008]

【発明が解決しようとする課題】配線密度の高い多層配
線を実現するためには、高アスペクト比で、ビアあるい
は配線溝の底部と側壁とのなす角度がほぼ90°になって
いるビアあるいは配線溝内を導電性の良い金属で充填お
よび平坦化し、層間を電気的に接続する必要がある。
In order to realize a multilayer wiring having a high wiring density, a via or a wiring having a high aspect ratio and an angle between the bottom of the via or the wiring groove and the side wall being substantially 90 ° is used. It is necessary to fill and flatten the inside of the groove with a metal having good conductivity, and to electrically connect the layers.

【0009】しかし、上記の従来技術を用いた場合、以
下のような問題点がある。
However, when the above conventional technique is used, there are the following problems.

【0010】従来技術の例1では、ビアあるいは配線溝
の開口サイズが大きく、アスペクト比が1以下と低い場
合にはビアあるいは配線溝を電気めっき膜で埋め込むこ
とが可能である。しかし、ビアあるいは配線溝が微細化
かつ高アスペクト比化(例えばアスペクト比1.5以上)す
ると、電気力線の集中のために、ビアあるいは配線溝の
底部よりも開口部周辺のめっき膜の成長が速いため、ビ
アあるいは配線溝の開口部の塞がりが起こり、ビアある
いは配線溝内に「す」と呼ばれる未充填欠陥が生じる。
実際、アスペクト比1.5以上になると、ビア内に「す」
が発生していることが断面観察によってわかった。
「す」と呼ばれる未充填欠陥が生じると、配線断面積が
減少して電気抵抗が高くなったり、「す」の中に腐食性
のめっき液が残り、加熱時にビアが膨れたり、ビアが腐
食して信頼性が低下するという問題がある。
In Example 1 of the prior art, when the opening size of the via or wiring groove is large and the aspect ratio is as low as 1 or less, it is possible to fill the via or wiring groove with an electroplating film. However, when the via or wiring groove is miniaturized and the aspect ratio is increased (for example, the aspect ratio is 1.5 or more), the concentration of the lines of electric force causes the growth of the plating film around the opening faster than the bottom of the via or wiring groove. Therefore, the opening of the via or the wiring groove is blocked, and an unfilled defect called “s” occurs in the via or the wiring groove.
In fact, when the aspect ratio becomes 1.5 or more,
Observation of the cross section revealed that the occurrence of cracks occurred.
When an unfilled defect called "su" occurs, the wiring cross-sectional area decreases and the electrical resistance increases, or a corrosive plating solution remains in the "su" and the via swells when heated and the via corrodes. There is a problem that reliability is reduced.

【0011】ビアあるいは配線溝の底部と側壁とのなす
角度を90°よりも大きくしてビアあるいは配線溝にテー
パーを付ければ、ビアあるいは配線溝の開口部周辺のめ
っき膜成長による開口部の塞がりを抑制できるが、前記
角度をあまり大きくすると、ビアあるいは配線溝の幅が
大きくなり、配線密度を高くすることが出来なくなると
いう問題がある。また、ビアあるいは配線溝が微細化か
つ高アスペクト比化すると、多少テーパーを付けただけ
では、開口部の塞がりを抑制できないという問題があ
る。
If the angle between the bottom of the via or the wiring groove and the side wall is made larger than 90 ° and the via or the wiring groove is tapered, the opening is blocked by the growth of the plating film around the opening of the via or the wiring groove. However, if the angle is too large, there is a problem that the width of the via or the wiring groove becomes large and the wiring density cannot be increased. Further, when the via or the wiring groove is miniaturized and has a high aspect ratio, there is a problem that it is not possible to suppress the closing of the opening only by providing a slight taper.

【0012】また、微細化かつ高アスペクト比化したビ
アあるいは配線溝の開口部の塞がりを抑制し、「す」の
発生を完全になくすようなめっき液組成および添加剤を
決定するには、パラメータの数が非常に多いため選定が
難しいという問題がある。
Further, in order to determine a plating solution composition and an additive which can suppress the clogging of the openings of vias or wiring trenches having a finer and higher aspect ratio and completely eliminate the generation of "spots", it is necessary to determine parameters such as: There is a problem that the selection is difficult because the number is very large.

【0013】例2では、めっき条件(めっき液中成分の
種類とそれらの濃度、電流密度、通電時間など)のパラ
メータが非常に多いだけでなく、めっき条件の最適化と
その検証が実験による試行錯誤となるため、短期間に、
低コストで最適めっき条件を見いだすことがが難しい。
最適条件が見いだせない場合はビアあるいは配線溝内に
「す」が発生するため、電気特性が良好で、高信頼性の
多層配線基板を短期間に作ることが困難という問題があ
る。
In Example 2, not only the parameters of the plating conditions (the types of the components in the plating solution and their concentrations, the current density, the energizing time, etc.) are very large, but also the optimization of the plating conditions and the verification thereof are conducted by experiments. In a short period of time,
It is difficult to find optimal plating conditions at low cost.
If the optimum conditions cannot be found, "spots" are generated in the vias or the wiring grooves, so that there is a problem that it is difficult to produce a multilayer wiring board having good electrical characteristics and high reliability in a short time.

【0014】例3では、無電解めっきのめっき速度が電
気めっきの1/5〜1/10以下とかなり小さいため、めっき
膜厚を大きくしたい場合はビアあるいは配線溝を埋める
のに時間がかかること、めっき液が高温、強アルカリで
あるため、層間絶縁膜が傷みやすいこと、めっき液の安
定性やめっき膜質が電気めっきの場合よりも劣ることな
どの問題がある。
In Example 3, since the plating speed of electroless plating is considerably lower than 1/5 to 1/10 of that of electroplating, it takes a long time to fill the via or the wiring groove when increasing the plating film thickness. In addition, since the plating solution is high temperature and strong alkali, there are problems such as that the interlayer insulating film is easily damaged and that the stability of the plating solution and the quality of the plating film are inferior to those of electroplating.

【0015】[0015]

【課題を解決するための手段】本発明は上記従来技術の
問題点を解決するためになされたもので、その目的は、
高密度な多層電子回路基板の製造プロセスにおいて、配
線やビアあるいは配線溝の中にだけ隙間なく金属導体を
平坦に充填する方法を与えることにある。そして電子回
路の高密度化、多層化を容易にするとともに、高性能
化、高信頼性化を実現する事にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art.
In a manufacturing process of a high-density multilayer electronic circuit board, it is an object of the present invention to provide a method of filling a metal conductor evenly into a wiring, a via or a wiring groove without any gap. In addition, it is to realize high-density and multi-layer electronic circuits, as well as high performance and high reliability.

【0016】本発明によれば、アスペクト比が小さい場
合は容易に目的を達成でき、アスペクト比5まではビア
あるいは配線溝の中に「す」のような隙間がなく金属導
体を平坦に充填することが可能である。アスペクト比が
5を越えると、真空成膜法によるビアあるいは配線溝底
部へのめっき給電のための導電膜の形成が困難になり、
ビアあるいは配線溝底部にめっき電流が流れず、電気め
っきができなくなる。
According to the present invention, the object can be easily achieved when the aspect ratio is small, and up to an aspect ratio of 5, the metal conductor is filled flat without any gap such as "su" in the via or wiring groove. It is possible. Aspect ratio is
If it exceeds 5, it becomes difficult to form a conductive film for plating power supply to the via or the wiring groove bottom by a vacuum film forming method,
Plating current does not flow to the via or the bottom of the wiring groove, and electroplating cannot be performed.

【0017】上記目的を達成するために、本発明に係る
電子回路基板の製造方法およびその方法を用いて製造し
た電子回路基板の第1の構成は、基材上に形成された第
1の配線層上に層間絶縁膜を形成し、これにビアあるい
は配線溝を形成する工程と、前記のビアあるいは配線溝
の底を含めた層間絶縁膜表面を導電膜(1)で被覆し、続
いてビアあるいは配線溝の底を導電膜(2)で被覆する工
程と、導電膜(1)および導電膜(2)をめっき用給電膜とし
て、ビアあるいは配線溝内からめっき膜が成長するよう
な条件下で電気めっきを行い、ビアあるいは配線溝をめ
っき膜で充填する工程と、めっき後にビアあるいは配線
溝内のめっき膜を残し、前記層間絶縁膜上の導電膜(1)
を除去してパターン分離する工程と、このビアあるいは
配線溝と電気的に接続するように第2の配線層を形成す
る工程とを含むようにしたものである。
In order to achieve the above object, a first method of manufacturing an electronic circuit board according to the present invention and an electronic circuit board manufactured by using the method include a first wiring formed on a base material. Forming an interlayer insulating film on the layer, forming a via or a wiring groove in the interlayer insulating film, and covering the surface of the interlayer insulating film including the bottom of the via or the wiring groove with a conductive film (1); Alternatively, a step of covering the bottom of the wiring groove with a conductive film (2), and under the condition that a plated film grows from a via or a wiring groove, using the conductive film (1) and the conductive film (2) as a power supply film for plating. Electroplating, filling the via or wiring groove with a plating film, and leaving the plating film in the via or wiring groove after plating, and conducting the conductive film on the interlayer insulating film (1).
And a step of forming a second wiring layer so as to be electrically connected to the via or the wiring groove.

【0018】前記絶縁層は、液体塗布あるいはフィルム
貼付によって形成したポリイミド樹脂または塗布法、化
学的気相成長法、スパッタ法によって形成したSiO2,SiN
膜などを用いる。
The insulating layer is made of polyimide resin formed by liquid coating or film sticking or SiO2, SiN formed by a coating method, a chemical vapor deposition method, or a sputtering method.
A film or the like is used.

【0019】ビアあるいは配線溝の底部と側壁とのなす
角度は、配線の微細化、高密度化のためには、90°と
し、穴形状が垂直に掘られた井戸型となることが望まし
い。しかし、基材/絶縁膜界面、下層配線/絶縁膜界
面、絶縁膜/めっき給電膜界面の応力を緩和しクラック
発生防止のためおよびめっき給電膜の成膜時の段切れ防
止のため、前記角度を90°よりも大きくしてビアあるい
は配線溝にテーパーを付けても良い。
The angle between the bottom of the via or the wiring groove and the side wall is preferably 90 ° in order to make the wiring finer and higher in density, and it is desirable that the hole shape be a well type with a vertically dug hole. However, in order to reduce the stress at the interface between the base material / insulating film, the interface between the lower wiring / insulating film, and the interface between the insulating film / plating power supply film and to prevent cracks from occurring, and to prevent disconnection during the formation of the plating power supply film, the angle is set to May be greater than 90 ° to taper the via or wiring groove.

【0020】また詳しくは、上記ビアあるいは配線溝の
底を導電膜(2)で被覆する工程において、ビアあるいは
配線溝内への光照射と、無電解めっきのための前処理お
よび無電解めっきとを組み合わせた方法を用いて導電膜
(2)を形成するようにしたものである。
More specifically, in the step of covering the bottom of the via or wiring groove with the conductive film (2), light irradiation into the via or wiring groove, pretreatment for electroless plating and electroless plating are performed. Conductive film using a method combining
(2) is formed.

【0021】さらに詳しくは、上記導電膜(1)はCr,Ti,N
i,V,Nb,Ta,Mo,W,Alおよびそれらの合金、酸化物、窒化
物の少なくとも1つ、あるいは導電膜(1)/Cu/導電膜
(1),導電膜(1)/Al/導電膜(1),導電膜(1)/Au/導電膜(1)
のような多層膜から成り、導電膜(2)はCu,Al,Ni,Au,Pt,
Pdおよびそれらの合金の少なくとも1つから成るように
したものである。
More specifically, the conductive film (1) is made of Cr, Ti, N
i, V, Nb, Ta, Mo, W, Al and at least one of their alloys, oxides and nitrides, or conductive film (1) / Cu / conductive film
(1), conductive film (1) / Al / conductive film (1), conductive film (1) / Au / conductive film (1)
The conductive film (2) is made of Cu, Al, Ni, Au, Pt,
It consists of at least one of Pd and their alloys.

【0022】より好ましくは、導電膜(1)は導電膜(2)よ
りも電気抵抗が高く、表面に化学的および機械的に安定
な不動態膜を形成する物質を使用する。導電膜(1)に
は、それ自身あるいは表面の不動態膜の電気抵抗が導電
膜(2)よりも高いために、導電膜(1)へ流れるめっき電流
が導電膜(2)へ流れる分よりも減少し、それにより導電
膜(1)上の析出膜厚が導電膜(2)上よりも小さくなる材料
を利用する。
More preferably, the conductive film (1) has a higher electric resistance than the conductive film (2) and uses a substance which forms a chemically and mechanically stable passive film on the surface. In the conductive film (1), since the electric resistance of the passivation film itself or on the surface is higher than that of the conductive film (2), the plating current flowing through the conductive film (1) is smaller than that flowing through the conductive film (2). Also, a material is used in which the deposition thickness on the conductive film (1) is smaller than that on the conductive film (2).

【0023】あるいは、導電膜(1)には、その表面に導
電膜(2)が付着せず導電膜(1)そのものが露出している部
分において、表面の不動態膜が絶縁体となってめっきが
析出しないような材料を用いる。導電膜(2)は導電膜(1)
よりも電気抵抗が低く、めっきで析出させる金属と密着
性の良好な物質を使用する。それらの例として前記の材
料がある。
Alternatively, in a portion of the conductive film (1) where the conductive film (2) does not adhere to the surface and the conductive film (1) itself is exposed, the passivation film on the surface becomes an insulator. Use a material that does not deposit plating. Conductive film (2) is conductive film (1)
Use a substance that has lower electric resistance and good adhesion to the metal deposited by plating. Examples of these are the materials described above.

【0024】導電膜(1)は、層間絶縁膜と導電膜(2)との
密着性を高めるとともに、それらの間の拡散反応を抑制
する作用も持つ。前記導電膜(1)および導電膜(2)は、蒸
着法、スパッタ法、イオンプレーティング法、化学的気
相成長法、分子線エピタクシー法等の真空成膜法あるい
は微粒子塗布、微粒子吹き付け、光分解、熱分解、ゾル
−ゲル法、無電解めっき、プリント配線板の製造プロセ
スで使われるダイレクトプレーティングのうち、少なく
とも一つを用いて成膜する。
The conductive film (1) not only enhances the adhesion between the interlayer insulating film and the conductive film (2), but also has a function of suppressing a diffusion reaction between them. The conductive film (1) and the conductive film (2) are vapor deposition method, sputtering method, ion plating method, chemical vapor deposition method, vacuum film forming method such as molecular beam epitaxy method or fine particle application, fine particle spraying, The film is formed using at least one of photodecomposition, thermal decomposition, a sol-gel method, electroless plating, and direct plating used in a printed wiring board manufacturing process.

【0025】また、上記目的を達成するために、本発明
に係る電子回路基板の製造方法およびその方法を用いて
製造した電子回路基板の第2の構成は、基材上に形成さ
れた第1の配線層上に層間絶縁膜を形成し、これにビア
あるいは配線溝を形成する工程と、前記のビアあるいは
配線溝の底を含めた層間絶縁膜表面を、下層は導電膜
(1)、上層は導電膜(2)で被覆し、続いてビアあるいは配
線溝の底の表面が導電膜(2)で被覆されているように、
ビアあるいは配線溝内の側面および前記層間絶縁膜上の
導電膜(2)を除去し、ビアあるいは配線溝の底の導電膜
(2)を残す工程と、導電膜(1)および導電膜(2)をめっき
用給電膜として、ビアあるいは配線溝内からめっき膜が
成長するような条件下で電気めっきを行い、ビアあるい
は配線溝をめっき膜で充填する工程と、めっき後にビア
あるいは配線溝内のめっき膜を残し、前記層間絶縁膜上
の導電膜(1)を除去してパターン分離する工程と、この
ビアあるいは配線溝と電気的に接続するように第2の配
線層を形成する工程とを含むようにしたものである。
Further, in order to achieve the above object, a method of manufacturing an electronic circuit board according to the present invention and a second configuration of the electronic circuit board manufactured by using the method include a first structure formed on a base material. Forming an interlayer insulating film on the wiring layer of the above, forming a via or a wiring groove in the interlayer insulating film, and forming the interlayer insulating film including the bottom of the via or the wiring groove on the surface of the interlayer insulating film.
(1), the upper layer is covered with a conductive film (2), and then the bottom surface of the via or wiring groove is covered with the conductive film (2),
The conductive film (2) on the side surface in the via or wiring groove and on the interlayer insulating film is removed, and the conductive film on the bottom of the via or wiring groove is removed.
(2) leaving the conductive film (1) and the conductive film (2) as a power supply film for plating, and performing electroplating under conditions such that the plated film grows from the inside of the via or the wiring groove. Filling the groove with a plating film, leaving a plating film in the via or wiring groove after plating, removing the conductive film (1) on the interlayer insulating film and separating the pattern, and forming the via or wiring groove. Forming a second wiring layer for electrical connection.

【0026】ビアあるいは配線溝内の側面および前記層
間絶縁膜上の導電膜(2)を除去する工程では、ビアある
いは配線溝の底を含めた層間絶縁膜表面にレジストを付
け、研磨あるいはドライエッチによってビアあるいは配
線溝の底にレジストが残るようにしてから、ウェットエ
ッチなどでビアあるいは配線溝内の側面および前記層間
絶縁膜上の導電膜(2)を除去し、ビアあるいは配線溝の
底の導電膜(2)を残したあと、ビアあるいは配線溝の底
のレジストを除去する。
In the step of removing the side surface in the via or wiring groove and the conductive film (2) on the interlayer insulating film, a resist is applied to the surface of the interlayer insulating film including the bottom of the via or wiring groove, and polishing or dry etching is performed. After the resist is left at the bottom of the via or wiring groove, the conductive film (2) on the side surface inside the via or wiring groove and the interlayer insulating film is removed by wet etching or the like, and the bottom of the via or wiring groove is removed. After the conductive film (2) is left, the resist at the bottom of the via or wiring groove is removed.

【0027】また、詳しくは、上記導電膜(1)はCr,Ti,N
i,V,Nb,Ta,Mo,W,Alおよびそれらの合金、酸化物、窒化
物の少なくとも1つ、あるいは導電膜(1)/Cu/導電膜
(1),導電膜(1)/Al/導電膜(1),導電膜(1)/Au/導電膜(1)
のような多層膜から成り、導電膜(2)はCu,Al,Ni,Au,Pt,
Pdおよびそれらの合金の少なくとも1つから成るように
したものである。
More specifically, the conductive film (1) is made of Cr, Ti, N
i, V, Nb, Ta, Mo, W, Al and at least one of their alloys, oxides and nitrides, or conductive film (1) / Cu / conductive film
(1), conductive film (1) / Al / conductive film (1), conductive film (1) / Au / conductive film (1)
The conductive film (2) is made of Cu, Al, Ni, Au, Pt,
It consists of at least one of Pd and their alloys.

【0028】また、上記目的を達成するために、本発明
に係る電子回路基板の製造方法およびその方法を用いて
製造した電子回路基板の第3の構成は、基材上に形成さ
れた第1の配線層上に層間絶縁膜を形成し、これにビア
あるいは配線溝を形成する工程と、前記のビアあるいは
配線溝の底を含めた基材表面全体を、下層は導電膜
(1)、上層は導電膜(2)で被覆し、続いてビアあるいは配
線溝の底の表面が導電膜(2)で被覆されているように、
ビアあるいは配線溝内の側面および前記層間絶縁膜上を
皮膜(3)で覆う工程と、導電膜(1)および導電膜(2)をめ
っき用給電膜として、ビアあるいは配線溝内からめっき
膜が成長するような条件下で電気めっきを行い、ビアあ
るいは配線溝をめっき膜で充填する工程と、めっき後に
ビアあるいは配線溝内のめっき膜を残し、前記層間絶縁
膜上の皮膜(3)および導電膜(1)を除去してパターン分離
する工程と、このビアあるいは配線溝と電気的に接続す
るように第2の配線層を形成する工程とを含むようにし
たものである。
In order to achieve the above object, a third method of manufacturing an electronic circuit board according to the present invention and an electronic circuit board manufactured by using the method include a first structure formed on a base material. Forming an interlayer insulating film on the wiring layer, forming a via or a wiring groove in the interlayer insulating film, and forming the entire surface of the substrate including the bottom of the via or the wiring groove.
(1), the upper layer is covered with a conductive film (2), and then the bottom surface of the via or wiring groove is covered with the conductive film (2),
A step of covering the side surface in the via or the wiring groove and the interlayer insulating film with the film (3), and forming a plating film from the inside of the via or the wiring groove using the conductive film (1) and the conductive film (2) as a plating power supply film. Electroplating under conditions such as growth, filling the via or wiring groove with a plating film, and leaving the plating film in the via or wiring groove after plating, coating (3) on the interlayer insulating film and conductive The method includes a step of removing the film (1) to perform pattern separation, and a step of forming a second wiring layer so as to be electrically connected to the via or the wiring groove.

【0029】ビアあるいは配線溝内の側面および前記層
間絶縁膜上を皮膜(3)で覆い、ビアあるいは配線溝の底
の表面には皮膜(3)を付けず導電膜(2)で覆われた状態に
するには、基板を傾けながら、蒸着、イオンプレーティ
ング、CVDあるいは高指向性スパッタを用いて成膜す
る。皮膜(3)が有機物の場合は、塗布、転写、フィルム
貼付のような方法もある。
The side surface in the via or the wiring groove and the surface of the interlayer insulating film were covered with the film (3), and the bottom surface of the via or the wiring groove was covered with the conductive film (2) without the film (3). In order to achieve the state, a film is formed by using evaporation, ion plating, CVD or highly directional sputtering while tilting the substrate. When the film (3) is an organic material, there are methods such as coating, transfer and film sticking.

【0030】また、詳しくは、上記の導電膜(1)はCr,T
i,Ni,V,Nb,Ta,Mo,W,Alおよびそれらの合金、酸化物、窒
化物の少なくとも1つ、あるいは導電膜(1)/Cu/導電膜
(1),導電膜(1)/Al/導電膜(1),導電膜(1)/Au/導電膜(1)
のような多層膜から成り、導電膜(2)はCu,Al,Ni,Au,Pt,
Pdおよびそれらの合金の少なくとも1つから成り、皮膜
(3)は導電膜(2)よりも電気抵抗の高い金属、有機物、無
機酸化物、無機窒化物から成るようにしたものである。
More specifically, the conductive film (1) is made of Cr, T
i, Ni, V, Nb, Ta, Mo, W, Al and at least one of their alloys, oxides and nitrides, or conductive film (1) / Cu / conductive film
(1), conductive film (1) / Al / conductive film (1), conductive film (1) / Au / conductive film (1)
The conductive film (2) is made of Cu, Al, Ni, Au, Pt,
A coating comprising at least one of Pd and their alloys
(3) is made of a metal, an organic substance, an inorganic oxide, or an inorganic nitride having a higher electric resistance than the conductive film (2).

【0031】上記の方法により、第1のめっき給電膜
と、第2のめっき給電膜を層間絶縁膜およびビアあるい
は配線溝内に形成し、第1の給電膜は第2の給電膜より
も電気抵抗が高く、表面に化学的に安定な不動態膜を形
成しやすい材料とすることにより、めっき膜がビアある
いは配線溝の底から成長するため、ビアあるいは配線溝
の開口部周辺のめっき膜成長による開口部の塞がりが起
こらず、「す」のような未充填欠陥が発生しないように
したものである。
According to the above-described method, the first plating power supply film and the second plating power supply film are formed in the interlayer insulating film and the via or the wiring groove, and the first power supply film is more electric than the second power supply film. Since the plating film grows from the bottom of the via or wiring groove by using a material having high resistance and easily forming a chemically stable passivation film on the surface, the plating film grows around the opening of the via or wiring groove. This prevents the opening from being clogged, and prevents the occurrence of unfilled defects such as "su".

【0032】また、層間絶縁膜を壊すことなく、不要な
めっき給電膜をめっき後に除去でき、孤立パターンにも
給電してめっき出来るようにしたものである。
Further, unnecessary plating power supply films can be removed after plating without breaking the interlayer insulating film, and power can be supplied to isolated patterns to perform plating.

【0033】[0033]

【発明の実施の形態】以下、本発明の実施例について、
図面を参照しながら、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described in detail with reference to the drawings.

【0034】(実施例1)基材上に第1配線層を形成す
る。この例では、基材はガラス製、第1配線層はスパッ
タ法によるCr/Cu/Cr膜から成る。
Example 1 A first wiring layer is formed on a substrate. In this example, the substrate is made of glass, and the first wiring layer is made of a Cr / Cu / Cr film formed by a sputtering method.

【0035】その上にポリイミドを塗布し、フォトリソ
によってビアを作り、第1絶縁層を形成する。絶縁層厚
さは約20mm、ビアの開口は20mm角あるいは20mm径である
(図1(a))。
A first insulating layer is formed by applying polyimide thereon and forming a via by photolithography. The thickness of the insulating layer is about 20 mm, and the opening of the via is 20 mm square or 20 mm in diameter (Fig. 1 (a)).

【0036】この第1絶縁層表面およびビア内にスパッ
タ法でCr(0.05mm厚)/Cu(0.5 mm厚)/Cr(0.1 mm厚)から成
るめっき給電膜(導電膜(1))を形成する(図1(b))。
A plating power supply film (conductive film (1)) made of Cr (0.05 mm thick) / Cu (0.5 mm thick) / Cr (0.1 mm thick) is formed on the surface of the first insulating layer and in the vias by sputtering. (Fig. 1 (b)).

【0037】次に、基板を無電解CuめっきのためのPd活
性化液に浸漬するのであるが、ビア内が活性化液、めっ
き液で満たされるように、ビア内の気泡を抜くため、純
水、活性化液あるいは無電解めっき液中で真空脱泡を行
うことが望ましい。
Next, the substrate is immersed in a Pd activating solution for electroless Cu plating. In order to remove air bubbles in the via so that the inside of the via is filled with the activating solution and the plating solution, pure substrate is used. It is desirable to perform vacuum defoaming in water, an activating solution or an electroless plating solution.

【0038】この基板を無電解CuめっきのためのPd活性
化液に浸漬したまま、細く絞った紫外線またはレーザー
光をビア内だけに照射し、ビアの底部にPdを析出させる
(図1(c))。
While this substrate is immersed in a Pd activating solution for electroless Cu plating, finely squeezed ultraviolet light or laser light is applied only inside the via to deposit Pd on the bottom of the via (FIG. 1 (c)). )).

【0039】続いて無電解Cuめっき液に浸漬し、Pdを核
としてビア底部に約0.1 mm厚のCu膜(導電膜(2))を付
ける(図1(d))。
Subsequently, the substrate is immersed in an electroless Cu plating solution, and a Cu film (conductive film (2)) having a thickness of about 0.1 mm is formed on the bottom of the via with Pd as a nucleus (FIG. 1 (d)).

【0040】次に、電気Cuめっき液に浸漬し、基板外周
付近からめっき給電膜に電流を流して約20 mm厚のCu膜
を付けてビア内をCuで充填する(図1(e))。
Next, it is immersed in an electric Cu plating solution, a current is applied to the plating power supply film from around the periphery of the substrate, a Cu film having a thickness of about 20 mm is applied, and the inside of the via is filled with Cu (FIG. 1 (e)). .

【0041】電気Cuめっき液に浸漬しする直前に、ビア
内がめっき液で満たされるように、ビア内の気泡を抜く
ため、純水あるいはめっき液中で真空脱泡を行うことが
望ましい。
Immediately before immersion in the electrolytic Cu plating solution, it is desirable to perform vacuum defoaming in pure water or a plating solution to remove bubbles in the via so that the inside of the via is filled with the plating solution.

【0042】ビアあるいは配線溝内にめっき液が容易に
出入りできるように、めっき中にカソードロッキング、
ジェット流めっき、超音波照射などの方法を併用しても
良い。
Cathode locking during plating, so that the plating solution can easily enter and exit the via or wiring groove,
A method such as jet flow plating and ultrasonic irradiation may be used in combination.

【0043】続いて絶縁層上のCr/Cu/Cr(導電膜(1))
を除去する。アルカリ性過マンガン酸カリウムから成る
Crエッチャントを用いてCrを、次に過硫酸ナトリウムか
ら成るCuエッチャントを用いてCuを、さらに前記Crエッ
チャントを用いてCrをそれぞれエッチングし、パターン
分離を行う(図1(f))。めっき給電膜のCuは電気めっき
Cuに比べて非常に薄いため、電気めっきCuにほとんどダ
メージを与えずにエッチング出来る。
Subsequently, Cr / Cu / Cr on the insulating layer (conductive film (1))
Is removed. Consists of alkaline potassium permanganate
Cr is etched using a Cr etchant, then Cu is etched using a Cu etchant made of sodium persulfate, and Cr is etched using the Cr etchant to separate patterns (FIG. 1 (f)). Electroplating Cu for plating power supply film
Since it is very thin compared to Cu, it can be etched with little damage to electroplated Cu.

【0044】この後、第1絶縁層表面および充填された
ビア上部に第2配線層のCr/Cu膜をスパッタ法とフォト
リソを用いて形成し、続いてそれらの表面にポリイミド
を塗布して第2絶縁層を形成する(図1(g))。
Thereafter, a Cr / Cu film of a second wiring layer is formed on the surface of the first insulating layer and over the filled vias by using a sputtering method and photolithography. Two insulating layers are formed (FIG. 1 (g)).

【0045】上記のプロセスを繰り返すことによって、
配線層を多層化していくことが出来る。ビア上部はほぼ
平坦になっているので、ビアの真上に次のビアを作るこ
ともできる。
By repeating the above process,
It is possible to increase the number of wiring layers. Since the upper part of the via is almost flat, the next via can be formed just above the via.

【0046】工程数は多いが、ビアあるいは配線溝の底
からめっき成長させるため、従来技術では解決できなか
ったビアあるいは配線溝内にできる「す」のような未充
填欠陥を確実になくすことが出来る。
Although the number of steps is large, plating growth is carried out from the bottom of the via or wiring groove, so that unfilled defects such as "su" formed in the via or wiring groove, which could not be solved by the prior art, can be surely eliminated. I can do it.

【0047】(実施例2)基材上に第1配線層を形成す
る。この例では、基材はガラスセラミック製、第1配線
層はスパッタ法によるCr/Cu/Cr膜から成る。
Example 2 A first wiring layer is formed on a substrate. In this example, the substrate is made of glass ceramic, and the first wiring layer is made of a Cr / Cu / Cr film formed by a sputtering method.

【0048】その上に感光性ポリイミドを塗布し、フォ
トリソによってビアを作り、第1絶縁層を形成する。絶
縁層厚さは約15mm、ビアの開口は15mm角あるいは15mm径
である(図2(a))。
A photosensitive polyimide is applied thereon, and a via is formed by photolithography to form a first insulating layer. The thickness of the insulating layer is about 15 mm, and the opening of the via is 15 mm square or 15 mm diameter (Fig. 2 (a)).

【0049】この第1絶縁層表面およびビア内にスパッ
タ法でCr(0.05mm厚)/Cu(0.05 mm厚)/Al(0.05 mm厚)から
成るめっき給電膜(導電膜(1))を形成する(図2
(b))。
A plating power supply film (conductive film (1)) made of Cr (0.05 mm thick) / Cu (0.05 mm thick) / Al (0.05 mm thick) is formed on the surface of the first insulating layer and in the via by sputtering. (Figure 2
(b)).

【0050】この基板を無電解Cuめっき液に浸漬したま
ま、細く絞った紫外線またはレーザー光をビア内だけに
照射し、ビアの底部に約0.1 mm厚のCu膜(導電膜(2))
を付ける(図2(c))。
While this substrate is immersed in an electroless Cu plating solution, a thinly squeezed ultraviolet ray or laser beam is applied only to the inside of the via, and a Cu film (conductive film (2)) having a thickness of about 0.1 mm is formed on the bottom of the via.
(Fig. 2 (c)).

【0051】次に、電気Cuめっき液に浸漬し、基板外周
付近からめっき給電膜に電流を流して約15 mm厚のCu膜
を付けてビア内をCuで充填する(図2(d))。
Next, the substrate is immersed in an electric Cu plating solution, a current is applied to the plating power supply film from around the periphery of the substrate, a Cu film having a thickness of about 15 mm is applied, and the via is filled with Cu (FIG. 2 (d)). .

【0052】続いて絶縁層上のCr/Cu/Al(導電膜(1))
を除去する。水酸化ナトリウムから成るAlエッチャント
を用いてAlを、次に過硫酸ナトリウムから成るCuエッチ
ャントを用いてCuを、さらにアルカリ性過マンガン酸カ
リウムから成るCrエッチャントを用いてCrをそれぞれエ
ッチングし、パターン分離を行う(図2(e))。めっき給
電膜のCuは電気めっきCuに比べて非常に薄いため、電気
めっきCuにほとんどダメージを与えずにエッチング出来
る。
Subsequently, Cr / Cu / Al on the insulating layer (conductive film (1))
Is removed. Al is etched using an Al etchant composed of sodium hydroxide, Cu is etched using a Cu etchant composed of sodium persulfate, and Cr is further etched using a Cr etchant composed of alkaline potassium permanganate to separate patterns. (Figure 2 (e)). Since the Cu of the plating power supply film is much thinner than the electroplated Cu, etching can be performed with little damage to the electroplated Cu.

【0053】この後、第1絶縁層表面および充填された
ビア上部に第2配線層のCr/Cu膜をスパッタ法とフォト
リソを用いて形成し、続いてそれらの表面にポリイミド
を塗布して第2絶縁層を形成する(図2(f))。
Thereafter, a Cr / Cu film of a second wiring layer is formed on the surface of the first insulating layer and on the filled vias by using a sputtering method and photolithography. Two insulating layers are formed (FIG. 2 (f)).

【0054】上記のプロセスを繰り返すことによって、
配線層を多層化していくことが出来る。ビア上部はほぼ
平坦になっているので、ビアの真上に次のビアを作るこ
ともできる。
By repeating the above process,
It is possible to increase the number of wiring layers. Since the upper part of the via is almost flat, the next via can be formed just above the via.

【0055】(実施例3)基材上に第1配線層を形成す
る。この例では、基材はポリイミド製、第1配線層はス
パッタ法によるCr/Cu/Cr膜から成る。
(Example 3) A first wiring layer is formed on a base material. In this example, the substrate is made of polyimide, and the first wiring layer is made of a Cr / Cu / Cr film formed by a sputtering method.

【0056】その上にポリイミドを塗布し、レーザーに
よってビアを作り、第1絶縁層を形成する。絶縁層厚さ
は約10mm、ビアの開口は10mm角あるいは10mm径である
(図3(a))。
A first insulating layer is formed by applying polyimide thereon and forming a via by laser. The thickness of the insulating layer is about 10 mm, and the opening of the via is 10 mm square or 10 mm in diameter (FIG. 3A).

【0057】この第1絶縁層表面およびビア内にスパッ
タ法でCr(0.05mm厚)から成るめっき給電膜(導電膜
(1))を形成する(図3(b))。
A plating power supply film (conductive film) made of Cr (0.05 mm thick) is formed on the surface of the first insulating layer and in the via by sputtering.
(1)) is formed (FIG. 3 (b)).

【0058】この基板を無電解Cuめっき液に浸漬した
後、基板を傾けてあるいは300rpm以下の低速回転で回
し、続いてスキージで第1絶縁層表面のめっき液を拭っ
て、基板表面のめっき液は除去し、ビア底部にはめっき
液が残留するようにしたあと(図3(c))、紫外線または
レーザー光を第1絶縁層表面およびビア内に全面照射
し、ビアの底部にだけCuを析出させる。
After immersing this substrate in an electroless Cu plating solution, tilt the substrate or rotate it at a low speed of 300 rpm or less, and then wipe the plating solution on the surface of the first insulating layer with a squeegee to remove the plating solution on the substrate surface. After removing the plating solution so that the plating solution remains at the bottom of the via (FIG. 3C), the entire surface of the first insulating layer and the via is irradiated with ultraviolet light or laser light, and Cu is applied only to the bottom of the via. Precipitate.

【0059】引き続き無電解Cuめっき液に浸漬し、Cuを
核としてビア底部に約0.1 mm厚のCu膜(導電膜(2))を
付ける(図3(d))。
Subsequently, the substrate is immersed in an electroless Cu plating solution, and a Cu film (conductive film (2)) having a thickness of about 0.1 mm is formed on the bottom of the via with Cu as a core (FIG. 3 (d)).

【0060】ここでは、無電解Cuめっき液を用いたが、
代わりに無電解CuめっきのためのPd活性化液を用いてPd
を析出させ、続いて無電解Cuめっき液に浸漬し、Pdを核
としてビア底部に約0.1 mm厚のCu膜を付けることもでき
る。
Although the electroless Cu plating solution was used here,
Use Pd activation solution for electroless Cu plating instead of Pd
And then immersed in an electroless Cu plating solution to form a Cu film with a thickness of about 0.1 mm on the bottom of the via with Pd as a nucleus.

【0061】次に、電気Cuめっき液に浸漬し、基板外周
付近からめっき給電膜に電流を流して約10 mm厚のCu膜
を付けてビア内をCuで充填する(図3(e))。
Next, it is immersed in an electric Cu plating solution, a current is applied to the plating power supply film from the vicinity of the outer periphery of the substrate, a Cu film having a thickness of about 10 mm is formed, and the via is filled with Cu (FIG. 3 (e)). .

【0062】続いて絶縁層上のCr/Cu/Cr(導電膜(1))
を除去する。アルカリ性過マンガン酸カリウムから成る
Crエッチャントを用いてCrをそれぞれエッチングし、パ
ターン分離を行う(図3(f))。この後、第1絶縁層表面
および充填されたビア上部に第2配線層のCr/Cu膜をス
パッタ法とフォトリソを用いて形成し、続いてそれらの
表面にポリイミドを塗布して第2絶縁層を形成する(図
3(g))。
Subsequently, Cr / Cu / Cr on the insulating layer (conductive film (1))
Is removed. Consists of alkaline potassium permanganate
Cr is etched using a Cr etchant to separate patterns (FIG. 3 (f)). Thereafter, a Cr / Cu film of a second wiring layer is formed on the surface of the first insulating layer and over the filled vias by using a sputtering method and photolithography, and then polyimide is applied to those surfaces to form a second insulating layer. Form (Figure
3 (g)).

【0063】上記のプロセスを繰り返すことによって、
配線層を多層化していくことが出来る。ビア上部はほぼ
平坦になっているので、ビアの真上に次のビアを作るこ
ともできる。
By repeating the above process,
It is possible to increase the number of wiring layers. Since the upper part of the via is almost flat, the next via can be formed just above the via.

【0064】(実施例4)基材上に第1配線層を形成す
る。この例では、基材はポリイミド製、第1配線層はス
パッタ法によるCr/Cu/Cr膜から成る。
(Example 4) A first wiring layer is formed on a base material. In this example, the substrate is made of polyimide, and the first wiring layer is made of a Cr / Cu / Cr film formed by a sputtering method.

【0065】その上にポリイミドを塗布し、レーザーに
よってビアを作り、第1絶縁層を形成する。絶縁層厚さ
は約25mm、ビアの開口は約5mm角あるいは5mm径である
(図4(a))。
A polyimide is applied thereon, and a via is formed by a laser to form a first insulating layer. The thickness of the insulating layer is about 25 mm, and the opening of the via is about 5 mm square or 5 mm in diameter (FIG. 4A).

【0066】この第1絶縁層表面およびビア内にスパッ
タ法でCr(0.05mm厚)/Cu(0.1 mm厚)/Al(0.05 mm厚)から
成るめっき給電膜(導電膜(1))を形成する(図4
(b))。
A plating power supply film (conductive film (1)) made of Cr (0.05 mm thick) / Cu (0.1 mm thick) / Al (0.05 mm thick) is formed on the surface of the first insulating layer and in the vias by sputtering. (Figure 4
(b)).

【0067】この基板を無電解Cuめっき液のためのPd活
性化液に浸漬したまま、細く絞った紫外線またはレーザ
ー光をビア内だけに照射し、ビアの底部にPdを析出させ
(図4(c))、続いて無電解Cuめっき液に浸漬し、Pdを核
としてビア底部に約0.1 mm厚のCu膜を付ける。約0.1 mm
厚のCu膜(導電膜(2))を付ける(図4(d))。
While the substrate was immersed in a Pd activating solution for an electroless Cu plating solution, finely squeezed ultraviolet or laser light was applied only inside the via to deposit Pd on the bottom of the via (FIG. 4 ( c)) Then, it is immersed in an electroless Cu plating solution, and a Cu film having a thickness of about 0.1 mm is formed on the bottom of the via with Pd as a nucleus. About 0.1 mm
A thick Cu film (conductive film (2)) is applied (FIG. 4D).

【0068】ここでは、無電解CuめっきのためのPd活性
化液を用いたが、代わりに無電解Cuめっき液を用いてビ
ア底部にCuを析出させ、そのCuを核としてビア底部に約
0.1 mm厚のCu膜を付けることもできる。
Here, a Pd activating solution for electroless Cu plating was used. Instead, Cu was deposited on the bottom of the via using an electroless Cu plating solution, and the Cu was used as a nucleus to form a copper on the bottom of the via.
A 0.1 mm thick Cu film can also be applied.

【0069】次に、電気Cuめっき液に浸漬し、基板外周
付近からめっき給電膜に電流を流して約25 mm厚のCu膜
を付けてビア内をCuで充填する(図4(e))。
Next, the substrate is immersed in an electric Cu plating solution, a current is applied to the plating power supply film from around the periphery of the substrate, a Cu film having a thickness of about 25 mm is formed, and the inside of the via is filled with Cu (FIG. 4 (e)). .

【0070】続いて第1絶縁層表面上および前記ビア上
に第2配線層を作るために、基板を無電解Cuめっき液に
浸漬したまま、細く絞った紫外線またはレーザー光を第
1絶縁層表面上および前記ビア上の第2配線層とする部
分に照射し、約0.1 mm厚のCu膜(導電膜(2))を付ける
(図4(f))。次に、電気Cuめっき液に浸漬し、基板外周
付近からめっき給電膜に電流を流して約10 mm厚のCu膜
を付けて第2配線層を形成する(図4(g))。
Subsequently, in order to form a second wiring layer on the surface of the first insulating layer and on the via, while the substrate is immersed in the electroless Cu plating solution, finely squeezed ultraviolet light or laser light is applied to the surface of the first insulating layer. Irradiate the upper portion and the portion to be the second wiring layer on the via to form a Cu film (conductive film (2)) having a thickness of about 0.1 mm (FIG. 4 (f)). Next, the substrate is immersed in an electric Cu plating solution, and a current is applied to the plating power supply film from the vicinity of the outer periphery of the substrate to attach a Cu film having a thickness of about 10 mm to form a second wiring layer (FIG. 4 (g)).

【0071】ここではビア充填と第2配線層形成を別々
に行ったが、次のように同時に行うこともできる。導電
膜(1)を形成した後の基板を、無電解Cuめっき液のため
のPd活性化液に浸漬したまま、細く絞った紫外線または
レーザー光を第1絶縁層表面上の第2配線層とする部分
とビア内に照射し、第2配線層とする部分およびビアの
底部にPdを析出させる。続いて無電解Cuめっき液に浸漬
し、Pdを核として第2配線層とする部分およびビア底部
に約0.1 mm厚のCu膜(導電膜(2))を付ける。次に、電
気Cuめっき液に浸漬し、基板外周付近からめっき給電膜
に電流を流してCu膜を付けて第2配線層およびビアを形
成する。
Here, the via filling and the formation of the second wiring layer are performed separately, but they can be performed simultaneously as follows. While the substrate after the formation of the conductive film (1) is immersed in a Pd activating solution for an electroless Cu plating solution, finely squeezed ultraviolet light or laser light is applied to the second wiring layer on the surface of the first insulating layer. Irradiation is performed on the portion to be formed and inside the via to deposit Pd on the portion to be the second wiring layer and the bottom of the via. Subsequently, the substrate is immersed in an electroless Cu plating solution, and a Cu film (conductive film (2)) having a thickness of about 0.1 mm is applied to a portion serving as the second wiring layer with Pd as a nucleus and a bottom of the via. Next, the substrate is immersed in an electric Cu plating solution, and a current is applied to the plating power supply film from the vicinity of the outer periphery of the substrate to attach the Cu film to form a second wiring layer and a via.

【0072】続いて絶縁層上のCr/Cu/Cr(導電膜(1))
を除去する。水酸化ナトリウムから成るAlエッチャント
を用いてAlを、次に過硫酸ナトリウムから成るCuエッチ
ャントを用いてCuを、さらにアルカリ性過マンガン酸カ
リウムから成るCrエッチャントを用いてCrをそれぞれエ
ッチングし、パターン分離を行う(図4(h))。めっき給
電膜のCuは電気めっきCuに比べて非常に薄いため、電気
めっきCuにほとんどダメージを与えずにエッチング出来
る。
Subsequently, Cr / Cu / Cr on the insulating layer (conductive film (1))
Is removed. Al is etched using an Al etchant composed of sodium hydroxide, Cu is etched using a Cu etchant composed of sodium persulfate, and Cr is further etched using a Cr etchant composed of alkaline potassium permanganate to separate patterns. (Figure 4 (h)). Since the Cu of the plating power supply film is much thinner than the electroplated Cu, etching can be performed with little damage to the electroplated Cu.

【0073】この後、第1絶縁層と第2配線層の表面お
よび充填されたビア上部にポリイミドを塗布して第2絶
縁層を形成する(図4(i))。
Thereafter, polyimide is applied on the surfaces of the first insulating layer and the second wiring layer and on the filled via to form a second insulating layer (FIG. 4 (i)).

【0074】上記のプロセスを繰り返すことによって、
配線層を多層化していくことが出来る。ビア上部はほぼ
平坦になっているので、ビアの真上に次のビアを作るこ
ともできる。
By repeating the above process,
It is possible to increase the number of wiring layers. Since the upper part of the via is almost flat, the next via can be formed just above the via.

【0075】(実施例5)基材上に第1配線層を形成す
る。この例では、基材はガラス製、第1配線層はスパッ
タ法によるCr/Cu/Cr膜から成る。
(Example 5) A first wiring layer is formed on a base material. In this example, the substrate is made of glass, and the first wiring layer is made of a Cr / Cu / Cr film formed by a sputtering method.

【0076】その上に感光性ポリイミドを塗布し、フォ
トリソによってビアを作り、第1絶縁層を形成する。絶
縁層厚さは約20mm、ビアの開口は20mm角あるいは20mm径
である(図5(a))。
A photosensitive polyimide is applied thereon, a via is formed by photolithography, and a first insulating layer is formed. The thickness of the insulating layer is about 20 mm, and the opening of the via is 20 mm square or 20 mm diameter (FIG. 5 (a)).

【0077】この第1絶縁層表面およびビア内にスパッ
タ法でCr(0.05mm厚)/Cu(0.1 mm厚)/Cr(0.1mm厚)/Cu(0.1
mm厚)から成るめっき給電膜(導電膜(1)および(2))を
形成する(図5(b))。
The Cr (0.05 mm thick) / Cu (0.1 mm thick) / Cr (0.1 mm thick) / Cu (0.1 mm thick)
Then, a plating power supply film (conductive films (1) and (2)) having a thickness of 2 mm is formed (FIG. 5B).

【0078】次に、第1絶縁層表面およびビア内に液体
レジストを塗布する(図5(c))。続いて、機械研磨また
はドライエッチングを用いて、ビア内のレジストは残
し、第1絶縁層表面のレジストは除去する(図5(d))。
Next, a liquid resist is applied to the surface of the first insulating layer and the inside of the via (FIG. 5C). Subsequently, by using mechanical polishing or dry etching, the resist in the via is left, and the resist on the surface of the first insulating layer is removed (FIG. 5D).

【0079】次に過硫酸ナトリウムから成るCuエッチャ
ントを用いて、第1絶縁層表面上のめっき給電膜の最上
層Cu(導電膜(2))を除去する。エッチングをやや過剰
に行って、ビア内の開口部に近い側面ののめっき給電膜
の最上層Cu(導電膜(2))も除去する。このようにし
て、めっき給電膜の最上層にCu(導電膜(2))が付いて
いるのはビアの底部だけにすることが出来る(図5
(e))。
Next, the uppermost Cu (conductive film (2)) of the plating power supply film on the surface of the first insulating layer is removed using a Cu etchant made of sodium persulfate. The etching is performed slightly excessively, and the uppermost Cu (conductive film (2)) of the plating power supply film on the side surface near the opening in the via is also removed. In this way, Cu (conductive film (2)) is attached to the top layer of the plating power supply film only at the bottom of the via (FIG. 5).
(e)).

【0080】続いて、ビア内に残ったレジストをレジス
ト剥離液で剥離し、底部のレジスト残渣を除去するため
に酸素プラズマアッシングをかける(図5(f))。
Subsequently, the resist remaining in the via is stripped with a resist stripper, and oxygen plasma ashing is performed to remove the resist residue at the bottom (FIG. 5 (f)).

【0081】次に、電気Cuめっき液に浸漬し、基板外周
付近からめっき給電膜に電流を流して約20 mm厚のCu膜
を付けてビア内をCuで充填する(図5(g))。
Next, the substrate is immersed in an electric Cu plating solution, a current is applied to the plating power supply film from around the periphery of the substrate, a Cu film having a thickness of about 20 mm is formed, and the via is filled with Cu (FIG. 5 (g)). .

【0082】続いて絶縁層上のCr/Cu/Cr(導電膜(1))
を除去する。アルカリ性過マンガン酸カリウムから成る
Crエッチャントを用いてCrを、次に過硫酸ナトリウムか
ら成るCuエッチャントを用いてCuを、さらに前記Crエッ
チャントを用いてCrをそれぞれエッチングし、パターン
分離を行う(図5(h))。めっき給電膜のCuは電気めっき
Cuに比べて非常に薄いため、電気めっきCuにほとんどダ
メージを与えずにエッチング出来る。
Subsequently, Cr / Cu / Cr on the insulating layer (conductive film (1))
Is removed. Consists of alkaline potassium permanganate
Cr is etched using a Cr etchant, then Cu is etched using a Cu etchant made of sodium persulfate, and Cr is etched using the Cr etchant to perform pattern separation (FIG. 5 (h)). Electroplating Cu for plating power supply film
Since it is very thin compared to Cu, it can be etched with little damage to electroplated Cu.

【0083】この後、第1絶縁層表面および充填された
ビア上部に第2配線層のCr/Cu膜をスパッタ法とフォト
リソを用いて形成し、続いてそれらの表面にポリイミド
を塗布して第2絶縁層を形成する(図5(i))。
Thereafter, a Cr / Cu film of a second wiring layer is formed on the surface of the first insulating layer and on the filled vias by using a sputtering method and photolithography. Two insulating layers are formed (FIG. 5 (i)).

【0084】上記のプロセスを繰り返すことによって、
配線層を多層化していくことが出来る。ビア上部はほぼ
平坦になっているので、ビアの真上に次のビアを作るこ
ともできる。
By repeating the above process,
It is possible to increase the number of wiring layers. Since the upper part of the via is almost flat, the next via can be formed just above the via.

【0085】(実施例6)基材上に第1配線層を形成す
る。この例では、基材はSiウエハ、第1配線層はスパッ
タ法によるTiN/Cu膜から成る。
Example 6 A first wiring layer is formed on a base material. In this example, the base material is a Si wafer, and the first wiring layer is a TiN / Cu film formed by a sputtering method.

【0086】その上にCVD法でSiNを成膜し、フォトリソ
およびドライエッチによってビアを作り、第1絶縁層を
形成する。絶縁層厚さは約1mm、ビアの開口は約0.2mm角
あるいは0.2mm径である(図6(a))。
Then, a SiN film is formed thereon by a CVD method, a via is formed by photolithography and dry etching, and a first insulating layer is formed. The thickness of the insulating layer is about 1 mm, and the opening of the via is about 0.2 mm square or 0.2 mm in diameter (FIG. 6 (a)).

【0087】この第1絶縁層表面およびビア内にスパッ
タ法でTaN(0.01mm厚)/Cu(0.05 mm厚)から成るめっき給
電膜(導電膜(1)および(2))を形成する(図6(b))。
A plating power supply film (conductive films (1) and (2)) made of TaN (0.01 mm thick) / Cu (0.05 mm thick) is formed on the surface of the first insulating layer and in the via by sputtering (FIG. 6 (b)).

【0088】続いてビアあるいは配線溝の底の表面が導
電膜(2)で被覆され、一方、ビアあるいは配線溝内の側
面および前記層間絶縁膜上の導電膜(2)は表面に露出し
ないように、ビアあるいは配線溝内の側面および前記層
間絶縁膜上を皮膜(3)で覆う。
Subsequently, the bottom surface of the via or wiring groove is covered with the conductive film (2), while the side surface in the via or wiring groove and the conductive film (2) on the interlayer insulating film are not exposed to the surface. Next, the side surface in the via or wiring groove and the interlayer insulating film are covered with a film (3).

【0089】この例では、導電膜(2)にはCuを、皮膜(3)
にはCrを用いる。皮膜(3)は除去が容易なめっきレジス
トになればよいので、Alなどのように導電膜(2)とのエ
ッチング選択性があり、導電膜(2)よりも電気抵抗が高
く、表面に不動態膜を作る他の金属でも良いし、Al2O
3,TiNなどの金属酸化物、金属窒化物、SiO2,SiNなど
の無機酸化物、無機窒化物、ポリイミドなどの有機物で
もよい。下記に述べる蒸着あるいはイオンプレーティン
グを用いる場合は、皮膜(3)にはCr,Al,Ti,W等を用い
ることが好ましい。
In this example, the conductive film (2) is made of Cu and the film (3) is made of Cu.
Is used for Cr. Since the film (3) only needs to be a plating resist that is easy to remove, it has etching selectivity with the conductive film (2), such as Al, has a higher electrical resistance than the conductive film (2), and has a poor surface. Other metals that can be used to form the active film or Al2O
3, metal oxides such as TiN, metal nitrides, inorganic oxides such as SiO2 and SiN, inorganic nitrides, and organic materials such as polyimide may be used. When the vapor deposition or ion plating described below is used, it is preferable to use Cr, Al, Ti, W, etc. for the film (3).

【0090】ビアあるいは配線溝の底には皮膜(3)が付
かないようにするために、基板を傾けながら高指向性ス
パッタ、蒸着あるいはイオンプレーティングを用いて成
膜する。蒸着あるいはイオンプレーティングでは、成膜
時の圧力を10-4〜10-6Pa位に下げて成膜粒子の平均自由
行程を長くし、成膜粒子の直進性を高めておく。また、
蒸着源あるいはターゲットと基板との間にコリメータを
置き、成膜粒子の飛行方向をそろえておく。
In order to prevent the film (3) from being attached to the bottom of the via or the wiring groove, the film is formed by using highly directional sputtering, vapor deposition or ion plating while tilting the substrate. In vapor deposition or ion plating, the pressure at the time of film formation is reduced to about 10 −4 to 10 −6 Pa to increase the mean free path of the film formed particles and to enhance the straightness of the film formed particles. Also,
A collimator is placed between the evaporation source or target and the substrate, and the flight direction of the film-forming particles is aligned.

【0091】ビアあるいは配線溝内の側面および前記層
間絶縁膜上にまんべんなく皮膜をつけるために、傾けた
基板を自転および公転させながら成膜する。
In order to form a film evenly on the side surface in the via or wiring groove and on the interlayer insulating film, the inclined substrate is formed while rotating and revolving.

【0092】上記の方法により、ビアあるいは配線溝の
底の表面が導電膜(2)で被覆され、一方、ビアあるいは
配線溝内の側面および前記層間絶縁膜上の導電膜(2)は
表面に露出しないように、ビアあるいは配線溝内の側面
および前記層間絶縁膜上を皮膜(3)で覆う(図6(c))。
According to the above method, the bottom surface of the via or wiring groove is covered with the conductive film (2), while the side surface in the via or wiring groove and the conductive film (2) on the interlayer insulating film are covered with the conductive film (2). The side surface in the via or wiring groove and the interlayer insulating film are covered with a film (3) so as not to be exposed (FIG. 6 (c)).

【0093】次に、電気Cuめっき液に浸漬し、基板外周
付近からめっき給電膜に電流を流して約1 mm厚のCu膜を
付けて第1絶縁層表面上の第2配線層とする部分および
ビア内をCuで充填する(図6(d))。
Next, a portion immersed in an electro-Cu plating solution and flowing a current from the vicinity of the outer periphery of the substrate to the plating power supply film to form a Cu film having a thickness of about 1 mm to form a second wiring layer on the surface of the first insulating layer Then, the inside of the via is filled with Cu (FIG. 6D).

【0094】続いて絶縁層上のCr/Cu/Cr(導電膜(1))
を除去する。アルカリ性過マンガン酸カリウムから成る
Crエッチャントを用いてCrを、次に過硫酸ナトリウムか
ら成るCuエッチャントを用いてCuを、さらにアルカリ性
過マンガン酸カリウムから成るエッチャント、化学機械
研磨あるいはArスパッタエッチを用いてTaNをそれぞれ
エッチングし、めっき給電膜を除去してパターン分離を
行う(図6(e))。めっき給電膜のCuは電気めっきCuに比
べて非常に薄いため、電気めっきCuにほとんどダメージ
を与えずにエッチング出来る。
Subsequently, Cr / Cu / Cr on the insulating layer (conductive film (1))
Is removed. Consists of alkaline potassium permanganate
Cr is etched using a Cr etchant, then Cu is etched using a Cu etchant composed of sodium persulfate, and then TaN is etched using an etchant composed of alkaline potassium permanganate, and chemical mechanical polishing or Ar sputter etch. The power supply film is removed to perform pattern separation (FIG. 6 (e)). Since the Cu of the plating power supply film is much thinner than the electroplated Cu, etching can be performed with little damage to the electroplated Cu.

【0095】この後、第1絶縁層表面および充填された
ビア上部に第2配線層のCr/Cu膜をスパッタ法とフォト
リソを用いて形成し、続いてそれらの表面にポリイミド
を塗布して第2絶縁層を形成する(図6(f))。
Thereafter, a Cr / Cu film of a second wiring layer is formed on the surface of the first insulating layer and on the filled vias by using a sputtering method and photolithography. Two insulating layers are formed (FIG. 6 (f)).

【0096】上記のプロセスを繰り返すことによって、
配線層を多層化していくことが出来る。ビア上部はほぼ
平坦になっているので、ビアの真上に次のビアを作るこ
ともできる。
By repeating the above process,
It is possible to increase the number of wiring layers. Since the upper part of the via is almost flat, the next via can be formed just above the via.

【0097】最近、LSIなどの半導体素子においても、
配線の微細化のために配線抵抗を下げる必要から、配線
材料を従来のAlからCuに代え、その成膜法にめっき法を
使うということが検討されており、その例として、月刊
Semiconductor World 1997年12月号p.107-111が挙げ
られる。本発明の方法を用いて、半導体素子のCu配線形
成あるいはCuビアによる層間接続を行うことが出来る。
Recently, even in semiconductor devices such as LSIs,
Since it is necessary to lower the wiring resistance in order to miniaturize the wiring, it has been studied to replace the conventional wiring material with Al instead of Cu, and to use a plating method for the film formation method.
Semiconductor World December 1997 p.107-111. By using the method of the present invention, it is possible to form a Cu wiring of a semiconductor element or to make an interlayer connection using a Cu via.

【0098】[0098]

【発明の効果】以上説明してきたように、本発明によれ
ば、ビアあるいは配線溝内に金属導体を欠陥なく充填
し、高密度で高信頼性の微細な多層配線を形成すること
が可能となる。
As described above, according to the present invention, it is possible to fill a via or a wiring groove with a metal conductor without any defect and to form a high-density, high-reliability, fine multilayer wiring. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における電子回路基板の製造
工程順を示す側断面図。
FIG. 1 is a side sectional view showing the order of manufacturing steps of an electronic circuit board according to Embodiment 1 of the present invention.

【図2】本発明の実施例2における電子回路基板の製造
工程順を示す側断面図。
FIG. 2 is a side sectional view showing the order of manufacturing steps of an electronic circuit board according to Embodiment 2 of the present invention.

【図3】本発明の実施例3における電子回路基板の製造
工程順を示す側断面図。
FIG. 3 is a side sectional view showing the order of manufacturing steps of an electronic circuit board according to Embodiment 3 of the present invention.

【図4】本発明の実施例4における電子回路基板の製造
工程順を示す側断面図。
FIG. 4 is a side sectional view showing the order of manufacturing steps of an electronic circuit board according to Embodiment 4 of the present invention.

【図5】本発明の実施例5における電子回路基板の製造
工程順を示す側断面図。
FIG. 5 is a side sectional view showing the order of manufacturing steps of an electronic circuit board according to Embodiment 5 of the present invention.

【図6】本発明の実施例6における電子回路基板の製造
工程順を示す側断面図。
FIG. 6 is a side sectional view showing the order of manufacturing steps of an electronic circuit board according to Embodiment 6 of the present invention.

【図7】従来の技術の例1における多層配線基板の製造
工程順を示す側断面図。
FIG. 7 is a side sectional view showing the order of manufacturing steps of the multilayer wiring board in Example 1 of the related art.

【符号の説明】[Explanation of symbols]

1…基材、2…第1配線層、3…層間絶縁膜、4…めっ
き給電膜(導電膜(1))、5…Pd活性化液、6…導電膜
(2)、7…電気Cuめっき膜、8…第2配線層、9…無電
解Cuめっき液、10…レジスト、11…皮膜(3)、12
…導電膜。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... 1st wiring layer, 3 ... Interlayer insulating film, 4 ... Plating power supply film (conductive film (1)), 5 ... Pd activating liquid, 6 ... Conductive film
(2), 7: Electric Cu plating film, 8: Second wiring layer, 9: Electroless Cu plating solution, 10: Resist, 11: Film (3), 12
... conductive film.

フロントページの続き (72)発明者 山口 欣秀 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 成塚 康則 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 松崎 永二 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 西亀 正志 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 Fターム(参考) 5E317 AA24 BB01 BB03 BB12 BB15 BB16 BB17 CC32 CC33 CC52 CD12 CD15 CD18 CD25 CD32 GG01 GG05 GG14 5E346 AA12 AA15 AA35 AA43 BB01 CC10 CC16 CC31 CC32 CC34 CC37 CC38 DD03 DD17 DD32 EE33 FF02 FF05 FF07 FF10 FF13 FF14 FF17 GG15 GG17 GG19 GG22 HH07 HH21 HH25 HH26 Continued on the front page (72) Inventor Yoshihide Yamaguchi 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside of Hitachi, Ltd.Production Technology Laboratory (72) Inventor Yasunori Narizuka 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock Company (72) Eiji Matsuzaki, Inventor, Hitachi, Ltd.292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture, Japan Inside (72) Inventor Masashi Nishigame, 292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa, Japan Address F-term in Hitachi, Ltd. Production Research Laboratory 5E317 AA24 BB01 BB03 BB12 BB15 BB16 BB17 CC32 CC33 CC52 CD12 CD15 CD18 CD25 CD32 GG01 GG05 GG14 5E346 AA12 AA15 AA35 AA43 BB01 CC10 CC16 CC32 EE33 FF02 FF05 FF07 FF10 FF13 FF14 FF17 GG15 GG17 GG19 GG22 HH07 HH21 HH25 HH26

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基材上に形成された第1の配線層上に層間
絶縁膜を形成し、これにビアあるいは配線溝を形成する
工程と、前記のビアあるいは配線溝の底を含めた層間絶
縁膜表面を導電膜(1)で被覆し、続いてビアあるいは配
線溝の底を導電膜(2)で被覆する工程と、導電膜(1)およ
び導電膜(2)をめっき用給電膜として、ビアあるいは配
線溝内からめっき膜が成長するような条件下で電気めっ
きを行い、ビアあるいは配線溝をめっき膜で充填する工
程と、めっき後にビアあるいは配線溝内のめっき膜を残
し、前記層間絶縁膜上の導電膜(1)を除去してパターン
分離する工程と、このビアあるいは配線溝と電気的に接
続するように第2の配線層を形成する工程とを含むこと
を特徴とする電子回路基板の製造方法。
A step of forming an interlayer insulating film on a first wiring layer formed on a substrate and forming a via or a wiring groove therein; and forming an interlayer insulating film including a bottom of the via or the wiring groove. A step of covering the surface of the insulating film with the conductive film (1), and subsequently covering the bottom of the via or wiring groove with the conductive film (2), and using the conductive film (1) and the conductive film (2) as a power supply film for plating. Performing electroplating under conditions such that a plating film grows from inside the via or wiring groove, filling the via or wiring groove with the plating film, and leaving a plating film in the via or wiring groove after plating, An electronic device comprising: a step of removing a conductive film (1) on an insulating film to separate a pattern; and a step of forming a second wiring layer so as to be electrically connected to the via or the wiring groove. A method for manufacturing a circuit board.
【請求項2】上記の導電膜(1)はCr,Ti,Ni,V,Nb,Ta,Mo,
W,Alおよびそれらの合金、酸化物、窒化物の少なくとも
1つ、あるいは導電膜(1)/Cu/導電膜(1),導電膜(1)/Al/
導電膜(1),導電膜(1)/Au/導電膜(1)のような多層膜から
成り、導電膜(2)はCu,Al,Ni,Au,Pt,Pdおよびそれらの合
金の少なくとも1つから成ることを特徴とする請求項1
記載の電子回路基板の製造方法。
2. The conductive film (1) is made of Cr, Ti, Ni, V, Nb, Ta, Mo,
W, Al and at least one of their alloys, oxides and nitrides, or conductive film (1) / Cu / conductive film (1), conductive film (1) / Al /
A conductive film (1), a conductive film (1) / Au / a multilayer film such as a conductive film (1), and the conductive film (2) includes at least Cu, Al, Ni, Au, Pt, Pd and an alloy thereof. 2. The method according to claim 1, wherein the first element comprises one.
A manufacturing method of the electronic circuit board according to the above.
【請求項3】請求項1又は請求項2に記載の方法を用い
て製造した電子回路基板。
3. An electronic circuit board manufactured by using the method according to claim 1.
【請求項4】基材上に形成された第1の配線層上に層間
絶縁膜を形成し、これにビアあるいは配線溝を形成する
工程と、前記のビアあるいは配線溝の底を含めた層間絶
縁膜表面を、下層は導電膜(1)、上層は導電膜(2)で被覆
し、続いてビアあるいは配線溝の底の表面が導電膜(2)
で被覆されているように、ビアあるいは配線溝内の側面
および前記層間絶縁膜上の導電膜(2)を除去し、ビアあ
るいは配線溝の底の導電膜(2)を残す工程と、導電膜(1)
および導電膜(2)をめっき用給電膜として、ビアあるい
は配線溝内からめっき膜が成長するような条件下で電気
めっきを行い、ビアあるいは配線溝をめっき膜で充填す
る工程と、めっき後にビアあるいは配線溝内のめっき膜
を残し、前記層間絶縁膜上の導電膜(1)を除去してパタ
ーン分離する工程と、このビアあるいは配線溝と電気的
に接続するように第2の配線層を形成する工程とを含む
ことを特徴とする電子回路基板の製造方法。
4. A step of forming an interlayer insulating film on a first wiring layer formed on a base material, forming a via or a wiring groove in the interlayer insulating film, and forming an interlayer including a bottom of the via or the wiring groove. The surface of the insulating film is covered with the conductive film (1) for the lower layer and the conductive film (2) for the upper layer, and then the conductive film (2) covers the bottom surface of the via or wiring groove.
Removing the conductive film (2) on the side surfaces in the via or wiring groove and the interlayer insulating film so as to leave the conductive film (2) on the bottom of the via or wiring groove as covered by the conductive film; (1)
Using the conductive film (2) and the conductive film (2) as a power supply film for plating, performing electroplating under conditions such that the plating film grows from inside the via or wiring groove, filling the via or wiring groove with the plating film, and forming the via hole after plating. Alternatively, a step of removing the conductive film (1) on the interlayer insulating film and separating the pattern while leaving the plating film in the wiring groove, and forming a second wiring layer so as to be electrically connected to the via or the wiring groove. Forming an electronic circuit board.
【請求項5】上記導電膜(1)はCr,Ti,Ni,V,Nb,Ta,Mo,W,A
lおよびそれらの合金、酸化物、窒化物の少なくとも1
つ、あるいは導電膜(1)/Cu/導電膜(1),導電膜(1)/Al/導
電膜(1),導電膜(1)/Au/導電膜(1)のような多層膜から成
り、導電膜(2)はCu,Al,Ni,Au,Pt,Pdおよびそれらの合金
の少なくとも1つから成ることを特徴とする請求項4記
載の電子回路基板の製造方法。
5. The conductive film (1) is made of Cr, Ti, Ni, V, Nb, Ta, Mo, W, A
l and at least one of their alloys, oxides and nitrides
Or a multilayer film such as conductive film (1) / Cu / conductive film (1), conductive film (1) / Al / conductive film (1), conductive film (1) / Au / conductive film (1). The method according to claim 4, wherein the conductive film (2) is made of at least one of Cu, Al, Ni, Au, Pt, Pd and an alloy thereof.
【請求項6】請求項4又は請求項5記載の方法を用いて
製造した電子回路基板。
6. An electronic circuit board manufactured by using the method according to claim 4.
【請求項7】基材上に形成された第1の配線層上に層間
絶縁膜を形成し、これにビアあるいは配線溝を形成する
工程と、前記のビアあるいは配線溝の底を含めた基材表
面全体を、下層は導電膜(1)、上層は導電膜(2)で被覆
し、続いてビアあるいは配線溝の底の表面が導電膜(2)
で被覆されているように、ビアあるいは配線溝内の側面
および前記層間絶縁膜上を皮膜(3)で覆う工程と、導電
膜(1)および導電膜(2)をめっき用給電膜として、ビアあ
るいは配線溝内からめっき膜が成長するような条件下で
電気めっきを行い、ビアあるいは配線溝をめっき膜で充
填する工程と、めっき後にビアあるいは配線溝内のめっ
き膜を残し、前記層間絶縁膜上の皮膜(3)および導電膜
(1)を除去してパターン分離する工程と、このビアある
いは配線溝と電気的に接続するように第2の配線層を形
成する工程とを含むことを特徴とする電子回路基板の製
造方法。
7. A step of forming an interlayer insulating film on a first wiring layer formed on a base material, forming a via or a wiring groove in the interlayer insulating film, and forming a base including the bottom of the via or the wiring groove. The entire material surface is covered with the conductive film (1) for the lower layer and the conductive film (2) for the upper layer, and then the conductive film (2) covers the bottom surface of the via or wiring groove.
Covering the side surface in the via or wiring groove and the interlayer insulating film with the film (3) so as to be covered with the conductive film (1) and the conductive film (2) as a plating power supply film so as to be covered with a via. Alternatively, electroplating is performed under conditions such that a plating film grows from inside the wiring groove, and a step of filling the via or the wiring groove with the plating film, and leaving the plating film in the via or the wiring groove after plating, Upper film (3) and conductive film
A method for manufacturing an electronic circuit board, comprising: a step of removing a pattern by removing (1); and a step of forming a second wiring layer so as to be electrically connected to the via or the wiring groove.
【請求項8】上記導電膜(1)はCr,Ti,Ni,V,Nb,Ta,Mo,W,A
lおよびそれらの合金、酸化物、窒化物の少なくとも1
つ、あるいは導電膜(1)/Cu/導電膜(1),導電膜(1)/Al/導
電膜(1),導電膜(1)/Au/導電膜(1)のような多層膜から成
り、導電膜(2)はCu,Al,Ni,Au,Pt,Pdおよびそれらの合金
の少なくとも1つから成り、皮膜(3)は導電膜(2)よりも
電気抵抗の高い金属、有機物、無機酸化物、無機窒化物
から成ることを特徴とする請求項7記載の電子回路基板
の製造方法。
8. The conductive film (1) is made of Cr, Ti, Ni, V, Nb, Ta, Mo, W, A
l and at least one of their alloys, oxides and nitrides
Or a multilayer film such as conductive film (1) / Cu / conductive film (1), conductive film (1) / Al / conductive film (1), conductive film (1) / Au / conductive film (1). The conductive film (2) is composed of at least one of Cu, Al, Ni, Au, Pt, Pd and an alloy thereof, and the film (3) is a metal, an organic material having a higher electric resistance than the conductive film (2), 8. The method for manufacturing an electronic circuit board according to claim 7, comprising an inorganic oxide and an inorganic nitride.
【請求項9】請求項7又は請求項8記載の方法を用いて
製造したことを特徴とする電子回路基板。
9. An electronic circuit board manufactured by using the method according to claim 7.
JP1396699A 1999-01-22 1999-01-22 Electronic circuit board and manufacture thereof Pending JP2000216548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1396699A JP2000216548A (en) 1999-01-22 1999-01-22 Electronic circuit board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1396699A JP2000216548A (en) 1999-01-22 1999-01-22 Electronic circuit board and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000216548A true JP2000216548A (en) 2000-08-04

Family

ID=11847969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1396699A Pending JP2000216548A (en) 1999-01-22 1999-01-22 Electronic circuit board and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000216548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783467B1 (en) 2006-02-24 2007-12-07 삼성전기주식회사 Printed circuit board having inner via hole and manufacturing method thereof
JP2009130323A (en) * 2007-11-28 2009-06-11 Kyocera Corp Method of manufacturing wiring board
KR20150095669A (en) * 2012-12-14 2015-08-21 우에무라 고교 가부시키가이샤 Production method for printed wiring board and printed wiring board produced by said method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783467B1 (en) 2006-02-24 2007-12-07 삼성전기주식회사 Printed circuit board having inner via hole and manufacturing method thereof
JP2009130323A (en) * 2007-11-28 2009-06-11 Kyocera Corp Method of manufacturing wiring board
KR20150095669A (en) * 2012-12-14 2015-08-21 우에무라 고교 가부시키가이샤 Production method for printed wiring board and printed wiring board produced by said method
KR102100002B1 (en) 2012-12-14 2020-04-10 우에무라 고교 가부시키가이샤 Production method for printed wiring board and printed wiring board produced by said method

Similar Documents

Publication Publication Date Title
US7666788B2 (en) Methods for forming conductive vias in semiconductor device components
US7279776B2 (en) Method of manufacturing semiconductor device and semiconductor device
US7147766B2 (en) Chip interconnect and packaging deposition methods and structures
WO1990012422A1 (en) G-tab manufacturing process and the product produced thereby
US20080029851A1 (en) Methods of forming conductive vias and methods of forming multichip modules including such conductive vias
US20060177999A1 (en) Microelectronic workpieces and methods for forming interconnects in microelectronic workpieces
JP2001185553A (en) Method for improving electroplating fill
US20060081981A1 (en) Method of forming a bond pad on an I/C chip and resulting structure
US20050029662A1 (en) Semiconductor production method
JP2006161124A (en) Method for forming penetration electrode
JPH09134891A (en) Formation of thin film of semiconductor substrate
JP2006269968A (en) Semiconductor device and its manufacturing method
JP2000216548A (en) Electronic circuit board and manufacture thereof
JPH07321111A (en) Method of forming electroless plated interconnection for integrated circuit
US20110043565A1 (en) Liquid discharge head and method for manufacturing the same
JP4444420B2 (en) Process for forming conductive structure and semiconductor device
JP2984205B2 (en) Anisotropic conductive film
JPH05315336A (en) Manufactue of semiconductor device
FR2782839A1 (en) Fabrication of a semiconductor device, especially an integrated circuit device, comprises forming a conductor in a concave opening by depositing an electroless first conductor film
JP3003422B2 (en) Method for manufacturing semiconductor device
US6823585B2 (en) Method of selective plating on a substrate
US8278564B2 (en) Circuit board viaholes and method of manufacturing the same
KR100421913B1 (en) Method for forming interconnect structures of semiconductor device
JP5596962B2 (en) Method for manufacturing substrate for liquid discharge head and method for manufacturing liquid discharge head
KR100451767B1 (en) Method for forming interconnect structures of semiconductor device