JP2000216496A - Manufacture of semiconductor light emitting element - Google Patents

Manufacture of semiconductor light emitting element

Info

Publication number
JP2000216496A
JP2000216496A JP1299999A JP1299999A JP2000216496A JP 2000216496 A JP2000216496 A JP 2000216496A JP 1299999 A JP1299999 A JP 1299999A JP 1299999 A JP1299999 A JP 1299999A JP 2000216496 A JP2000216496 A JP 2000216496A
Authority
JP
Japan
Prior art keywords
temperature
light emitting
substrate
buffer layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1299999A
Other languages
Japanese (ja)
Other versions
JP3653408B2 (en
Inventor
Kazuaki Sasaki
和明 佐々木
Junichi Nakamura
淳一 中村
Shoichi Oyama
尚一 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1299999A priority Critical patent/JP3653408B2/en
Publication of JP2000216496A publication Critical patent/JP2000216496A/en
Application granted granted Critical
Publication of JP3653408B2 publication Critical patent/JP3653408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a manufacturing method for a semiconductor light emitting element which can reduce a crystal defect and which can enhance an element characteristic. SOLUTION: At a substrate temperature as a first temperature which is higher than a second temperature at which an n-AlGaInP clad layer 3 is to be grown, an n-GaAs buffer layer 2 is grown on an n-GaAs substrate 1. As a result, the migration of Ga which constitutes the n-GaAs substrate 1 and the n-GaAs buffer layer 2 is promoted, and a crystal defect is reduced. In addition, oxygen which is stuck to the n-GaAs substrate 1, a substrate holding implement 12 and a member in the circumference of the substrate holding implement 12 is evaporated, and the n-AlGaInP clad layer 3 is then grown. As a result, when a light emitting layer is grown, the oxygen is not evaporated from the n-GaAs substrate 1, the substrate holding implement 12 and the member in the circumference of the substrate holding implement 12. Consequently, it is possible to prevent that oxygen which forms the center of a light non-emitting recombination creeps to then-AlGaInP clad layer 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子の
製造方法に関し、より詳しくは、有機金属気相成長(M
OCVD)法により、化合物半導体結晶層を成長して半
導体レーザや発光ダイオードを製造する方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for manufacturing a semiconductor light emitting device, and more particularly, to a metal organic chemical vapor deposition (M) method.
The present invention relates to a method of manufacturing a semiconductor laser or a light emitting diode by growing a compound semiconductor crystal layer by an OCVD method.

【0002】[0002]

【従来の技術】従来、結晶欠陥の存在しない良好なAl
GaInP層を成長させる方法としては、基板温度を7
00℃以上の高温に設定した状態で、AlGaInP層
を成長させる方法が提案されている(公開平2−254
715号公報)。
2. Description of the Related Art Conventionally, a favorable Al having no crystal defects has been used.
As a method of growing a GaInP layer, a substrate temperature of 7
A method of growing an AlGaInP layer at a high temperature of 00 ° C. or higher has been proposed (Japanese Patent Laid-Open No. 2-254).
No. 715).

【0003】例えば、図7に示す半導体レーザを製造す
る場合、まず、n−GaAs(ガリウムヒ素)基板1を化
学エッチングによって清浄化し、図6に示すように、n
−GaAs基板1を基板保持具12に保持して反応容器
11内に収容する。この反応容器11内を15〜100
torrの範囲内に減圧し、図8中の領域Iに示すよう
に、反応容器11内にAsH3(アルシン)を含むガスを
導入し、n−GaAs基板1を加熱する。その後、基板
温度を600℃から650℃へ上昇させながら、30分
間n−GaAs基板1の清浄化を行う。それから、TM
G(トリメチルガリウム)を含むガスを反応容器11内に
導入して、n−GaAs基板1上にn−GaAsバッフ
ァ層2を成長させる。n−GaAsバッファ層2を所定
の厚さまで成長させた後、TMGの導入を止めて、n−
GaAsバッファ層2の成長を停止させる。次に、図8
中の領域IIに示すように、基板温度を745〜755℃
まで昇温させた後、図8中の領域IIIに示すように反応
容器11内へのAsH3の導入を停止する。そして、反
応容器11内を一旦15〜35torrに減圧して、反
応容器11内へPH3(ホスフィン)を含むガスを導入し
始める。その後、反応容器11内のAsH3を置換する
ために約1秒の時間tを置き、予め所定の混合比に調整
したTMA(トリメチルアルミニウム)、TMGおよびT
MI(トリメチルインジウム)を含むガスを反応容器11
内に導入して、n−GaAsバッファ層2上にn−Al
GaInPクラッド層3を所定の厚さまで成長させる。
For example, when manufacturing the semiconductor laser shown in FIG. 7, first, an n-GaAs (gallium arsenide) substrate 1 is cleaned by chemical etching, and as shown in FIG.
-The GaAs substrate 1 is held in the substrate holder 12 and accommodated in the reaction vessel 11. The inside of the reaction vessel 11 is 15 to 100
The pressure is reduced within the range of torr, and a gas containing AsH 3 (arsine) is introduced into the reaction vessel 11 to heat the n-GaAs substrate 1 as shown in a region I in FIG. Thereafter, the n-GaAs substrate 1 is cleaned for 30 minutes while increasing the substrate temperature from 600 ° C. to 650 ° C. Then, TM
A gas containing G (trimethylgallium) is introduced into the reaction vessel 11 to grow the n-GaAs buffer layer 2 on the n-GaAs substrate 1. After growing the n-GaAs buffer layer 2 to a predetermined thickness, the introduction of TMG is stopped, and
The growth of the GaAs buffer layer 2 is stopped. Next, FIG.
As shown in region II, the substrate temperature was 745-755 ° C.
After the temperature is raised to the maximum, the introduction of AsH 3 into the reaction vessel 11 is stopped as shown in a region III in FIG. Then, the pressure inside the reaction vessel 11 is temporarily reduced to 15 to 35 torr, and the introduction of a gas containing PH 3 (phosphine) into the reaction vessel 11 is started. Thereafter, a time t of about 1 second is set to replace AsH 3 in the reaction vessel 11, and TMA (trimethylaluminum), TMG and TMG adjusted to a predetermined mixing ratio in advance are set.
A gas containing MI (trimethylindium) is supplied to the reaction vessel 11
To introduce n-Al on the n-GaAs buffer layer 2.
The GaInP cladding layer 3 is grown to a predetermined thickness.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の半導体発光素子の製造方法では、n−AlGaIn
Pクラッド層3を成長すべき基板温度(745℃〜75
5℃)より低い基板温度(600℃〜650℃)でn−G
aAsバッファ層2を成長させているため、n−GaA
s基板1内におけるGaのマイグレーションが充分に行
われない。その結果、n−GaAs基板1表面に最初に
存在していた転位を完全になくすことができず、発光層
等の高Al組成の結晶層において、ヒロックに代表され
る結晶欠陥が高密度で存在するという問題がある。ま
た、基板保持部材12に最初に吸着していた酸素をAl
GaInP層が取り込むため、その酸素が非発光再結合
中心を形成して、素子特性の低下を引き起こすという欠
点がある。
However, in the above-mentioned conventional method for manufacturing a semiconductor light emitting device, n-AlGaIn
The substrate temperature at which the P clad layer 3 is to be grown (745 ° C. to 75
N-G at a substrate temperature (600 ° C to 650 ° C) lower than
Since the aAs buffer layer 2 is grown, n-GaAs
Ga migration in the s substrate 1 is not sufficiently performed. As a result, dislocations initially present on the surface of the n-GaAs substrate 1 cannot be completely eliminated, and crystal defects represented by hillocks are present at high density in a crystal layer having a high Al composition such as a light emitting layer. There is a problem of doing. Further, the oxygen initially adsorbed on the substrate holding member 12 is changed to Al
Since the GaInP layer takes in the oxygen, the oxygen forms a non-radiative recombination center, which causes a problem that the device characteristics are deteriorated.

【0005】そこで、本発明の目的は、結晶欠陥を低減
でき、素子特性を向上できる半導体発光素子の製造方法
を提供することにある。
Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor light emitting device which can reduce crystal defects and improve device characteristics.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の半導体発光素子の製造方法は、結晶成長
用反応容器内に半導体基板をこの半導体基板を保持した
基板保持部材とともに収容し、上記反応容器内にIII族
およびV族元素の水素化物またはIII族およびV族元素
のアルキル化合物を含むガスを導入して、上記基板上に
少なくともIII―V族化合物半導体からなるバッファ層
と発光層とを所定の成長温度で順次成長させる半導体発
光素子の製造方法において、上記バッファ層の原料とな
るIII族元素として少なくともガリウム(Ga)またはイ
ンジウム(In)を用い、上記バッファ層を成長すべき第
1温度を、上記発光層を成長すべき第2温度よりも高く
設定して、上記バッファ層を成長させる間に上記基板保
持部材に付着した酸素を蒸発させて、上記第2温度で上
記発光層を成長させる間に上記基板保持部材より酸素の
蒸発が生じないようにしたことを特徴としている。
According to a first aspect of the present invention, there is provided a method for manufacturing a semiconductor light emitting device, wherein a semiconductor substrate is accommodated in a reactor for crystal growth together with a substrate holding member holding the semiconductor substrate. Introducing a gas containing a hydride of a group III element and a group V element or an alkyl compound of a group III element and a group V element into the reaction vessel to form a light emitting layer on the substrate, the buffer layer comprising at least a group III-V compound semiconductor; In the method for manufacturing a semiconductor light emitting element in which a layer and a layer are sequentially grown at a predetermined growth temperature, at least gallium (Ga) or indium (In) is used as a group III element serving as a material of the buffer layer, and the buffer layer should be grown. The first temperature is set higher than the second temperature at which the light emitting layer is to be grown, and the oxygen attached to the substrate holding member is evaporated during the growth of the buffer layer. Thus, oxygen is not evaporated from the substrate holding member during the growth of the light emitting layer at the second temperature.

【0007】ここで、上記基板保持部材は、基板を直接
保持する保持具のみならず、保持具とともに反応容器内
に収容される部材を含んでいる。
Here, the substrate holding member includes not only a holder for directly holding a substrate but also a member housed in a reaction vessel together with the holder.

【0008】上記請求項1の半導体発光素子の製造方法
によれば、上記結晶成長用反応容器内に半導体基板をこ
の半導体基板を保持した基板保持部材とともに収容す
る。そして、上記バッファ層を成長すべき第1温度を、
上記発光層を成長すべき第2温度よりも高く設定して、
半導体基板上にバッファ層を成長させるとともに、基板
保持部材に付着した酸素を蒸発させる。それから、発光
層を成長すべき第2温度まで成長温度を降温させて、バ
ッファ層上に発光層を成長させる。
According to the method of manufacturing a semiconductor light emitting device of the first aspect, the semiconductor substrate is accommodated in the crystal growth reaction container together with the substrate holding member holding the semiconductor substrate. Then, the first temperature at which the buffer layer is to be grown is:
Setting the light emitting layer higher than a second temperature to be grown;
A buffer layer is grown on the semiconductor substrate, and oxygen attached to the substrate holding member is evaporated. Then, the growth temperature is lowered to the second temperature at which the light emitting layer is to be grown, and the light emitting layer is grown on the buffer layer.

【0009】このように、上記半導体発光素子の製造方
法では、発光層を成長すべき第2温度よりも高い第1温
度で半導体基板上にバッファ層を成長させるので、半導
体基板表面に存在していた転位が減少する。また、バッ
ファ層がマイグレーション速度の速いガリウムまたはイ
ンジウムを含んでいるので、バッファ層における結晶欠
陥の発生を容易に防ぐことが可能となる。したがって、
転位の少ない半導体基板上のバッファ層の結晶欠陥はよ
り減少して、そのバッファ層上に成長させる発光層の結
晶欠陥を低減できる。また、バッファ層成長時に、発光
層を成長すべき第2温度よりも高い第1温度で基板保持
部材に付着した酸素を蒸発させてから発光層を成長させ
るので、上記発光層を成長させる間に上記基板保持部材
から酸素が蒸発しないようにすることができる。したが
って、非発光再結合中心を形成する酸素が発光層に侵入
するのを防止できる。この結果、高い発光効率を有する
半導体発光素子を製造できる。
As described above, in the above-described method for manufacturing a semiconductor light emitting device, the buffer layer is grown on the semiconductor substrate at the first temperature higher than the second temperature at which the light emitting layer is to be grown. Dislocations decrease. Further, since the buffer layer contains gallium or indium having a high migration speed, it is possible to easily prevent the generation of crystal defects in the buffer layer. Therefore,
The crystal defects of the buffer layer on the semiconductor substrate with few dislocations are further reduced, and the crystal defects of the light emitting layer grown on the buffer layer can be reduced. Further, at the time of growing the buffer layer, the light-emitting layer is grown after evaporating oxygen attached to the substrate holding member at a first temperature higher than the second temperature at which the light-emitting layer is to be grown. Oxygen can be prevented from evaporating from the substrate holding member. Therefore, it is possible to prevent oxygen forming the non-radiative recombination center from entering the light-emitting layer. As a result, a semiconductor light emitting device having high luminous efficiency can be manufactured.

【0010】また、請求項2の半導体発光素子の製造方
法は、請求項1に記載の半導体発光素子の製造方法にお
いて、上記バッファ層を成長させた後、成長温度を上記
第2温度以下にした状態で上記V族元素の種類を切り替
えて、成長温度を上げながら上記発光層を成長させ始
め、上記第2温度に達した状態で上記発光層を所定の厚
さまで成長させることを特徴としている。
According to a second aspect of the present invention, in the method of manufacturing a semiconductor light emitting device according to the first aspect, after growing the buffer layer, the growth temperature is set to the second temperature or lower. The method is characterized in that the type of the group V element is switched in the state, the growth of the light emitting layer is started while increasing the growth temperature, and the light emitting layer is grown to a predetermined thickness when the temperature reaches the second temperature.

【0011】上記請求項2の半導体発光素子の製造方法
によれば、上記バッファ層を成長させた後、発光層を成
長すべき第2温度以下に成長温度を降温させた状態でV
族元素の種類が切り替えられる。それから、発光層を成
長させながら成長温度を第2温度まで上昇させて、その
第2温度の状態でバッファ層上に発光層を所定の厚さま
で成長させる。このように、上記発光層を成長すべき第
2温度より低い成長温度の状態で、V族元素の種類が切
り替えられる。したがって、V族元素の種類の切り替え
時に、バッファ層を構成するV族元素の空孔(所謂抜け)
が生じるのを防止することができる。
According to the method of manufacturing a semiconductor light emitting device of the second aspect, after the buffer layer is grown, V is increased in a state where the growth temperature is lowered to a second temperature or less at which the light emitting layer is to be grown.
The type of group element can be switched. Then, the growth temperature is raised to the second temperature while growing the light emitting layer, and the light emitting layer is grown to a predetermined thickness on the buffer layer at the second temperature. As described above, the type of the group V element is switched at a growth temperature lower than the second temperature at which the light emitting layer is to be grown. Therefore, when switching the type of the group V element, the vacancy (so-called void) of the group V element constituting the buffer layer is changed.
Can be prevented from occurring.

【0012】また、請求項3の半導体発光素子の製造方
法は、請求項1に記載の半導体発光素子の製造方法にお
いて、上記バッファ層上に、成長温度を上記第2温度よ
り低い第3温度に設定した状態で第2バッファ層を成長
させた後、上記V族元素の種類を切り替えて、成長温度
を上げながら上記発光層を成長させ始め、成長温度が上
記第2温度に達した状態で上記発光層を所定の厚さまで
成長させることを特徴としている。
According to a third aspect of the present invention, in the method of manufacturing a semiconductor light emitting device according to the first aspect, the growth temperature is set to a third temperature lower than the second temperature on the buffer layer. After growing the second buffer layer in the set state, the type of the group V element is switched, and the light emitting layer is started to grow while increasing the growth temperature. When the growth temperature reaches the second temperature, It is characterized in that the light emitting layer is grown to a predetermined thickness.

【0013】上記請求項3の半導体発光素子の製造方法
によれば、発光層を成長すべき第2温度より高い第1温
度に成長温度を設定した状態で、半導体基板上にバッフ
ァ層を成長させる。それから、発光層を成長すべき第2
温度より低い第3温度に成長温度を設定した状態で、バ
ッファ層上に第2バッファ層を成長させる。そして、成
長温度が第3温度の状態でV族元素の種類を切り替えた
後、発光層を成長させながら成長温度を第2温度まで昇
温させて、その第2温度の状態で第2バッファ層上に発
光層を所定の厚さまで成長させる。このように、発光層
を成長すべき第2温度より低い第3温度に成長温度が設
定されて、バッファ層上に第2バッファ層が成長される
とともに、V族元素の種類が切り替えられる。この結
果、結晶欠陥の少ないバッファ層上に成長させた第2バ
ッファ層の結晶欠陥はより減少する。その上、V族元素
の種類を切り替え時に、第2バッファ層を構成するV族
元素の空孔(所謂抜け)が生じることもない。したがっ
て、第2バッファ層表面を清浄に保つことが可能であ
る。
According to the third aspect of the present invention, the buffer layer is grown on the semiconductor substrate with the growth temperature set at the first temperature higher than the second temperature at which the light emitting layer is to be grown. . Then, the second to grow the light emitting layer
A second buffer layer is grown on the buffer layer with the growth temperature set to a third temperature lower than the temperature. Then, after switching the type of the group V element at the growth temperature of the third temperature, the growth temperature is increased to the second temperature while growing the light emitting layer, and the second buffer layer is grown at the second temperature. A light emitting layer is grown thereon to a predetermined thickness. As described above, the growth temperature is set to the third temperature lower than the second temperature at which the light emitting layer is to be grown, the second buffer layer is grown on the buffer layer, and the type of the group V element is switched. As a result, the crystal defects of the second buffer layer grown on the buffer layer with few crystal defects are further reduced. In addition, vacancies (so-called voids) of the group V element constituting the second buffer layer do not occur when the type of the group V element is switched. Therefore, it is possible to keep the surface of the second buffer layer clean.

【0014】[0014]

【発明の実施の形態】以下、本発明の図示の実施の形態
を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, illustrated embodiments of the present invention will be described in detail.

【0015】(第1実施形態)図1は、半導体レーザを製
造するためのシーケンスを示している。なお、この実施
形態で作製すべき半導体レーザは、図7に示したものと
同じ構造を持ち、n−GaAs基板1上にn−GaAs
バッファ層2、n−AlGaInPクラッド層3、Al
GaInP活性層4、p−AlGaInPクラッド層
5、n−GaAs電流ブロック層6、p−GaAsコン
タクト層7が順次積層されたものである。この半導体レ
ーザを製造するための材料として、III族元素としての
TMA、TMGおよびTMIを含むガスと、V族元素と
してのAsH3およびPH3を含むガスとが使用される。
(First Embodiment) FIG. 1 shows a sequence for manufacturing a semiconductor laser. The semiconductor laser to be manufactured in this embodiment has the same structure as that shown in FIG. 7, and the n-GaAs substrate 1 has n-GaAs
Buffer layer 2, n-AlGaInP cladding layer 3, Al
A GaInP active layer 4, a p-AlGaInP clad layer 5, an n-GaAs current block layer 6, and a p-GaAs contact layer 7 are sequentially laminated. As a material for manufacturing this semiconductor laser, a gas containing TMA, TMG and TMI as Group III elements and a gas containing AsH 3 and PH 3 as Group V elements are used.

【0016】まず、図6に示すように、n−GaAs基
板1を反応容器11に基板保持具12に保持して収容す
る。この反応容器11内を10〜100torrに減圧
して、図1中の領域Iに示すように、その反応容器11
内にAsH3を含むガスを導入する。その後、n−Ga
As基板1を加熱し始め、n−GaAsバッファ層2を
成長すべき第1温度(770〜830℃が望ましい)、例
えば800℃まで基板温度を昇温させる。それから、こ
の基板温度を800℃に保ちつつ、反応容器11内にT
MGを含むガスを導入して、n−GaAs基板1上にn
−GaAsバッファ層2を成長させるとともに、n−G
aAs基板1、基板保持具12および基板保持具12周
辺の部材に付着している酸素を蒸発させる。そして、n
−GaAsバッファ層2を所定の厚さまで成長させた
後、反応容器11内へのTMGの導入を止めて、n−G
aAsバッファ層2の成長を停止させる。次に、図1中
の領域IIに示すように、n−AlGaInPクラッド層
3を成長すべき第2温度、例えば750℃まで基板温度
を降温させる。次に、図1中の領域IIIに示すように、
反応容器11内に導入していたガスのV族元素の種類
を、AsH3からPH3に切り替える。そして、反応容器
11内に残るAsH3を置換するために、PH3を含むガ
スのみを反応容器11内に導入した状態で時間t、例え
ばt=2秒経過させる。その後、TMA、TMGおよび
TMIを含むガスを反応容器11内に導入して、n−G
aAsバッファ層2上にn−AlGaInPクラッド層
3を所定の厚さまで成長させる。
First, as shown in FIG. 6, an n-GaAs substrate 1 is held in a reaction vessel 11 while being held by a substrate holder 12. The pressure inside the reaction vessel 11 was reduced to 10 to 100 torr, and as shown in a region I in FIG.
A gas containing AsH 3 is introduced therein. Then, n-Ga
The heating of the As substrate 1 is started, and the substrate temperature is raised to a first temperature (preferably 770 to 830 ° C.) at which the n-GaAs buffer layer 2 is to be grown, for example, 800 ° C. Then, while maintaining the substrate temperature at 800 ° C., T
A gas containing MG is introduced, and n-GaAs substrate 1 is filled with n.
Growing the GaAs buffer layer 2 and n-G
Oxygen adhering to the aAs substrate 1, the substrate holder 12, and members around the substrate holder 12 is evaporated. And n
After growing the GaAs buffer layer 2 to a predetermined thickness, the introduction of TMG into the reaction vessel 11 is stopped, and n-G
The growth of the aAs buffer layer 2 is stopped. Next, as shown in a region II in FIG. 1, the substrate temperature is decreased to a second temperature at which the n-AlGaInP clad layer 3 is to be grown, for example, 750 ° C. Next, as shown in a region III in FIG.
The kind of the group V element of the gas introduced into the reaction vessel 11 is switched from AsH 3 to PH 3 . Then, in order to replace AsH 3 remaining in the reaction vessel 11, a time t, for example, t = 2 seconds elapses while only the gas containing PH 3 is introduced into the reaction vessel 11. After that, a gas containing TMA, TMG and TMI is introduced into the reaction vessel 11, and n-G
An n-AlGaInP cladding layer 3 is grown on the aAs buffer layer 2 to a predetermined thickness.

【0017】このように、上記領域Iにおいて、n−A
lGaInPクラッド層3の成長時の第2温度(750
℃)より高い第1温度(800℃)に基板温度を設定した
状態で、n−GaAsバッファ層2が成長されるので、
n−GaAs基板1を構成するGaのマイグレーション
が促進され、n−GaAs基板1表面に存在していた転
位が低減される。この結果、転位の少ないn−GaAs
基板1上に成長させるn−GaAsバッファ層2の結晶
欠陥が減少する。さらに、n−GaAsバッファ層2も
マイグレーション速度の速いGaを含んでいるので、n
−GaAsバッファ層2の結晶欠陥がより減少する。し
たがって、良好な結晶性を有するn−GaAsバッファ
層2上に成長させたn−AlGaInPクラッド層3で
は、ヒロック等の結晶欠陥を大幅に低減できる(従来例
では、n−AlGaInPクラッド層3の結晶欠陥が1
0000/cm3なのに対し、この例では、n−AlGa
InPクラッド層3の結晶欠陥密度が1000/cm3
なっている)。
As described above, in the region I, nA
The second temperature during growth of the lGaInP cladding layer 3 (750
C)), the n-GaAs buffer layer 2 is grown with the substrate temperature set to a first temperature (800 ° C.) higher than
The migration of Ga constituting the n-GaAs substrate 1 is promoted, and the dislocation existing on the surface of the n-GaAs substrate 1 is reduced. As a result, n-GaAs with few dislocations
Crystal defects of the n-GaAs buffer layer 2 grown on the substrate 1 are reduced. Further, since the n-GaAs buffer layer 2 also contains Ga having a high migration rate, n
-The crystal defects of the GaAs buffer layer 2 are further reduced. Therefore, in the n-AlGaInP cladding layer 3 grown on the n-GaAs buffer layer 2 having good crystallinity, crystal defects such as hillocks can be significantly reduced. 1 defect
0000 / cm 3 , whereas in this example n-AlGa
The crystal defect density of the InP cladding layer 3 is 1000 / cm 3 ).

【0018】また、n−GaAs基板1、基板保持具1
2および基板保持具12周辺の部材に付着した酸素を蒸
発させてからn−AlGaInPクラッド層3を成長さ
せるので、n−AlGaInPクラッド層3を成長させ
る間にn−GaAs基板1、基板保持具12および基板
保持具12周辺の部材から酸素が蒸発しないようにする
ことができる。この結果、図2(b)に示す従来のn−A
lGaInPクラッド層3に含まれる酸素濃度に比べ
て、図2(a)に示すようにこの実施形態のn−AlGa
InPクラッド層3内の酸素濃度が大幅に低減される。
このように、n−AlGaInPクラッド層3への酸素
の混入が略完全に防止されるので、n−AlGaInP
クラッド層3を含む発光層の特性を向上することができ
る。この結果、この発光層を有する半導体レーザは、発
振しきい値密度を1.5kA/cm2から1kA/cm2
に低減できる。さらに、黄色の発光ダイオードでは、5
mm径ランプの形態で軸上光度が4cdから6cdに向上し
た。
Further, an n-GaAs substrate 1, a substrate holder 1
Since the n-AlGaInP clad layer 3 is grown after evaporating oxygen attached to the members around the substrate holder 12 and the substrate holder 12, the n-GaAs substrate 1 and the substrate holder 12 are grown during the growth of the n-AlGaInP clad layer 3. Further, it is possible to prevent oxygen from evaporating from members around the substrate holder 12. As a result, the conventional n-A shown in FIG.
Compared to the oxygen concentration contained in the lGaInP cladding layer 3, as shown in FIG.
The oxygen concentration in the InP cladding layer 3 is greatly reduced.
As described above, since the incorporation of oxygen into the n-AlGaInP cladding layer 3 is almost completely prevented, the n-AlGaInP
The characteristics of the light emitting layer including the cladding layer 3 can be improved. As a result, semiconductor lasers, 1 kA / cm 2 oscillation threshold density from 1.5 kA / cm 2 having the light-emitting layer
Can be reduced to Furthermore, for the yellow light emitting diode, 5
The axial luminous intensity was increased from 4 cd to 6 cd in the form of a mm diameter lamp.

【0019】(第2実施形態)図3は、半導体レーザ(図
7に示したのと同じ構造を持つ)を製造するための第1
実施形態とは別のシーケンスを示している。
(Second Embodiment) FIG. 3 shows a first embodiment for manufacturing a semiconductor laser (having the same structure as that shown in FIG. 7).
7 shows a sequence different from that of the embodiment.

【0020】まず、図6に示すように、n−GaAs基
板1を基板保持具12に保持して反応容器11内に収納
する。そして、反応容器11内を10〜100torr
に減圧して、図3中の領域Iに示すように、その反応容
器11内にAsH3を導入する。それから、n−GaA
s基板1を加熱し始め、n−GaAsバッファ層2を成
長すべき第1温度(770から830℃が望ましい)、例
えば810℃まで基板温度を昇温させる。基板温度が8
10℃に達した状態で、TMGを含むガスを反応容器1
1内に導入して、n−GaAs基板1上にn−GaAs
バッファ層2を成長させるとともに、n−GaAs基板
1上、基板保持具12および基板保持具12周辺の部材
に付着している酸素を蒸発させる。そして、このn−G
aAsバッファ層2を所定の厚さまで成長させた後、反
応容器11内へのTMGの導入を止めて、n−GaAs
バッファ層2の成長を停止させる。次に、図3中の領域
IIに示すように基板温度を700℃に降温させた後、反
応容器11内に導入していたガスのV族元素の種類を、
AsH3からPH3に切り替える。そして、例えばt=5秒
後、TMA、TMGおよびTMIを含むガスを反応容器
11内に導入して、n−AlGaInPクラッド層3を
成長させ始める。そして、n−AlGaInPクラッド
層3を成長させつつ、良好な結晶性が得られる第2温
度、例えば760℃まで基板温度を昇温させた後、図3
中の領域IIIに示すようにn−GaAsバッファ層2上
にn−AlGaInPクラッド層3を所定の厚さまで成
長させる。
First, as shown in FIG. 6, an n-GaAs substrate 1 is held in a substrate holder 12 and housed in a reaction vessel 11. Then, the inside of the reaction vessel 11 is 10 to 100 torr.
Then, AsH 3 is introduced into the reaction vessel 11 as shown in a region I in FIG. Then, n-GaAs
The s substrate 1 is started to be heated, and the substrate temperature is raised to a first temperature (preferably 770 to 830 ° C.) at which the n-GaAs buffer layer 2 is to be grown, for example, 810 ° C. Substrate temperature is 8
When the temperature reaches 10 ° C., the gas containing TMG is supplied to the reaction vessel 1
1 and n-GaAs substrate 1 on n-GaAs substrate 1.
While growing the buffer layer 2, oxygen adhering to the n-GaAs substrate 1, the substrate holder 12 and members around the substrate holder 12 is evaporated. And this nG
After growing the aAs buffer layer 2 to a predetermined thickness, the introduction of TMG into the reaction vessel 11 is stopped, and the n-GaAs
The growth of the buffer layer 2 is stopped. Next, the area in FIG.
After the substrate temperature was lowered to 700 ° C. as shown in II, the type of group V element of the gas introduced into the reaction vessel 11 was changed to
Switching from AsH 3 to PH 3. Then, for example, after t = 5 seconds, a gas containing TMA, TMG and TMI is introduced into the reaction vessel 11, and the growth of the n-AlGaInP clad layer 3 is started. Then, while growing the n-AlGaInP cladding layer 3, the substrate temperature is raised to a second temperature at which good crystallinity is obtained, for example, 760 ° C.
An n-AlGaInP cladding layer 3 is grown on the n-GaAs buffer layer 2 to a predetermined thickness as shown in a region III in the middle.

【0021】このように、n−AlGaInPクラッド
層3を成長すべき第2温度(760℃)より低い基板温度
(700℃)の状態で、反応容器11内へ導入するガスの
V族元素がAsH3からPH3に切り替えられるので、A
sH3からPH3に切り替える時にn−GaAsバッファ
層2を構成するAsの空孔(所謂抜け)が生じるのを最小
限に抑えることができる。したがって、第1実施形態に
比べて、n−AlGaInPクラッド層3におけるヒロ
ック等の結晶欠陥をさらに低減できる(第1実施形態で
は、n−AlGaInPクラッド層3の結晶欠陥が10
00/cm3なのに対し、この例では、n−AlGaIn
Pクラッド層3の結晶欠陥密度が100/cm3となって
いる)。また、第1実施形態の場合と同様に、n−Ga
As基板1、基板保持具12および基板保持具12周辺
の部材に付着した酸素を蒸発させた後、最早酸素が蒸発
しない状態で発光層を成長させるので、非発光再結合中
心を形成する酸素が発光層に侵入せず、高い発光効率を
有する半導体発光素子を製造できる。
As described above, the substrate temperature lower than the second temperature (760 ° C.) at which the n-AlGaInP clad layer 3 is to be grown.
(700 ° C.), the group V element of the gas introduced into the reaction vessel 11 is switched from AsH 3 to PH 3.
When switching from sH 3 to PH 3 , it is possible to minimize the occurrence of vacancies (so-called voids) of As forming the n-GaAs buffer layer 2. Therefore, crystal defects such as hillocks in the n-AlGaInP cladding layer 3 can be further reduced as compared to the first embodiment (in the first embodiment, the number of crystal defects in the n-AlGaInP cladding layer 3 is 10%).
00 / cm 3 such whereas, in this example, n-AlGaIn
The crystal defect density of the P cladding layer 3 is 100 / cm 3 ). Also, as in the case of the first embodiment, n-Ga
After evaporating oxygen adhering to the As substrate 1, the substrate holder 12, and members around the substrate holder 12, the light emitting layer is grown in a state where oxygen no longer evaporates. A semiconductor light emitting device having high luminous efficiency without entering the light emitting layer can be manufactured.

【0022】(第3実施形態)図4は、半導体レーザを製
造するためのシーケンスを示す。なお、この実施形態で
作製すべき半導体レーザの断面図を図5に示している。
この半導体レーザでは、n−GaAsバッファ層2aと
n−GaAs第2バッファ層2bとでn−GaAs基板
1上のバッファ層を構成している点のみが、図7に示す
半導体レーザと異なる。
(Third Embodiment) FIG. 4 shows a sequence for manufacturing a semiconductor laser. FIG. 5 is a sectional view of a semiconductor laser to be manufactured in this embodiment.
This semiconductor laser differs from the semiconductor laser shown in FIG. 7 only in that the n-GaAs buffer layer 2a and the n-GaAs second buffer layer 2b constitute a buffer layer on the n-GaAs substrate 1.

【0023】まず、図6に示すように、n−GaAs基
板1を基板保持具12に保持して反応容器11内に収容
する。それから、反応容器11内を10〜100tor
rに減圧して、図4中の領域Iに示すように、この反応
容器11内にAsH3を含むガスを導入する。そして、
n−GaAs基板1を加熱し、n−GaAsバッファ層
2aを成長すべき第1温度(770〜830℃が望まし
い)、例えば790℃まで基板温度を昇温させる。基板
温度を790℃に保ちつつ、反応容器11内にTMGを
含むガスを導入して、n−GaAsバッファ層2a上に
n−GaAs基板1上にn−GaAsバッファ層2aを
成長させるとともに、n−GaAs基板1上、基板保持
具12および基板保持具12周辺の部材に付着している
酸素を蒸発させる。このn−GaAsバッファ層2aを
所定の厚さまで成長させた後、反応容器11内へのTM
Gを含むガス導入を止めて、n−GaAsバッファ層2
aの成長を停止させる。次に、図4中の領域lIに示すよ
うに、n−GaAs第2バッファ層2bを成長すべき第
3温度の680℃まで基板温度を降温させた後、TMG
を含むガスを再び反応容器11内に導入して、n−Ga
Asバッファ層2a上にn−GaAs第2バッファ層2
bを成長させる。その後、反応容器11内へのTMGの
導入を止めて、反応容器11内に導入していたガスのV
族元素をAsH3からPH3に切り替える。そして、例え
ばt=10秒後、TMA、TMGおよびTMIを含むガ
スを反応容器11内に導入して、n−AlGaInPク
ラッド層3の成長を開始する。それから、n−AlGa
InPクラッド層3の成長をさせつつ、良好な結晶性が
得られる第2温度、例えば760℃まで基板温度を昇温
させた後、図4中の領域IIIに示すようにn−GaAs
第2バッファ層2b上にn−AlGaInPクラッド層
3を所定の厚さまで成長させる。
First, as shown in FIG. 6, the n-GaAs substrate 1 is held in the substrate holder 12 and accommodated in the reaction vessel 11. Then, the inside of the reaction vessel 11 is 10 to 100 torr.
The pressure is reduced to r, and a gas containing AsH 3 is introduced into the reaction vessel 11 as shown in a region I in FIG. And
The n-GaAs substrate 1 is heated, and the substrate temperature is raised to a first temperature (770-830 ° C. is desirable) at which the n-GaAs buffer layer 2a is to be grown, for example, 790 ° C. While maintaining the substrate temperature at 790 ° C., a gas containing TMG is introduced into the reaction vessel 11 to grow the n-GaAs buffer layer 2 a on the n-GaAs substrate 1 on the n-GaAs buffer layer 2 a, Oxygen adhering to the substrate holder 12 and members around the substrate holder 12 on the GaAs substrate 1 is evaporated. After growing the n-GaAs buffer layer 2a to a predetermined thickness, the TM
The introduction of the gas containing G is stopped, and the n-GaAs buffer layer 2 is removed.
Stop the growth of a. Next, as shown in a region 11 in FIG. 4, the substrate temperature is lowered to 680 ° C., which is the third temperature at which the n-GaAs second buffer layer 2b is to be grown, and then TMG
Is introduced into the reaction vessel 11 again, and n-Ga
N-GaAs second buffer layer 2 on As buffer layer 2a
grow b. Thereafter, the introduction of TMG into the reaction vessel 11 is stopped, and the V of the gas introduced into the reaction vessel 11 is reduced.
The group element is switched from AsH 3 to PH 3 . Then, for example, after t = 10 seconds, a gas containing TMA, TMG and TMI is introduced into the reaction vessel 11, and the growth of the n-AlGaInP cladding layer 3 is started. Then, n-AlGa
After growing the substrate temperature to a second temperature at which good crystallinity is obtained, for example, 760 ° C. while growing the InP cladding layer 3, n-GaAs is formed as shown in a region III in FIG.
An n-AlGaInP cladding layer 3 is grown on the second buffer layer 2b to a predetermined thickness.

【0024】このように、n−AlGaInPクラッド
層3を成長すべき第2温度(760℃)より高い第1温度
(790℃)の基板温度で成長させることによって結晶欠
陥を低減したn−GaAsバッファ層2a上にn−Ga
As第2バッファ層2bを成長させるので、n−GaA
s第2バッファ層2bにおいて結晶欠陥は略存在しな
い。その上、n−AlGaInPクラッド層3を成長す
べき第2温度(760℃)より低い第3温度(680℃)に
基板温度を設定した状態で、反応容器11内へ導入する
ガスのV族元素をAsH3からPH3に切り替えるので、
n−GaAs第2バッファ層2bを構成するAsの空孔
(所謂抜け)の発生を最小限に抑えられる。したがって、
n−GaAs第2バッファ層2b表面をより清浄な状
態、つまり結晶欠陥のより少ない状態に保つことが可能
である。(第2実施形態では、n−AlGaInPクラ
ッド層3の結晶欠陥密度が100/cm3なのに対し、こ
の例では、n−AlGaInPクラッド層3の結晶欠陥
密度が50/cm3となっている)。また、第1、第2実
施形態の場合と同様に、n−GaAs基板1上、基板保
持具12および基板保持具12周辺の部材に付着した酸
素を蒸発させた後、最早酸素が蒸発しない状態で発光層
を成長させるので、非発光再結合中心を形成する酸素が
発光層に侵入せず、高い発光効率を有する半導体発光素
子を製造できる。
As described above, the first temperature higher than the second temperature (760 ° C.) at which the n-AlGaInP clad layer 3 is to be grown.
N-GaAs buffer layer 2a having crystal defects reduced by growing at a substrate temperature of (790 ° C.).
Since the As second buffer layer 2b is grown, n-GaAs
s The second buffer layer 2b has substantially no crystal defects. In addition, with the substrate temperature set to a third temperature (680 ° C.) lower than the second temperature (760 ° C.) at which the n-AlGaInP clad layer 3 is to be grown, a group V element of a gas introduced into the reaction vessel 11 is set. Is switched from AsH 3 to PH 3 .
As vacancies constituting the n-GaAs second buffer layer 2b
(So-called omission) can be minimized. Therefore,
It is possible to keep the surface of the n-GaAs second buffer layer 2b in a cleaner state, that is, a state with less crystal defects. (In the second embodiment, the crystal defect density of the n-AlGaInP cladding layer 3 is 100 / cm 3 , whereas in this example, the crystal defect density of the n-AlGaInP cladding layer 3 is 50 / cm 3 ). Further, as in the first and second embodiments, after the oxygen attached to the substrate holder 12 and the members around the substrate holder 12 on the n-GaAs substrate 1 is evaporated, the oxygen no longer evaporates. Therefore, a semiconductor light emitting device having high luminous efficiency can be manufactured since oxygen forming a non-radiative recombination center does not enter the light emitting layer.

【0025】上記実施形態では、n−GaAs基板1上
にn−GaAsバッファ層2aを成長させたが、例えば
サファイア基板にGaNバッファ層を成長させる場合、
結晶になったGaNバッファ層が基板の役割を果たすの
で、発光層の成長温度より高い成長温度に設定した状態
で、このGaNバッファ層上に改めて本発明でいうバッ
ファ層を成長させてもよい。
In the above embodiment, the n-GaAs buffer layer 2a is grown on the n-GaAs substrate 1. For example, when growing a GaN buffer layer on a sapphire substrate,
Since the crystallized GaN buffer layer plays the role of a substrate, the buffer layer according to the present invention may be grown again on the GaN buffer layer with the growth temperature set higher than the growth temperature of the light emitting layer.

【0026】[0026]

【発明の効果】以上より明らかなように、請求項1の発
明の半導体発光素子の製造方法では、発光層を成長すべ
き第2温度よりも高い第1温度に成長温度を設定して、
半導体基板上にバッファ層を成長させるので、半導体基
板表面に存在していた転位を低減できる。また、この半
導体発光素子の製造方法では、マイグレーション速度の
速いガリウムまたはインジウムをバッファ層が含んでい
るので、バッファ層の結晶欠陥をさらに低減できる。し
たがって、発光層における結晶欠陥を大幅に低減でき
る。また、基板保持部材に付着した酸素を蒸発させた
後、最早酸素が蒸発しない状態で発光層を成長させるの
で、非発光再結合中心を形成する酸素が発光層に侵入せ
ず、高い発光効率を有する半導体発光素子を製造でき
る。
As is clear from the above, in the method of manufacturing a semiconductor light emitting device according to the first aspect of the present invention, the growth temperature is set to a first temperature higher than the second temperature at which the light emitting layer is to be grown.
Since the buffer layer is grown on the semiconductor substrate, dislocation existing on the surface of the semiconductor substrate can be reduced. Further, in the method for manufacturing a semiconductor light emitting device, since the buffer layer contains gallium or indium having a high migration speed, crystal defects in the buffer layer can be further reduced. Therefore, crystal defects in the light emitting layer can be significantly reduced. In addition, after evaporating oxygen attached to the substrate holding member, the light emitting layer is grown in a state where oxygen is no longer evaporated, so that oxygen forming a non-radiative recombination center does not enter the light emitting layer, and high luminous efficiency is obtained. Semiconductor light emitting device having the same.

【0027】また、請求項2の発明の半導体発光素子の
製造方法では、発光層を成長すべき第2温度より低い成
長温度に設定した状態で、V族元素の種類が切り替えら
れるので、V族元素の種類の切り替え時に、バッファ層
を構成するV族元素の空孔(所謂抜け)が生じるのを防止
することができる。
In the method of manufacturing a semiconductor light emitting device according to the second aspect of the present invention, the type of the group V element is switched while the growth temperature is set lower than the second temperature at which the light emitting layer is to be grown. It is possible to prevent vacancies (so-called vacancies) of group V elements forming the buffer layer when switching the kind of element.

【0028】また、請求項3の発明の半導体発光素子の
製造方法では、良好な結晶性のバッファ層上に第2バッ
ファ層を成長させるので、その第2バッファ層の結晶性
をより良好にすることができる。さらに、発光層を成長
すべき第2温度より低い第3温度に成長温度が設定され
た状態でV族元素の種類の切り替えが行われるので、V
族元素の種類の切り替え時に、第2バッファ層を構成す
るV族元素の空孔(所謂抜け)が生じるのを防止できる。
したがって、第2バッファ層表面を清浄に保つことが可
能である。
In the method for manufacturing a semiconductor light emitting device according to the third aspect of the present invention, the second buffer layer is grown on the buffer layer having good crystallinity, so that the crystallinity of the second buffer layer is further improved. be able to. Further, the type of the group V element is switched while the growth temperature is set to a third temperature lower than the second temperature at which the light emitting layer is to be grown.
At the time of switching the type of group element, it is possible to prevent the generation of vacancies (so-called voids) of the group V element constituting the second buffer layer.
Therefore, it is possible to keep the surface of the second buffer layer clean.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態の半導体発光素子を製
造するためのシーケンスを示す図である。
FIG. 1 is a diagram showing a sequence for manufacturing a semiconductor light emitting device according to a first embodiment of the present invention.

【図2】 (a)は本発明の第1実施形態の半導体発光素
子の製造方法で成長された結晶層の酸素濃度分布をSI
MS(Secondary Ion Mass Spectrometry:2次イオン質
量分析法)によって検出した結果を示す図、(b)は従来
の半導体発光素子の製造方法で成長された結晶層の酸素
濃度分布をSIMSによって検出した結果を示す図であ
る。
FIG. 2A is a graph showing an oxygen concentration distribution of a crystal layer grown by the method for manufacturing a semiconductor light emitting device according to the first embodiment of the present invention;
FIG. 2 is a view showing a result of detection by MS (Secondary Ion Mass Spectrometry), and FIG. 2B shows a result of SIMS detecting an oxygen concentration distribution of a crystal layer grown by a conventional method for manufacturing a semiconductor light emitting device. FIG.

【図3】 本発明の第2実施形態の半導体発光素子を製
造するためのシーケンスを示す図である。
FIG. 3 is a diagram showing a sequence for manufacturing a semiconductor light emitting device according to a second embodiment of the present invention.

【図4】 本発明の第3実施形態の半導体発光素子を製
造するためのシーケンスを示す図である。
FIG. 4 is a diagram showing a sequence for manufacturing a semiconductor light emitting device according to a third embodiment of the present invention.

【図5】 本発明の第3実施形態の半導体発光素子の製
造方法によって製造される半導体レーザの構造を示す断
面図である。
FIG. 5 is a sectional view illustrating a structure of a semiconductor laser manufactured by a method for manufacturing a semiconductor light emitting device according to a third embodiment of the present invention.

【図6】 半導体レーザを製造するMOCVD装置の要
部の断面図を示す。
FIG. 6 is a sectional view of a main part of an MOCVD apparatus for manufacturing a semiconductor laser.

【図7】 本発明の第1実施形態、第2実施形態および
従来の半導体発光素子の製造方法によって製造される半
導体レーザの構造を示す断面図である。
FIG. 7 is a cross-sectional view showing a structure of a semiconductor laser manufactured by the first and second embodiments of the present invention and a conventional method for manufacturing a semiconductor light emitting device.

【図8】 従来の半導体発光素子を製造するためのシー
ケンスをを示す図である。
FIG. 8 is a diagram showing a sequence for manufacturing a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 n−GaAs基板、 2 n−GaA
sバッファ層、2a n−GaAsバッファ層、
2b n−GaAs第2バッファ層、3 n−AlGa
InPクラッド層、 4 AlGaInP活性層、5
p−AlGaInPクラッド層、 6 n−GaAs電
流ブロック層、7 p−GaAsコンタクト層。
1 n-GaAs substrate, 2 n-GaAs
s buffer layer, 2an n-GaAs buffer layer,
2b n-GaAs second buffer layer, 3 n-AlGa
InP cladding layer, 4 AlGaInP active layer, 5
p-AlGaInP cladding layer, 6 n-GaAs current blocking layer, 7 p-GaAs contact layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大山 尚一 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 4K030 AA05 BA55 BB12 CA04 GA02 KA23 KA26 LA13 LA18 5F041 AA03 CA34 CA35 CA65 CA67 5F045 AA04 AB18 AC01 AC08 AD12 AE23 AE25 BB12 CA12 5F073 CA14 CB02 CB07 DA05 DA35 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shoichi Oyama 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka F-term (reference) 4K030 AA05 BA55 BB12 CA04 GA02 KA23 KA26 LA13 LA18 5F041 AA03 CA34 CA35 CA65 CA67 5F045 AA04 AB18 AC01 AC08 AD12 AE23 AE25 BB12 CA12 5F073 CA14 CB02 CB07 DA05 DA35

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶成長用反応容器内に半導体基板をこ
の半導体基板を保持した基板保持部材とともに収容し、
上記反応容器内にIII族およびV族元素の水素化物また
はIII族およびV族元素のアルキル化合物を含むガスを
導入して、上記基板上に少なくともIII―V族化合物半
導体からなるバッファ層と発光層とを所定の成長温度で
順次成長させる半導体発光素子の製造方法において、 上記バッファ層の原料となるIII族元素として少なくと
もガリウム(Ga)またはインジウム(In)を用い、 上記バッファ層を成長すべき第1温度を、上記発光層を
成長すべき第2温度よりも高く設定して、上記バッファ
層を成長させる間に上記基板保持部材に付着した酸素を
蒸発させて、上記第2温度で上記発光層を成長させる間
に上記基板保持部材より酸素の蒸発が生じないようにし
たことを特徴とする半導体発光素子の製造方法。
1. A semiconductor substrate is accommodated in a crystal growth reaction container together with a substrate holding member holding the semiconductor substrate.
A gas containing a hydride of a Group III and Group V element or an alkyl compound of a Group III and Group V element is introduced into the reaction vessel, and a buffer layer and a light emitting layer comprising at least a Group III-V compound semiconductor are formed on the substrate. And a method for manufacturing a semiconductor light-emitting device in which at least a group III element serving as a raw material of the buffer layer is gallium (Ga) or indium (In). 1 temperature is set higher than a second temperature at which the light emitting layer is to be grown, and oxygen attached to the substrate holding member is evaporated during the growth of the buffer layer, and the light emitting layer is grown at the second temperature. A method of manufacturing a semiconductor light emitting device, wherein oxygen is not evaporated from the substrate holding member during the growth of the semiconductor light emitting device.
【請求項2】 請求項1に記載の半導体発光素子の製造
方法において、 上記バッファ層を成長させた後、成長温度を上記第2温
度以下にした状態で上記V族元素の種類を切り替えて、
成長温度を上げながら上記発光層を成長させ始め、上記
第2温度に達した状態で上記発光層を所定の厚さまで成
長させることを特徴とする半導体発光素子の製造方法。
2. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein after growing the buffer layer, the type of the group V element is switched while the growth temperature is equal to or lower than the second temperature.
A method for manufacturing a semiconductor light emitting device, comprising: starting growing the light emitting layer while increasing a growth temperature, and growing the light emitting layer to a predetermined thickness when the temperature reaches the second temperature.
【請求項3】 請求項1に記載の半導体発光素子の製造
方法において、 上記バッファ層上に、成長温度を上記第2温度より低い
第3温度に設定した状態で第2バッファ層を成長させた
後、上記V族元素の種類を切り替えて、成長温度を上げ
ながら上記発光層を成長させ始め、成長温度が上記第2
温度に達した状態で上記発光層を所定の厚さまで成長さ
せることを特徴とする半導体発光素子の製造方法。
3. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein a second buffer layer is grown on said buffer layer at a growth temperature set to a third temperature lower than said second temperature. Thereafter, the type of the group V element is switched, and the light emitting layer is started to grow while increasing the growth temperature.
A method for manufacturing a semiconductor light emitting device, wherein the light emitting layer is grown to a predetermined thickness in a state where the temperature has reached.
JP1299999A 1999-01-21 1999-01-21 Manufacturing method of semiconductor light emitting device Expired - Fee Related JP3653408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1299999A JP3653408B2 (en) 1999-01-21 1999-01-21 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299999A JP3653408B2 (en) 1999-01-21 1999-01-21 Manufacturing method of semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000216496A true JP2000216496A (en) 2000-08-04
JP3653408B2 JP3653408B2 (en) 2005-05-25

Family

ID=11820907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299999A Expired - Fee Related JP3653408B2 (en) 1999-01-21 1999-01-21 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3653408B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049212B2 (en) 2003-01-08 2006-05-23 Sharp Kabushiki Kaisha Method for producing III-IV group compound semiconductor layer, method for producing semiconductor light emitting element, and vapor phase growing apparatus
DE102019106521A1 (en) * 2019-03-14 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Growth structure for a radiation-emitting semiconductor component and radiation-emitting semiconductor component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049212B2 (en) 2003-01-08 2006-05-23 Sharp Kabushiki Kaisha Method for producing III-IV group compound semiconductor layer, method for producing semiconductor light emitting element, and vapor phase growing apparatus
CN100347821C (en) * 2003-01-08 2007-11-07 夏普株式会社 Producing method for compound semiconductor layer and luminescent device, gas phase producing apparatus
DE102019106521A1 (en) * 2019-03-14 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Growth structure for a radiation-emitting semiconductor component and radiation-emitting semiconductor component

Also Published As

Publication number Publication date
JP3653408B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
US7227172B2 (en) Group-III-element nitride crystal semiconductor device
US6146916A (en) Method for forming a GaN-based semiconductor light emitting device
US5780876A (en) Compound semiconductor light emitting device and manufacturing method thereof
US6265287B1 (en) Method for producing semiconductor layer for a semiconductor laser device
US6794210B2 (en) Method for growing GaN compound semiconductor crystal and semiconductor substrate
KR100271030B1 (en) Method for Producing Group III-V Compound Semiconductor, and Semiconductor Light Emitting Device Using Such Semiconductor and Method for Producing the Same
JP2001308010A (en) Method of manufacturing iii nitride compound semiconductor device
JPH1012923A (en) Light-emitting device and manufacture thereof
JPH09293897A (en) Semiconductor element and manufacture thereof
US7255742B2 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
US6881601B2 (en) Nitride compound semiconductor, nitride compound semiconductor light emitting device and method of manufacturing the same
JPH1032349A (en) Growing method for semiconductor
JPH11112030A (en) Production of iii-v compound semiconductor
JPH1168252A (en) Semiconductor light-emitting element
US6225195B1 (en) Method for manufacturing group III-V compound semiconductor
JP4824920B2 (en) Group III element nitride crystal semiconductor device
JP2702889B2 (en) Semiconductor layer crystal growth method
JPH09283799A (en) Semiconductor light-emitting element
JP3653408B2 (en) Manufacturing method of semiconductor light emitting device
JP2002100837A (en) Nitride semiconductor light-emitting element and manufacturing method therefor
JP2002367909A (en) Nitride semiconductor film and method of manufacturing the same
JPH10144612A (en) Growth of semiconductor
JP2002094113A (en) Method for fabricating iii-v nitride-based semiconductor light emitting device
JP2000022283A (en) Semiconductor element, method for manufacturing semiconductor element, and method for manufacturing semiconductor substrate
JP2003264345A (en) Nitride semiconductor light emitting element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees