JP2000213827A - Thermostatic refrigerant expansion valve - Google Patents

Thermostatic refrigerant expansion valve

Info

Publication number
JP2000213827A
JP2000213827A JP11015033A JP1503399A JP2000213827A JP 2000213827 A JP2000213827 A JP 2000213827A JP 11015033 A JP11015033 A JP 11015033A JP 1503399 A JP1503399 A JP 1503399A JP 2000213827 A JP2000213827 A JP 2000213827A
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
orifice
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11015033A
Other languages
Japanese (ja)
Inventor
Satoru Okada
悟 岡田
Kiyotaka Kasugai
清隆 春日井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Original Assignee
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd, Taiheiyo Kogyo KK filed Critical Pacific Industrial Co Ltd
Priority to JP11015033A priority Critical patent/JP2000213827A/en
Publication of JP2000213827A publication Critical patent/JP2000213827A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower a noise level generated due to the dissipation of bubbles by reducing the rapid pressure drop of a refrigerant when the refrigerant enters a second passage from an orifice and suppressing the generation of bubbles in the refrigerant. SOLUTION: A thermostatic refrigerant expansion valve comprises a valve main body 41 having a first passage 42, a second passage 43 and a third passage 44, a throttle mechanism 46 having a valve seat 47 provided with an orifice 47a and a valve disk 48 and a control mechanism 54 having a heat sensitive chamber 61 and a diaphragm 57 displaced in accordance with pressure in the heat sensitizing chamber 61. The control mechanism 54 includes a transfer member for transferring the temperature of a refrigerant flowing in the third passage 44 to gas in the heat sensitive chamber 61 and the displacement of the diaphragm 57 to the valve disk 48. In this case, the second passage side 43 of the orifice 47a is formed in an expanded wall surface whose area increases or a tapered wall surface 47c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エアコンの冷凍サ
イクルに用いられる温度式膨張弁に係り、この冷凍サイ
クルの蒸発器から圧縮機に向かって送り出される冷媒の
温度に応答して、蒸発器に入る冷媒の量を自動的に制御
するための温度式膨張弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature type expansion valve used for a refrigeration cycle of an air conditioner, and relates to a temperature type expansion valve which responds to the temperature of refrigerant sent from an evaporator of the refrigeration cycle toward a compressor. The present invention relates to a temperature type expansion valve for automatically controlling the amount of refrigerant to enter.

【0002】[0002]

【従来の技術】図7は、従来の温度式膨張弁4を自動車
用空調装置の冷凍サイクルに組み込んだ状態を示す縦断
面図を示すもので、この自動車用空調装置は、圧縮機
1、凝縮器2、レシーバー3、膨張弁4及び蒸発器5を
備えている。圧縮機1は、電磁クラッチ(図示せず)を
介して自動車エンジンの回転力を受けて駆動する。凝縮
器2は、圧縮機1にて断熱圧縮された高温高圧のガス状
冷媒を車室外の空気との熱交換により凝縮し液冷媒とす
る。レシーバー3は、凝縮器2にて冷却された液冷媒を
一時貯留すると共に冷媒中の水分や塵埃を取り除くドラ
イヤ(図示せず)を内蔵している。膨張弁4は、この液
冷媒を断熱膨張して低温低圧の霧状冷媒とする。蒸発器
5は、車室内へ送られる空気との熱交換によってこの霧
状冷媒を気化させる。
2. Description of the Related Art FIG. 7 is a longitudinal sectional view showing a state in which a conventional temperature type expansion valve 4 is incorporated in a refrigeration cycle of an air conditioner for a vehicle. The apparatus includes a vessel 2, a receiver 3, an expansion valve 4, and an evaporator 5. The compressor 1 is driven by receiving the rotational force of an automobile engine via an electromagnetic clutch (not shown). The condenser 2 condenses the high-temperature and high-pressure gaseous refrigerant adiabatically compressed by the compressor 1 by exchanging heat with air outside the vehicle compartment to form a liquid refrigerant. The receiver 3 has a built-in dryer (not shown) for temporarily storing the liquid refrigerant cooled by the condenser 2 and removing moisture and dust in the refrigerant. The expansion valve 4 adiabatically expands the liquid refrigerant into a low-temperature and low-pressure mist refrigerant. The evaporator 5 vaporizes the mist refrigerant by heat exchange with air sent into the vehicle interior.

【0003】従来の膨張弁4は、図7に示すように樹脂
製弁本体41内に、凝縮器2の出口と連通する第一の流
路42と、蒸発器の入口と連通する第二の流路43と、
蒸発器5の出口と圧縮機1の入口側とを連通する第三の
流路44とを備えている。絞り機構46は、前記第一の
流路42の奥部に配置され、オリフィス47a、弁体4
8、及び圧縮コイルばね49を有している。前記オリフ
ィス47aは、第一の流路と第二の流路とを連通させる
ために弁本体41に形成され、弁室45内に開口する入
口を有しており、その入口の周囲には弁座50が形成さ
れている。前記弁体48は、圧縮コイルばね49により
弁座50に向かって付勢されており、この弁体48は弁
座50に当接することによりオリフィス47aを閉鎖
し、弁座50から離間することによりオリフィス47a
を開放するようになっている。
As shown in FIG. 7, a conventional expansion valve 4 has a first flow path 42 communicating with an outlet of a condenser 2 and a second flow path 42 communicating with an inlet of an evaporator in a resin valve body 41. A channel 43;
A third flow path 44 is provided for communicating the outlet of the evaporator 5 and the inlet of the compressor 1. The throttle mechanism 46 is disposed at the back of the first flow path 42, and includes an orifice 47 a and the valve body 4.
8 and a compression coil spring 49. The orifice 47a is formed in the valve main body 41 for communicating the first flow path and the second flow path, and has an inlet opening into the valve chamber 45, and a valve is provided around the inlet. A seat 50 is formed. The valve element 48 is urged toward a valve seat 50 by a compression coil spring 49. The valve element 48 abuts on the valve seat 50 to close the orifice 47 a, and separates from the valve seat 50. Orifice 47a
Is to be released.

【0004】また、前記第三の流路44の右方は前記圧
縮機1に接続され、圧縮機1は前記凝縮器2とレシーバ
ー3を介して前記第一の流路42に接続されている。ま
た、前記第三の流路44の左方は前記蒸発器5に接続さ
れ、蒸発器5は前記第二の流路43と接続されている。
The right side of the third flow path 44 is connected to the compressor 1, and the compressor 1 is connected to the first flow path 42 via the condenser 2 and the receiver 3. . The left side of the third flow path 44 is connected to the evaporator 5, and the evaporator 5 is connected to the second flow path 43.

【0005】一方、弁本体41上部のフランジ部41a
には、上蓋55と、下蓋56と、該上蓋55と下蓋56
とに挟持されたステンレス製の薄板よりなるダイヤフラ
ム57とで構成された制御機構54が、パッキン59を
介して止め金具60により気密的に固定されている。
On the other hand, a flange portion 41a at the top of the valve body 41
The upper lid 55, the lower lid 56, the upper lid 55 and the lower lid 56
And a diaphragm 57 made of a stainless steel thin plate sandwiched therebetween, and a control mechanism 54 is hermetically fixed by a stopper 60 through a packing 59.

【0006】また、上蓋55とダイヤフラム57とで形
成される感熱室61には、飽和蒸気ガスが封入され、鋼
球62にて封止されている。
A heat-sensitive chamber 61 formed by the upper lid 55 and the diaphragm 57 is filled with a saturated steam gas and sealed with a steel ball 62.

【0007】また、感温棒65は、その中央部が第三の
流路44を直角方向に貫通し、該第三の流路44を流れ
る冷媒の温度を、ディッシュ部67を介してダイヤフラ
ム57上部の感熱室61に伝達するとともに、該感熱室
61における飽和蒸気ガスの熱膨張や熱収縮をダイヤフ
ラム57、感温棒65、作動棒69を介して弁体48に
伝達する構成になっている。
The temperature sensing rod 65 has a central portion that penetrates the third flow path 44 in a direction perpendicular to the third flow path 44, and controls the temperature of the refrigerant flowing through the third flow path 44 through the dish portion 67 through the diaphragm 57. In addition to transmitting the thermal expansion and thermal contraction of the saturated steam gas in the thermal chamber 61 to the valve body 48 via the diaphragm 57, the temperature sensing rod 65, and the operating rod 69, the thermal sensing chamber 61 is transmitted to the upper part. .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うに構成されている従来の膨張弁にあっては、図6に示
すように第一の流路42から絞り部47bを通過するこ
とにより圧力が下降し、さらにオリフィス47aを通過
し、第二の流路43へ流入する時に体積を膨張して、圧
力が急激に低下する。それによって差圧Dが大きくなる
ため気泡が生じ、この気泡は第二の流路43が直角に向
きを変えているためオリフィス47aの反対側の面に衝
突する時に消滅するが、この際に激しい騒音を発生する
という問題があった。
However, in the conventional expansion valve configured as described above, the pressure is increased by passing through the throttle portion 47b from the first flow path 42 as shown in FIG. It descends, further passes through the orifice 47a, and expands in volume when flowing into the second flow path 43, so that the pressure drops rapidly. As a result, the differential pressure D is increased, and bubbles are generated. The bubbles disappear when the second flow path 43 collides with the surface on the opposite side of the orifice 47a because the direction of the second flow path 43 is changed at a right angle. There was a problem of generating noise.

【0009】[0009]

【課題を解決するための手段】本発明の目的は、膨張弁
のオリフィス47の流出側の形状即ち、第二の流路43
側の形状を、面積が増加するテーパ壁面もしくは拡開壁
面に形成することにより、膨張弁のオリフィス47aで
発生する騒音を低減することが可能な温度膨張弁を提供
するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an expansion valve having an orifice 47 at the outlet side, that is, a second flow path 43.
A temperature expansion valve which can reduce noise generated at the orifice 47a of the expansion valve by forming the shape of the side on a tapered wall surface or an expanded wall surface having an increased area.

【0010】すなわち、本発明は、弁本体41と、蒸発
器5に送り出す冷媒の流量を調整するための絞り機構4
6と、蒸発器5から圧縮機1に向かって送り出される冷
媒の温度に応じて絞り機構46を制御する制御機構54
とを備え、前記弁本体41は、冷媒を導入するための第
一の流路42と、導入された冷媒を蒸発器に送り出すた
めの第二の流路43と、蒸発器5から圧縮機1に向かっ
て送り出される冷媒を通過させるための第三の流路44
とを備え、前記絞り機構46は、第一の流路42と第二
の流路43とを連通させるオリフィス47aを備えた弁
座47と、そのオリフィス47aの開放量を調整するた
めの弁体48とを有し、前記制御機構54は、ガスを封
入した感熱室61と、その感熱室61内の圧力に応じて
変位するダイヤフラム57とを有し、前記第三の流路4
4を流れる冷媒の温度を感熱室61内のガスに伝達し且
つ、ダイヤフラム57の変位を弁体48に伝達する伝達
部材を備えた温度式膨張弁において、前記オリフィス4
7aの第二の流路43側を、面積が増加するテーパ壁面
47cもしくは拡開壁面47c’に形成したことを特徴
とする温度式膨張弁である。
That is, according to the present invention, the valve body 41 and the throttle mechanism 4 for adjusting the flow rate of the refrigerant sent to the evaporator 5 are provided.
6 and a control mechanism 54 for controlling the throttle mechanism 46 in accordance with the temperature of the refrigerant sent from the evaporator 5 toward the compressor 1
The valve body 41 includes a first flow path 42 for introducing the refrigerant, a second flow path 43 for sending out the introduced refrigerant to the evaporator, and the compressor 1 from the evaporator 5. Flow path 44 for passing the refrigerant discharged toward
The throttle mechanism 46 includes a valve seat 47 having an orifice 47a for communicating the first flow path 42 and the second flow path 43, and a valve body for adjusting the opening amount of the orifice 47a. The control mechanism 54 has a thermo-sensitive chamber 61 filled with a gas, and a diaphragm 57 that is displaced in accordance with the pressure in the thermo-sensitive chamber 61.
A temperature-type expansion valve having a transmission member for transmitting the temperature of the refrigerant flowing through the diaphragm 4 to the gas in the heat-sensitive chamber 61 and transmitting the displacement of the diaphragm 57 to the valve element 48.
The temperature type expansion valve is characterized in that the second flow path 43 side of 7a is formed on a tapered wall surface 47c or an expanded wall surface 47c 'having an increased area.

【0011】[0011]

【発明の実施の形態】以下に、本発明の実施の形態を図
面に基づいて説明する。なお、従来技術の膨張弁と同じ
部品については詳細な説明を省くと共に同一の符号を用
いている。図1は、本発明の温度式膨張弁4を自動車用
空調装置の冷凍サイクルに組み込んだ状態を示す縦断面
図である。本発明の温度式膨張弁4は、樹脂製の弁本体
41と、該弁本体41と一体成形される絞り機構46と
制御機構54とにより構成されている。
Embodiments of the present invention will be described below with reference to the drawings. The same parts as those of the conventional expansion valve are not described in detail, and are denoted by the same reference numerals. FIG. 1 is a longitudinal sectional view showing a state in which the thermal expansion valve 4 of the present invention is incorporated in a refrigeration cycle of an automotive air conditioner. The temperature type expansion valve 4 of the present invention includes a valve body 41 made of resin, a throttle mechanism 46 and a control mechanism 54 integrally formed with the valve body 41.

【0012】樹脂製の弁本体41には、従来品と同様
に、レシーバー3を介して凝縮器2の出口と連通する第
一の流路42と、蒸発器5の出口と連通する第二の流路
43と、蒸発器5の出口と圧縮機1の入口とを連通させ
る第三の流路44とが形成され、前記第一の流路42奥
部の弁本体41中心部には弁室45が形成されている。
A resin valve body 41 has a first flow passage 42 communicating with the outlet of the condenser 2 via the receiver 3 and a second flow passage 42 communicating with the outlet of the evaporator 5, similarly to the conventional product. A flow path 43 and a third flow path 44 that connects the outlet of the evaporator 5 and the inlet of the compressor 1 are formed, and a valve chamber is provided at the center of the valve body 41 at the back of the first flow path 42. 45 are formed.

【0013】冷媒を断熱膨張させる絞り機構46も従来
品と全く同じ部品にて構成され、該絞り機構46は、オ
リフィス47aを備えた金属部材47と弁体48及び圧
縮コイルばね49を備えている。そして、前記金属部材
47はアルミニウムよりなり、第一の流路42と第二の
流路43との間に位置するように弁本体41にインサー
ト成形により固定されている。また、オリフィスの弁室
45側には弁座50が形成され、弁座のテーパ面を絞り
部47bとしている。
The throttle mechanism 46 for adiabatically expanding the refrigerant is formed of exactly the same components as the conventional product. The throttle mechanism 46 includes a metal member 47 having an orifice 47a, a valve element 48, and a compression coil spring 49. . The metal member 47 is made of aluminum, and is fixed to the valve body 41 by insert molding so as to be located between the first channel 42 and the second channel 43. Further, a valve seat 50 is formed on the valve chamber 45 side of the orifice, and the tapered surface of the valve seat is used as a throttle portion 47b.

【0014】本発明と従来品との相違点は、前記のオリ
フィスの形状が異なったものとなっている。従来品で
は、図6及び図7に示す如く、オリフィス47aをスト
レートな孔としていたが、本発明品では、図1及び図3
に示す如く、オリフィス47aの流出側の形状即ち、第
二の流路43側の形状を、面積が徐々に増加するテーパ
壁面47cに形成している。なお、前記テーパ壁面47
cを、図4に示すような拡開壁面47c’すなわち、段
付状の壁面あるいは、図5に示すような片 テーパ壁面
47c’’としても同じ効果が得られる。
The difference between the present invention and the conventional product is that the shape of the orifice is different. In the conventional product, as shown in FIGS. 6 and 7, the orifice 47a is formed as a straight hole.
As shown in the figure, the shape on the outflow side of the orifice 47a, that is, the shape on the second flow path 43 side is formed on the tapered wall surface 47c whose area gradually increases. The tapered wall surface 47
The same effect can be obtained by setting c as an expanded wall surface 47c 'as shown in FIG. 4, that is, a stepped wall surface or a single tapered wall surface 47c''as shown in FIG.

【0015】キャップを兼ねる調整ねじ51、圧縮コイ
ルばね49、球状の弁体48、ばね座52を介して圧縮
コイルばね49等の部品並びにその配置についても従来
品と全く同じである。また、前記球状の弁体48が、前
記オリフィス47a下面の弁座50に離接してオリフィ
ス47aを開閉するようになっているのも、前記調整ね
じ51のOリング53によって弁室45内の気密が保た
れているのも従来品と同じである。
Components such as the compression coil spring 49 via the adjusting screw 51 serving also as a cap, the compression coil spring 49, the spherical valve element 48, and the spring seat 52, and the arrangement thereof are exactly the same as those of the conventional product. Further, the spherical valve element 48 is configured to open and close the orifice 47a by separating from and coming into contact with the valve seat 50 on the lower surface of the orifice 47a. Is also the same as the conventional product.

【0016】また、前記弁本体41の上端部中央に開口
して形成された均圧室58、その下部に形成される第三
の流路44、この第三の流路44の上方中心部に上下方
向に向かって形成される第一の摺動孔63、この第一の
摺動孔63に感温棒65の軸部66が挿通された状態に
おいても、図2に示す如く前記均圧室58に冷媒が導入
するように溝63aを形成した点についても従来品と同
じである。
A pressure equalizing chamber 58 formed at the center of the upper end of the valve body 41, a third flow path 44 formed under the pressure equalizing chamber 58, and an upper central part of the third flow path 44 A first sliding hole 63 formed in the up-down direction, and even when the shaft 66 of the temperature sensing rod 65 is inserted into the first sliding hole 63, as shown in FIG. The point that the groove 63a is formed so that the refrigerant is introduced into 58 is the same as the conventional product.

【0017】また、この第三の流路44の下方中心部に
形成された第二の摺動孔64、この第二の摺動孔64の
下端と前記第二の流路43の奥部との間に形成された作
動棒69用の孔68についても従来品と同じである。
Further, a second sliding hole 64 formed at a lower central portion of the third flow passage 44, a lower end of the second sliding hole 64 and a deep portion of the second flow passage 43 are formed. The hole 68 for the operating rod 69 formed between them is the same as the conventional product.

【0018】また、軸部66とディッシュ67とかなる
感温棒65が、第一の摺動孔63と第二の摺動孔64に
上下動可能に挿通支持され、この感温棒65のディッシ
ュ部67は均圧室58に配置されてダイヤフラム57の
下面に当接させる点についても従来品と同じである。
A temperature sensing rod 65 comprising a shaft 66 and a dish 67 is vertically movably inserted into and supported by the first sliding hole 63 and the second sliding hole 64. The point that the portion 67 is disposed in the pressure equalizing chamber 58 and abuts on the lower surface of the diaphragm 57 is the same as the conventional product.

【0019】さらに、前記作動棒69用の孔68に作動
棒69を上下動可能に配接し、この作動棒69の上端を
前記感温棒65の下端面に当接させ、中間部を前記第二
の流路43の奥部を横切って前記オリフィス47a内に
挿入し、その下端を前記弁体48に当接させるようにし
た点についても従来品と同じである。
Further, the operating rod 69 is vertically movably connected to the hole 68 for the operating rod 69, the upper end of the operating rod 69 is brought into contact with the lower end surface of the temperature sensing rod 65, and the intermediate part is the first part. It is also the same as the conventional product in that it is inserted into the orifice 47a across the inner part of the second flow path 43 and the lower end thereof is brought into contact with the valve element 48.

【0020】制御機構54は、第一のカバーとしての上
蓋55と、第二のカバーとしての下蓋56と、両蓋5
5、56間に挟持されたステンレス製の薄板よりなるダ
イヤフラム57とを有しており、該制御機構が弁本体4
1上部のフランジ部41aにパッキン59を介して円筒
状の止め金具60により気密的にかしめ固定される点に
ついても従来品と同じである。
The control mechanism 54 includes an upper cover 55 as a first cover, a lower cover 56 as a second cover,
And a diaphragm 57 made of a stainless steel plate sandwiched between the valve body 5 and the valve body 56.
It is the same as the conventional product in that it is airtightly fixed to the upper flange portion 41a by the cylindrical stopper 60 via the packing 59 via the packing 59.

【0021】[0021]

【作動】次に、上記構成における本実施例の作動につき
図1に基づいて説明する。冷凍サイクルの圧縮機1にて
断熱圧縮された高温高圧のガス状冷媒は、凝縮器2にて
凝縮され液冷媒になった後、レシーバー3を介して膨張
弁4の第一の流路42を通り弁室45内に導入される。
さらに、この液冷媒はオリフィス47aを通過し、この
時断熱膨張されて低温の霧状冷媒となり第二の流路43
に導入される。そして、この冷媒は第二の流路43を経
て、蒸発器5に導入されて気化しガス状冷媒となる。さ
らに、蒸発器5から排出されたガス状冷媒は第三の流路
44を経て再び前記圧縮機1に戻る。
Next, the operation of this embodiment in the above configuration will be described with reference to FIG. The high-temperature, high-pressure gaseous refrigerant adiabatically compressed by the compressor 1 of the refrigeration cycle is condensed by the condenser 2 into a liquid refrigerant, and then flows through the first flow path 42 of the expansion valve 4 via the receiver 3. It is introduced into the valve chamber 45.
Further, the liquid refrigerant passes through the orifice 47a and is adiabatically expanded at this time to become a low-temperature mist-like refrigerant.
Will be introduced. Then, this refrigerant is introduced into the evaporator 5 through the second flow path 43 and is vaporized to become a gaseous refrigerant. Further, the gaseous refrigerant discharged from the evaporator 5 returns to the compressor 1 again through the third flow path 44.

【0022】ここで、本発明品(図3、図4、図5)と従
来品(図6)とのオリフィスの各部位における冷媒液の圧
力値を示す説明図に基づいて説明する。本発明品におい
て、オリフィス47aを通過した冷媒は、図3、図4、
図5に示すようにテーパ壁面47cや拡開壁面47c’
や片 テーパ壁面47c’’を通過する時徐々に低下
し、第二の流路43へ流入する時に体積を膨張してさら
に圧力が低下し、この時に気泡が発生する。しかし、体
積膨張する際の差圧Cは、図6の従来品における差圧D
より小さいため気泡の発生を抑制される。
Here, a description will be given based on explanatory diagrams showing the pressure values of the refrigerant liquid at the respective portions of the orifices of the product of the present invention (FIGS. 3, 4, and 5) and the conventional product (FIG. 6). In the product of the present invention, the refrigerant having passed through the orifice 47a is shown in FIGS.
As shown in FIG. 5, the tapered wall surface 47c and the expanded wall surface 47c '
When passing through the tapered wall surface 47c '', the pressure gradually decreases, and when flowing into the second flow path 43, the volume expands and the pressure further decreases, and at this time, bubbles are generated. However, the differential pressure C at the time of volume expansion is the differential pressure D in the conventional product shown in FIG.
Since it is smaller, the generation of bubbles is suppressed.

【0023】一方、感温棒65は、圧縮コイルばね49
によりばね座52、弁体48および作動棒69を介して
常に上方に付勢されている。したがって、オリフイス4
7aの開度を決定する弁座50に対する弁体48の位置
は、圧縮コイルばね49の付勢力および均圧室58内の
冷媒圧と、感熱室61内のガス圧とが釣り合った位置に
保たれる。なお、均圧室58内の冷媒圧力は、蒸発器5
にて蒸発したガス圧力である。
On the other hand, the temperature sensing rod 65 includes a compression coil spring 49.
Thus, it is constantly urged upward through the spring seat 52, the valve element 48, and the operating rod 69. Therefore, orifice 4
The position of the valve body 48 with respect to the valve seat 50 that determines the opening of the valve 7a is maintained at a position where the urging force of the compression coil spring 49, the refrigerant pressure in the pressure equalizing chamber 58, and the gas pressure in the heat sensitive chamber 61 are balanced. Dripping. The pressure of the refrigerant in the pressure equalizing chamber 58 is controlled by the evaporator 5.
Is the gas pressure evaporated.

【0024】そして、第三の流路43内を通過するガス
状冷媒は、図1および図2に示すごとく、第一の摺動孔
63の溝63aを介して均圧室58に入る。これによ
り、冷媒の熱は感温棒65の軸部66からディッシュ6
7へと伝わりダイヤフラム57を介して感熱室61内の
飽和蒸気ガスに伝熱される。つまり、蒸発器5の出口側
の冷媒温度に応じて感熱室61内の圧力が変化する。こ
の感熱室61内の圧力変化によるダイヤフラム57の上
下動が感温棒65と作動棒69を介して弁体48に伝わ
り、この弁体48が開閉制御されて蒸発器5出口の冷媒
の過熱度が一定となるように過熱度制御されている。な
お、このような過熱度制御のシステム自体は従来品と全
く同じである。
The gaseous refrigerant passing through the third flow path 43 enters the pressure equalizing chamber 58 through the groove 63a of the first sliding hole 63, as shown in FIGS. Thus, the heat of the refrigerant is transferred from the shaft portion 66 of the temperature sensing rod 65 to the dish 6.
The heat is transmitted to the saturated steam gas in the heat-sensitive chamber 61 through the diaphragm 57. That is, the pressure in the heat-sensitive chamber 61 changes according to the refrigerant temperature on the outlet side of the evaporator 5. The vertical movement of the diaphragm 57 due to the pressure change in the heat-sensitive chamber 61 is transmitted to the valve element 48 via the temperature-sensitive rod 65 and the operating rod 69, and the valve element 48 is controlled to open and close, and the degree of superheat of the refrigerant at the outlet of the evaporator 5 is controlled. Is controlled to be constant. The superheat control system itself is exactly the same as a conventional product.

【0025】[0025]

【発明の効果】上述のように構成した本発明の膨張弁に
おいては、オリフィスの第二の流路側を、面積が増加す
る拡開壁面もしくはテーパ壁面で形成することにより冷
媒が第二の流路へ流入したときの冷媒の急激な圧力降下
を小さくできる。このため冷媒中に気泡が発生するのを
抑制し、気泡の消滅により起こる騒音レベルを低下させ
ることができる。
In the expansion valve of the present invention constructed as described above, the second flow path side of the orifice is formed by an expanded wall surface or a tapered wall surface having an increased area so that the refrigerant flows through the second flow path. The rapid pressure drop of the refrigerant when flowing into the refrigerant can be reduced. Therefore, generation of bubbles in the refrigerant can be suppressed, and the noise level caused by disappearance of the bubbles can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の膨張弁を自動車用空調装置の冷凍サ
イクルに組み込んだ状態を示す縦断側面図。
FIG. 1 is a vertical sectional side view showing a state in which an expansion valve of the present invention is incorporated in a refrigeration cycle of an automotive air conditioner.

【図2】 図1のA−A線における拡大断面図。FIG. 2 is an enlarged sectional view taken along line AA of FIG.

【図3】 本発明のオリフィス部における冷媒の圧力変
化を説明する模式図。
FIG. 3 is a schematic diagram illustrating a change in pressure of a refrigerant in an orifice portion of the present invention.

【図4】 他の実施例のオリフィス部における冷媒の圧
力変化を説明する模式図。
FIG. 4 is a schematic diagram illustrating a change in pressure of a refrigerant in an orifice portion according to another embodiment.

【図5】 他の実施例のオリフィス部における冷媒の圧
力変化を説明する模式図。
FIG. 5 is a schematic diagram illustrating a change in pressure of a refrigerant in an orifice portion according to another embodiment.

【図6】 従来のオリフィス部における冷媒の圧力変化
を説明する模式図。
FIG. 6 is a schematic view illustrating a change in pressure of a refrigerant in a conventional orifice portion.

【図7】 従来の膨張弁を自動車用空調装置の冷凍サイ
クルに組み込んだ状態を示す縦断側面図。
FIG. 7 is a longitudinal sectional side view showing a state where a conventional expansion valve is incorporated in a refrigeration cycle of an automotive air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、 2 凝縮器、 3
レシーバー、4 膨張弁、 5 蒸発器、
41 弁本体、41a フランジ、
42 第一の流路、 43 第二の流路、44 第
三の流路、 45 弁室、 46 絞り
機構、47 金属部材、 47a オリフィス、
47b 絞り部、47c テーパ壁面、 47
c’ 拡開壁面、 47c’’片 テーパ壁面、48
弁体、 49 圧縮コイルばね、 50
弁座、51 調整ねじ、 52 ばね座、
53 Oリング、54 制御機構、 55
上蓋、 56 下蓋、57 ダイヤフラム、
58均圧室、 59 パッキン、60
止め金具、 61 感熱室、 62 鋼
球、63 第一の摺動孔、 63a 溝、
64 第二の摺動孔、65 感温棒、 66
軸部、 67 ディッシュ部、68 孔、
69 作動棒、
1 compressor, 2 condenser, 3
Receiver, 4 expansion valve, 5 evaporator,
41 valve body, 41a flange,
42 first flow path, 43 second flow path, 44 third flow path, 45 valve chamber, 46 throttle mechanism, 47 metal member, 47a orifice,
47b throttle portion, 47c tapered wall surface, 47
c 'widening wall, 47c "single tapered wall, 48
Valve body, 49 compression coil spring, 50
Valve seat, 51 adjustment screw, 52 spring seat,
53 O-ring, 54 control mechanism, 55
Upper lid, 56 lower lid, 57 diaphragm,
58 pressure equalizing chamber, 59 packing, 60
Stopper, 61 Thermal chamber, 62 Steel ball, 63 First sliding hole, 63a groove,
64 second sliding hole, 65 temperature sensing rod, 66
Shaft, 67 dish, 68 holes,
69 operating rod,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弁本体41と、蒸発器5に送り出す冷媒の
流量を調整するための絞り機構46と、蒸発器5から圧
縮機1に向かって送り出される冷媒の温度に応じて絞り
機構46を制御する制御機構54とを備え、前記弁本体
41は、冷媒を導入するための第一の流路42と、導入
された冷媒を蒸発器に送り出すための第二の流路43
と、蒸発器5から圧縮機1に向かって送り出される冷媒
を通過させるための第三の流路44とを備え、前記絞り
機構46は、第一の流路42と第二の流路43とを連通
させるオリフィス47aを備えた弁座47と、そのオリ
フィス47aの開放量を調整するための弁体48とを有
し、前記制御機構54は、ガスを封入した感熱室61
と、その感熱室61内の圧力に応じて変位するダイヤフ
ラム57とを有し、前記第三の流路44を流れる冷媒の
温度を感熱室61内のガスに伝達し且つ、ダイヤフラム
57の変位を弁体48に伝達する伝達部材を備えた温度
式膨張弁において、 前記オリフィス47aの第二の流路43側を、面積が増
加するテーパ壁面47cもしくは拡開壁面47c’に形
成したことを特徴とする温度式膨張弁。
A throttle mechanism for adjusting a flow rate of the refrigerant sent to the evaporator; and a throttle mechanism in accordance with the temperature of the refrigerant sent from the evaporator toward the compressor. The valve body 41 includes a first flow path 42 for introducing the refrigerant, and a second flow path 43 for sending out the introduced refrigerant to the evaporator.
And a third flow path 44 for allowing the refrigerant sent from the evaporator 5 toward the compressor 1 to pass therethrough. The throttle mechanism 46 includes a first flow path 42 and a second flow path 43. And a valve element 48 for adjusting the opening amount of the orifice 47a. The control mechanism 54 includes a heat-sensitive chamber 61 filled with gas.
And a diaphragm 57 that is displaced in accordance with the pressure in the heat-sensitive chamber 61, and transmits the temperature of the refrigerant flowing through the third flow path 44 to the gas in the heat-sensitive chamber 61 and changes the displacement of the diaphragm 57. A temperature type expansion valve having a transmission member for transmitting to a valve element 48, wherein the side of the second flow path 43 of the orifice 47a is formed as a tapered wall surface 47c or an expanded wall surface 47c 'having an increased area. Temperature expansion valve.
JP11015033A 1999-01-25 1999-01-25 Thermostatic refrigerant expansion valve Pending JP2000213827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11015033A JP2000213827A (en) 1999-01-25 1999-01-25 Thermostatic refrigerant expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015033A JP2000213827A (en) 1999-01-25 1999-01-25 Thermostatic refrigerant expansion valve

Publications (1)

Publication Number Publication Date
JP2000213827A true JP2000213827A (en) 2000-08-02

Family

ID=11877532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015033A Pending JP2000213827A (en) 1999-01-25 1999-01-25 Thermostatic refrigerant expansion valve

Country Status (1)

Country Link
JP (1) JP2000213827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032863A (en) * 2005-07-22 2007-02-08 Tgk Co Ltd Expansion valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032863A (en) * 2005-07-22 2007-02-08 Tgk Co Ltd Expansion valve

Similar Documents

Publication Publication Date Title
JPH0571860B2 (en)
JP3130246B2 (en) Thermal expansion valve
JP2002054860A (en) Thermostatic expansion valve
JPH0665945B2 (en) Expansion valve for refrigeration equipment
JP2004093106A (en) Expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
JP2000213827A (en) Thermostatic refrigerant expansion valve
JP2586426B2 (en) Automatic expansion valve for refrigeration equipment
JP3942848B2 (en) Expansion valve unit
JP5369259B2 (en) Expansion valve
JP3920059B2 (en) Expansion valve
JPH05118711A (en) Expansion valve
JP3146722B2 (en) Expansion valve
JP3987983B2 (en) Thermal expansion valve
JPH10288423A (en) Temperature type expansion valve
JP3476619B2 (en) Expansion valve
JP3924935B2 (en) Thermal expansion valve
JP2001153499A (en) Control valve for refrigerating cycle
JP2586427B2 (en) Expansion valve for refrigeration cycle
JPH11223426A (en) Expansion valve for automotive air conditioner
JP4013455B2 (en) Thermal expansion valve
JP2773373B2 (en) Expansion valve for refrigeration cycle
JP2001183032A (en) Temperature type expansion valve
JPH04366376A (en) Expansion valve
JP2005265385A (en) Decompression device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107