JPH04366376A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH04366376A
JPH04366376A JP3142120A JP14212091A JPH04366376A JP H04366376 A JPH04366376 A JP H04366376A JP 3142120 A JP3142120 A JP 3142120A JP 14212091 A JP14212091 A JP 14212091A JP H04366376 A JPH04366376 A JP H04366376A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
refrigerant passage
expansion valve
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3142120A
Other languages
Japanese (ja)
Inventor
Yasunobu Ito
康伸 伊藤
Susumu Kawamura
進 川村
Teruyuki Hotta
照之 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3142120A priority Critical patent/JPH04366376A/en
Publication of JPH04366376A publication Critical patent/JPH04366376A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Abstract

PURPOSE:To provide an expansion valve capable of eliminating various kinds of operation failures, such as noise by means of a new system. CONSTITUTION:There is formed a liquid refrigerant passage 7 communicating with a capacitor 2 in an expansion valve main body 6 while there is formed a mist-like refrigerant passage 8 communicating with an evaporator 5 therein. Both passages 7 and 8 communicate with a communication passage 9 which extends in a straight line. A rod hole 21 is formed in such a fashion that it may penetrate this communication passage 9. An actuating rod 24 is laid out in such a fashion that it may slide in the rod hole 21 and moves, responding to the temperature of refrigerant at the outlet of the evaporator 5. A communication hole 29 is formed on the actuating rod 24. The opening area in the communication passage 9 may vary with the movement of the actuating rod 24 so that the refrigerant from the liquid refrigerant passage 7 to the mist-like refrigerant passage 8 may be subjected to adiabatic expansion.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、カーエアコン等の冷
凍サイクルに用いられる膨張弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve used in a refrigeration cycle of a car air conditioner or the like.

【0002】0002

【従来の技術】従来、冷凍サイクル用膨張弁が、例えば
、実開昭63−196058号公報に示されている。 この膨張弁は、その本体にコンデンサと連通する液冷媒
通路とエバポレータと連通する霧状冷媒通路とが形成さ
れ、液冷媒通路と霧状冷媒通路とが冷媒通路を曲げなが
らオリフィスを介して連通しており、オリフィスにはバ
ネにて閉弁側に付勢された弁体が設けられている。この
弁体は作動棒によりバネの付勢力に抗して移動されるよ
うになっている。そして、冷凍サイクルの駆動により、
コンデンサにて凝縮された冷媒が液冷媒通路に導入され
、オリフィスにて断熱膨張され、霧状冷媒が霧状冷媒通
路からエバポレータに供給される。又、エバポレータの
出口温度に応じて作動棒にて弁体が移動させられ、オリ
フィス開度が調整される。
2. Description of the Related Art A conventional expansion valve for a refrigeration cycle is disclosed in, for example, Japanese Utility Model Application Laid-open No. 196058/1983. This expansion valve has a main body formed with a liquid refrigerant passage that communicates with the condenser and an atomized refrigerant passage that communicates with the evaporator, and the liquid refrigerant passage and the atomized refrigerant passage communicate through an orifice while bending the refrigerant passage. The orifice is provided with a valve body that is biased toward the valve closing side by a spring. This valve body is moved by an actuating rod against the biasing force of a spring. Then, by driving the refrigeration cycle,
The refrigerant condensed in the condenser is introduced into the liquid refrigerant passage, adiabatically expanded in the orifice, and atomized refrigerant is supplied from the atomized refrigerant passage to the evaporator. Further, the valve body is moved by the operating rod according to the outlet temperature of the evaporator, and the opening degree of the orifice is adjusted.

【0003】0003

【発明が解決しようとする課題】ところが、弁体及びバ
ネを含む作動系は必ず冷媒中に存在するため、冷媒が膨
張弁を通過する際に、冷媒が膨張するとともにその流れ
が屈折させられ、冷媒通過音が発生するとともに、作動
系の振動(異音)が発生してしまう。この発明の目的は
、新規なる方式にて騒音等の各種の不具合を解消するこ
とができる膨張弁を提供することにある。
However, since the operating system including the valve body and spring is always present in the refrigerant, when the refrigerant passes through the expansion valve, the refrigerant expands and its flow is refracted. In addition to the refrigerant passing sound, vibrations (abnormal noises) in the operating system are also generated. An object of the present invention is to provide an expansion valve that can eliminate various problems such as noise using a new method.

【0004】0004

【課題を解決するための手段】この発明は、膨張弁本体
内に形成され、コンデンサと連通して同コンデンサにて
凝縮された冷媒が導入される液冷媒通路と、前記膨張弁
本体内において前記液冷媒通路から直線的に延びる連通
路と、前記膨張弁本体内において前記冷媒通路の他端と
連通し、かつ冷媒をエバポレータに供給する霧状冷媒通
路と、前記膨張弁本体内において前記連通路を貫通する
ように形成された作動棒摺動孔と、前記作動棒摺動孔内
に摺動可能に配設され、前記エバポレータの出口での冷
媒温度に応じて移動する作動棒と、前記作動棒に形成さ
れ、前記作動棒の移動に伴い前記連通路内での開口面積
が変更されて前記液冷媒通路から霧状冷媒通路への冷媒
を断熱膨張するオリフィス孔とを備えた膨張弁をその要
旨とする。
[Means for Solving the Problems] The present invention provides a liquid refrigerant passage formed within an expansion valve body, communicating with a condenser, and into which refrigerant condensed in the condenser is introduced; a communication passage extending linearly from the liquid refrigerant passage; a mist refrigerant passage communicating with the other end of the refrigerant passage within the expansion valve body and supplying refrigerant to the evaporator; and a communication passage within the expansion valve body. an operating rod sliding hole formed to penetrate through the operating rod; an operating rod that is slidably disposed within the operating rod sliding hole and moves according to the refrigerant temperature at the outlet of the evaporator; The expansion valve includes an orifice hole formed in a rod and whose opening area in the communicating path is changed as the operating rod moves to adiabatically expand refrigerant from the liquid refrigerant path to the atomized refrigerant path. This is the summary.

【0005】[0005]

【作用】エバポレータの出口での冷媒温度に応じて作動
棒摺動孔内を作動棒が移動する。この作動棒の移動に伴
い連通路内でのオリフィス孔の開口面積が変更されて液
冷媒通路から霧状冷媒通路への冷媒が断熱膨張する。こ
のとき、冷媒は直線的に延びた連通路を通過していく。
[Operation] The operating rod moves within the operating rod sliding hole depending on the temperature of the refrigerant at the outlet of the evaporator. As the actuating rod moves, the opening area of the orifice hole in the communication passage is changed, and the refrigerant from the liquid refrigerant passage to the atomized refrigerant passage expands adiabatically. At this time, the refrigerant passes through the communication path that extends linearly.

【0006】[0006]

【実施例】以下、この発明をカーエアコン用の膨張弁に
具体化した一実施例を図面に従って説明する。図1は実
施例のカーエアコンの概略を示す図である。カーエアコ
ンはコンプレッサ1とコンデンサ2とレシーバ3とボッ
クス型膨張弁4とエバポレータ5とを備えている。前記
ボックス型膨張弁4において、膨張弁本体6の下部での
左右両面には液冷媒通路7と霧状冷媒通路8とが対向す
るように形成されている。液冷媒通路7と霧状冷媒通路
8とは連通路9にて連通しており、同連通路9は直線的
に延びている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an expansion valve for a car air conditioner will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing a car air conditioner according to an embodiment. The car air conditioner includes a compressor 1, a condenser 2, a receiver 3, a box-type expansion valve 4, and an evaporator 5. In the box-type expansion valve 4, a liquid refrigerant passage 7 and a mist refrigerant passage 8 are formed on both left and right sides of the lower portion of the expansion valve main body 6 so as to face each other. The liquid refrigerant passage 7 and the atomized refrigerant passage 8 communicate with each other through a communication passage 9, which extends linearly.

【0007】又、前記膨張弁本体6における通路7,8
,9の上方位置には低圧冷媒通路10が貫通するように
形成されている。そして、低圧冷媒通路10の一端は車
両のエンジンにて駆動されるコンプレッサ1に接続され
、そのコンプレッサ1はコンデンサ2とレシーバ3を介
して前記液冷媒通路7に接続されている。又、霧状冷媒
通路8は車室内のエバポレータ5と接続され、このエバ
ポレータ5は前記低圧冷媒通路10の他端と接続されて
いる。
[0007] Also, passages 7 and 8 in the expansion valve main body 6
, 9, a low pressure refrigerant passage 10 is formed so as to penetrate therethrough. One end of the low-pressure refrigerant passage 10 is connected to a compressor 1 driven by a vehicle engine, and the compressor 1 is connected to the liquid refrigerant passage 7 via a condenser 2 and a receiver 3. Further, the mist refrigerant passage 8 is connected to an evaporator 5 in the vehicle interior, and this evaporator 5 is connected to the other end of the low-pressure refrigerant passage 10.

【0008】一方、前記膨張弁本体6の上部にはネジ孔
12が形成され、そのネジ孔12内には下部ハウジング
13がOリング14を介して気密を保った状態で螺合し
ている。下部ハウジング13上には薄いステンレス鋼よ
りなるダイヤフラム15を挟んで上部ハウジング16が
配設され、この3つの部材13,15,16は周囲が互
いに固着されている。その結果、両ハウジング13,1
6内においてダイヤフラム15の上側にダイヤフラム室
(感熱室)17が設けられるとともに、下側には前記ネ
ジ孔12内を含む均圧室18が設けられている。又、上
部ハウジング16にはパイプ19が接続され、このパイ
プ19を介してダイヤフラム室17内には温度応答体と
しての冷媒ガスが予め封入されている。
On the other hand, a screw hole 12 is formed in the upper part of the expansion valve body 6, and a lower housing 13 is screwed into the screw hole 12 via an O-ring 14 in an airtight manner. An upper housing 16 is disposed on the lower housing 13 with a diaphragm 15 made of thin stainless steel in between, and the three members 13, 15, and 16 are fixed to each other at their peripheries. As a result, both housings 13,1
6, a diaphragm chamber (thermal chamber) 17 is provided above the diaphragm 15, and a pressure equalization chamber 18 including the inside of the screw hole 12 is provided below. Further, a pipe 19 is connected to the upper housing 16, and a refrigerant gas as a temperature responsive body is previously sealed in the diaphragm chamber 17 via the pipe 19.

【0009】前記膨張弁本体6のネジ孔12内底部には
感温棒22が挿入されているプランジャ孔20aが形成
され、同プランジャ孔20aは前記低圧冷媒通路10と
連通している。又、低圧冷媒通路10の中央部の下側に
は前記プランジャ孔20aと対向するようにプランジャ
孔20bが形成されている。又、プランジャ孔20bの
下側には、より小径の作動棒摺動孔を構成するロッド孔
21が連続して形成されており、このロッド孔21は前
記連通路9を貫通している。そして、プランジャ孔20
a,20b内にはアルミ製の感温棒22が上下動可能に
嵌挿され、同感温棒22の上端のストッパ部22aは前
記均圧室18内に配置されてダイヤフラム15の下面に
当接している。又、感温棒22の中間部は低圧冷媒通路
10内に露出している。さらに、低圧冷媒通路10と冷
媒通路7,8,9とは感温棒22に装着されたOリング
23にてシール状態(気密)が保たれている。
A plunger hole 20a into which a temperature sensing rod 22 is inserted is formed at the inner bottom of the screw hole 12 of the expansion valve body 6, and the plunger hole 20a communicates with the low pressure refrigerant passage 10. Further, a plunger hole 20b is formed below the center of the low-pressure refrigerant passage 10 so as to face the plunger hole 20a. Further, a rod hole 21 constituting a smaller diameter operating rod sliding hole is continuously formed below the plunger hole 20b, and this rod hole 21 passes through the communication path 9. And the plunger hole 20
An aluminum temperature sensing rod 22 is fitted into the insides of a and 20b so as to be able to move up and down, and a stopper portion 22a at the upper end of the temperature sensing rod 22 is disposed within the pressure equalization chamber 18 and abuts against the lower surface of the diaphragm 15. ing. Further, the middle portion of the temperature sensing rod 22 is exposed in the low pressure refrigerant passage 10. Furthermore, the low-pressure refrigerant passage 10 and the refrigerant passages 7, 8, and 9 are maintained in a sealed state (airtight) by an O-ring 23 attached to a temperature sensing rod 22.

【0010】又、前記ロッド孔21内にはステンレス製
の作動棒24が上下動可能に配設され、その作動棒24
の上端は前記感温棒22に当接し、中間部は前記連通路
9内に露出し、下端は本体6の下面に形成されたバネ室
25内に突出している。さらに、冷媒通路7,8,9と
バネ室25とは作動棒24に装着されたOリング26に
よって気密が保たれている。又、バネ室25は調整ネジ
27により閉塞され、この調整ネジ27と作動棒24の
受座31との間には圧縮コイルバネ28が介装されてい
る。従って、作動棒24は圧縮コイルバネ28によって
上方に付勢されている。又、作動棒24にはオリフィス
孔としての連通孔29が形成されている。そして、作動
棒24の上下位置にて連通路9と連通孔29の重なりが
変更され、連通孔29の開口面積が変更されるようにな
っている。
A stainless steel actuating rod 24 is disposed within the rod hole 21 so as to be movable up and down.
The upper end is in contact with the temperature sensing rod 22, the middle part is exposed in the communication path 9, and the lower end projects into a spring chamber 25 formed on the lower surface of the main body 6. Further, the refrigerant passages 7, 8, 9 and the spring chamber 25 are kept airtight by an O-ring 26 attached to the actuating rod 24. The spring chamber 25 is closed by an adjustment screw 27, and a compression coil spring 28 is interposed between the adjustment screw 27 and the seat 31 of the actuating rod 24. Therefore, the actuating rod 24 is urged upward by the compression coil spring 28. Further, the operating rod 24 has a communication hole 29 formed therein as an orifice hole. The overlap between the communication passage 9 and the communication hole 29 is changed at the upper and lower positions of the actuating rod 24, and the opening area of the communication hole 29 is changed.

【0011】つまり、図2に示すように、サイクル停止
状態においては、作動棒24が上方に位置し、連通路9
内には作動棒24の連通孔29がなく連通路9が作動棒
24にて塞がれた状態となる(液冷媒通路7と霧状冷媒
通路8とが不通)。又、図3に示すように、作動棒24
が下方に位置するときには、連通路9内には作動棒24
の連通孔29が一致した状態で位置しており、連通孔2
9が全開状態となる。さらに、作動棒24が図2と図3
との中間位置では作動棒24の位置により中間の開度が
とられる。
That is, as shown in FIG. 2, when the cycle is stopped, the operating rod 24 is located upward and the communication path 9 is closed.
There is no communication hole 29 for the actuating rod 24 inside, and the communicating path 9 is blocked by the actuating rod 24 (the liquid refrigerant path 7 and the atomized refrigerant path 8 are not in communication with each other). Additionally, as shown in FIG. 3, the actuating rod 24
is located below, the operating rod 24 is located in the communication path 9.
The communicating holes 29 of
9 is fully open. Furthermore, the actuating rod 24 is shown in FIGS. 2 and 3.
At an intermediate position between the two, an intermediate opening degree is obtained depending on the position of the actuating rod 24.

【0012】又、調整ネジ27にて圧縮コイルバネ28
のセット長が変わると作動棒24に対する圧接力が変更
されるようになっている。次に、このように構成した膨
張弁の作用を説明する。前記コンプレッサ1から吐出さ
れた高圧縮冷媒はコンデンサ2にて凝縮された後、レシ
ーバ3、膨張弁4の液冷媒通路7を経て連通路9に入り
、作動棒24の連通孔29を通過し、このとき断熱膨張
して気液2相冷媒となり霧状冷媒通路8に至る。その後
、冷媒は霧状冷媒通路8からエバポレータ5内に導入さ
れ気化してガス冷媒となる。このときエバポレータ5が
冷却されて車室内の冷房に供される。さらに、エバポレ
ータ5から排出されたガス冷媒は低圧冷媒通路10を経
て再び前記コンプレッサ1に戻る。
Furthermore, the compression coil spring 28 can be adjusted using the adjustment screw 27.
When the set length of the actuating rod 24 changes, the pressing force applied to the actuating rod 24 changes. Next, the operation of the expansion valve configured as described above will be explained. The highly compressed refrigerant discharged from the compressor 1 is condensed in the condenser 2, passes through the receiver 3 and the liquid refrigerant passage 7 of the expansion valve 4, enters the communication passage 9, passes through the communication hole 29 of the operating rod 24, At this time, it adiabatically expands and becomes a gas-liquid two-phase refrigerant, which reaches the atomized refrigerant passage 8. Thereafter, the refrigerant is introduced into the evaporator 5 through the mist refrigerant passage 8 and vaporized to become a gas refrigerant. At this time, the evaporator 5 is cooled and used to cool the interior of the vehicle. Furthermore, the gas refrigerant discharged from the evaporator 5 returns to the compressor 1 again via the low-pressure refrigerant passage 10.

【0013】一方、感温棒22は作動棒24を介して圧
縮コイルバネ28にて常に上方に付勢されている。従っ
て、作動棒24の位置(連通孔29の開度)は、圧縮コ
イルバネ28の付勢力及び均圧室18内の冷媒圧と、ダ
イヤフラム室17内のガス圧とが釣り合った位置に保た
れる。又、均圧室18内の冷媒圧力はエバポレータ5の
蒸発圧力である。
On the other hand, the temperature sensing rod 22 is always urged upward by a compression coil spring 28 via an operating rod 24. Therefore, the position of the actuating rod 24 (the opening degree of the communication hole 29) is maintained at a position where the biasing force of the compression coil spring 28, the refrigerant pressure in the pressure equalization chamber 18, and the gas pressure in the diaphragm chamber 17 are balanced. . Further, the refrigerant pressure in the pressure equalization chamber 18 is the evaporation pressure of the evaporator 5.

【0014】そして、低圧冷媒通路10内には感温棒2
2の一部が露出しているため、低圧冷媒通路10内を通
過するガス冷媒の熱は熱伝導率の高いアルミ製の感温棒
22を介してダイヤフラム15に伝達され、さらに、ダ
イヤフラム15からダイヤフラム室17内のガスに伝達
されてそのガスが膨張・収縮される。従って、ダイヤフ
ラム室17内のガス圧はエバポレータ5出口側の冷媒温
度に応じて変化し、そのガス圧がダイヤフラム15の上
面に作用する。
[0014] A temperature sensing rod 2 is installed in the low pressure refrigerant passage 10.
2 is exposed, the heat of the gas refrigerant passing through the low-pressure refrigerant passage 10 is transmitted to the diaphragm 15 via the aluminum temperature-sensing rod 22 with high thermal conductivity, and is further transferred from the diaphragm 15 to the diaphragm 15. This is transmitted to the gas in the diaphragm chamber 17, causing the gas to expand and contract. Therefore, the gas pressure in the diaphragm chamber 17 changes depending on the temperature of the refrigerant at the outlet of the evaporator 5, and the gas pressure acts on the upper surface of the diaphragm 15.

【0015】車室内の温度が上昇し低圧冷媒通路10に
流入する冷媒の温度も上昇すると、感温棒22、ダイヤ
フラム15を介して伝熱を受けたダイヤフラム室17の
ガスが膨張しダイヤフラム15が下側に変位する。この
変位が感温棒22、作動棒24に伝えられ連通路9内で
の連通孔29の開度が大きくなり、エパポレータ5の入
口に向かう冷媒量が増加する。
When the temperature inside the vehicle increases and the temperature of the refrigerant flowing into the low-pressure refrigerant passage 10 also increases, the gas in the diaphragm chamber 17 that has received heat through the temperature sensing rod 22 and the diaphragm 15 expands, causing the diaphragm 15 to expand. Displaced downward. This displacement is transmitted to the temperature sensing rod 22 and the operating rod 24, and the degree of opening of the communication hole 29 in the communication path 9 increases, so that the amount of refrigerant flowing toward the inlet of the evaporator 5 increases.

【0016】又、車室内温度が低下し、低圧冷媒通路1
0を通る冷媒の温度も低下すると、ダイヤフラム室17
のガス圧も低下し作動棒24が摺動して連通路9内での
連通孔29の開度が小さくなり、エバポレータ5の入口
に向う冷媒量が減少する。このようにして連通孔29の
開度に応じてエバポレータ5に供給される冷媒量が調整
される。
[0016] Furthermore, the temperature inside the vehicle decreases, and the low pressure refrigerant passage 1
When the temperature of the refrigerant passing through 0 also decreases, the diaphragm chamber 17
The gas pressure also decreases, the actuating rod 24 slides, and the degree of opening of the communication hole 29 in the communication path 9 becomes smaller, and the amount of refrigerant flowing toward the inlet of the evaporator 5 decreases. In this way, the amount of refrigerant supplied to the evaporator 5 is adjusted according to the opening degree of the communication hole 29.

【0017】このように本実施例では、膨張弁本体6内
にコンデンサ2と連通して同コンデンサ2にて凝縮され
た冷媒が導入される液冷媒通路7を形成するとともにエ
バポレータ5に冷媒を供給する霧状冷媒通路8を形成し
、両通路7,8を直線的に延びる連通路9にて連通させ
た。そして、連通路9を貫通するようにロッド孔21(
作動棒摺動孔)を形成し、このロッド孔21内にエバポ
レータ5の出口での冷媒温度に応じて移動する作動棒2
4を摺動可能に配設し、作動棒24に連通孔29(オリ
フィス孔)を形成し、作動棒24の移動に伴い連通路9
内での開口面積が変更されて液冷媒通路7から霧状冷媒
通路8への冷媒を断熱膨張するようにした。よって、従
来の膨張弁においては、弁体及びバネを含む作動系は冷
媒中に存在し冷媒が膨張するとともにその流れが屈折さ
せられて冷媒通過音や作動系の振動が発生していたが、
本実施例では、冷媒通路7,8が直線的に延びる連通路
9にて連通し、かつ、バネにて付勢された弁体がないた
め、騒音等の各種の不具合を解消することができる。
As described above, in this embodiment, a liquid refrigerant passage 7 is formed in the expansion valve body 6 to communicate with the condenser 2 and into which the refrigerant condensed in the condenser 2 is introduced, and also to supply refrigerant to the evaporator 5. A mist refrigerant passage 8 was formed, and both passages 7 and 8 were communicated through a communication passage 9 extending linearly. Then, the rod hole 21 (
An operating rod 2 is formed in the rod hole 21 and moves in accordance with the refrigerant temperature at the outlet of the evaporator 5.
4 is slidably disposed, and a communication hole 29 (orifice hole) is formed in the actuation rod 24, so that as the actuation rod 24 moves, the communication path 9 opens.
The opening area within the refrigerant passage was changed so that the refrigerant from the liquid refrigerant passage 7 to the atomized refrigerant passage 8 was expanded adiabatically. Therefore, in conventional expansion valves, the operating system including the valve body and spring exists in the refrigerant, and as the refrigerant expands, its flow is bent, causing refrigerant passing noise and vibrations in the operating system.
In this embodiment, the refrigerant passages 7 and 8 communicate with each other through a communication passage 9 that extends linearly, and there is no valve element biased by a spring, so that various problems such as noise can be eliminated. .

【0018】尚、この発明は上記実施例に限定されるも
のではなく、例えば、上記実施例では低圧冷媒通路も一
体化されたボックス型膨張弁について述べたが、この低
圧冷媒通路を持たない種類の膨張弁に用いてもよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, in the above-mentioned embodiments, a box-type expansion valve with an integrated low-pressure refrigerant passage was described, but a type without this low-pressure refrigerant passage It may be used for expansion valves.

【0019】[0019]

【発明の効果】以上詳述したように本発明によれば、新
規なる方式にて騒音等の各種の不具合を解消することが
できる優れた効果を発揮する。
As described in detail above, according to the present invention, an excellent effect can be achieved in which various problems such as noise can be solved using a new method.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例のカーエアコンの概略を示す図である。FIG. 1 is a diagram schematically showing a car air conditioner according to an embodiment.

【図2】膨張弁の一部拡大図である。FIG. 2 is a partially enlarged view of an expansion valve.

【図3】膨張弁の一部拡大図である。FIG. 3 is a partially enlarged view of the expansion valve.

【符号の説明】[Explanation of symbols]

2  コンデンサ 5  エバポレータ 6  膨張弁本体 7  液冷媒通路 8  霧状冷媒通路 9  連通路 21  作動棒摺動孔としてのロッド孔24  作動棒 29  オリフィス孔としての連通孔 2 Capacitor 5 Evaporator 6 Expansion valve body 7 Liquid refrigerant passage 8 Atomized refrigerant passage 9 Communication path 21 Rod hole as operating rod sliding hole 24 Operating rod 29 Communication hole as orifice hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  膨張弁本体内に形成され、コンデンサ
と連通して同コンデンサにて凝縮された冷媒が導入され
る液冷媒通路と、前記膨張弁本体内において前記液冷媒
通路から直線的に延びる連通路と、前記膨張弁本体内に
おいて前記冷媒通路の他端と連通し、かつ冷媒をエバポ
レータに供給する霧状冷媒通路と、前記膨張弁本体内に
おいて前記連通路を貫通するように形成された作動棒摺
動孔と、前記作動棒摺動孔内に摺動可能に配設され、前
記エバポレータの出口での冷媒温度に応じて移動する作
動棒と、前記作動棒に形成され、前記作動棒の移動に伴
い前記連通路内での開口面積が変更されて前記液冷媒通
路から霧状冷媒通路への冷媒を断熱膨張するオリフィス
孔とを備えたことを特徴とする膨張弁。
1. A liquid refrigerant passage formed within an expansion valve body, communicating with a condenser and into which refrigerant condensed in the condenser is introduced, and a liquid refrigerant passage extending linearly from the liquid refrigerant passage within the expansion valve body. a communication passage; an atomized refrigerant passage within the expansion valve body that communicates with the other end of the refrigerant passage and supplies refrigerant to the evaporator; and an atomized refrigerant passage formed within the expansion valve body so as to penetrate the communication passage. an operating rod sliding hole; an operating rod that is slidably disposed in the operating rod sliding hole and moves in accordance with the refrigerant temperature at the outlet of the evaporator; an orifice hole whose opening area in the communicating passage is changed as the liquid refrigerant passage moves, and adiabatically expands the refrigerant from the liquid refrigerant passage to the atomized refrigerant passage.
JP3142120A 1991-06-13 1991-06-13 Expansion valve Pending JPH04366376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3142120A JPH04366376A (en) 1991-06-13 1991-06-13 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3142120A JPH04366376A (en) 1991-06-13 1991-06-13 Expansion valve

Publications (1)

Publication Number Publication Date
JPH04366376A true JPH04366376A (en) 1992-12-18

Family

ID=15307870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3142120A Pending JPH04366376A (en) 1991-06-13 1991-06-13 Expansion valve

Country Status (1)

Country Link
JP (1) JPH04366376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275452A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Expansion valve
JP2007032986A (en) * 2005-07-28 2007-02-08 Denso Corp Temperature type expansion valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275452A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Expansion valve
JP2007032986A (en) * 2005-07-28 2007-02-08 Denso Corp Temperature type expansion valve
JP4706372B2 (en) * 2005-07-28 2011-06-22 株式会社デンソー Thermal expansion valve

Similar Documents

Publication Publication Date Title
JP3637651B2 (en) Thermal expansion valve
JPH08145505A (en) Expansion valve
US4500035A (en) Expansion valve
JP3949417B2 (en) Expansion valve
US4978062A (en) Thermostatic expansion valve with bi-directional flow
JPH08152232A (en) Expansion valve
JPH11287536A (en) Expansion valve
JP2001241808A (en) Expansion valve
JPH04366376A (en) Expansion valve
JP2586426B2 (en) Automatic expansion valve for refrigeration equipment
JP3146722B2 (en) Expansion valve
JPH09159324A (en) Expansion valve
JPH05196324A (en) Expansion valve for refrigerating cycle
JP3442949B2 (en) Refrigeration cycle using variable capacity compressor
JPH081421Y2 (en) Expansion valve
JPH05118711A (en) Expansion valve
JPH0740139Y2 (en) Expansion valve for air conditioner
JP2773373B2 (en) Expansion valve for refrigeration cycle
JP2001183032A (en) Temperature type expansion valve
JPH11223426A (en) Expansion valve for automotive air conditioner
JPH10170105A (en) Expansion valve
JP3827898B2 (en) Expansion valve
JP3844328B2 (en) Expansion valve
JP3920056B2 (en) Expansion valve
JP2586427B2 (en) Expansion valve for refrigeration cycle