JP2586427B2 - Expansion valve for refrigeration cycle - Google Patents

Expansion valve for refrigeration cycle

Info

Publication number
JP2586427B2
JP2586427B2 JP1006984A JP698489A JP2586427B2 JP 2586427 B2 JP2586427 B2 JP 2586427B2 JP 1006984 A JP1006984 A JP 1006984A JP 698489 A JP698489 A JP 698489A JP 2586427 B2 JP2586427 B2 JP 2586427B2
Authority
JP
Japan
Prior art keywords
temperature
flow path
pressure refrigerant
low
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1006984A
Other languages
Japanese (ja)
Other versions
JPH02187579A (en
Inventor
功 畔柳
貫也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP1006984A priority Critical patent/JP2586427B2/en
Publication of JPH02187579A publication Critical patent/JPH02187579A/en
Application granted granted Critical
Publication of JP2586427B2 publication Critical patent/JP2586427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷凍サイクル用膨張弁に関し、例えばカーエ
アコンに用いて好適なものである。
Description: TECHNICAL FIELD The present invention relates to an expansion valve for a refrigeration cycle, and is suitable for use in, for example, a car air conditioner.

(従来の技術) 第3図は従来の冷凍サイクル用膨張弁100の縦断面図
を示すものであつて、この膨張弁100はコンプレツサ1
3、コンデンサ14、レシーバ15及びエバポレータ12を含
む冷凍サイクル中に接続されたものとして図示されてい
る。膨張弁100はレシーバ15からの高圧液冷媒を受ける
第1の流路10と、膨張オリフイス16を介して第1の流路
10とを連通し、エバポレータ12に向けて冷媒を流す第2
の流路11とを有している。膨張オリフイス16は感温棒4
の下端に連結された棒状部材8の下端に取り付けられた
球状の弁体9と、弁座16aとの間の間隙の大小によつて
制御されるようになつており、弁体9はばね17によつて
第3図で上方に向けて押圧されている。膨張弁100は、
更に、エバポレータ12からの低圧冷媒を受け入れる第3
の流路18と、低圧冷媒をコンプレツサ13に向けて送出す
る第4の流路19とを備えている。第1の流路10、膨張オ
リフイス16及び第2の流路11が高圧冷媒流路を構成し、
第3の流路18及び第4の流路19が低圧冷媒流路5を構成
している。膨張弁100は、更に、笠形をしたSUS材料で成
る蓋23とダイアフラム1とで画成されていて中にR12な
どの感温ガスを封入した感温室22を有する。ダイアフラ
ム1の下面には熱伝導性の良い材料で成るストツパ3が
連結され、このストツパ3の凹所には感温棒4の上端が
ゆるく挿入接続されて低圧冷媒流路5を横切つて下方に
延びていて低圧冷媒流路5を流れる冷媒の温度をストツ
パ3を介して感温室22内の感温ガスに伝達する。ストツ
パ3の下には開口20を介して図示しない外均管に連通さ
れる室21があり、ストツパ3はこの室21内で制限された
上下運動ができるようになつている。また、ストツパ3
に接続された感温棒4は、ダイアフラム1と低圧冷媒流
路5との間の弁本体の周囲壁24内を摺動自在に延び、低
圧冷媒流路5を横切つて延びている。感温棒4にはOリ
ング6が嵌着されて感温棒4と周囲壁24との間を密封し
ている。従つて、感温棒4は、低圧冷媒流路5を流れる
冷媒の温度を感温室22内の感温ガスに伝達することによ
つて生じるこの感温ガスの圧力と、ばね17の力と、室21
内の圧力とに依存して定まる位置に、上下方向に摺動さ
れて球状の弁体9と弁座16aとの間隙を制御し、よつ
て、高圧冷媒が通過する膨張オリフイス16の大きさを調
整するようになつてくる。
(Prior Art) FIG. 3 shows a vertical sectional view of a conventional expansion valve 100 for a refrigeration cycle.
3, shown as connected in a refrigeration cycle including a condenser 14, a receiver 15, and an evaporator 12. The expansion valve 100 has a first flow path 10 for receiving the high-pressure liquid refrigerant from the receiver 15 and a first flow path via an expansion orifice 16.
10 through which the refrigerant flows toward the evaporator 12
And the flow path 11 of FIG. The expansion orifice 16 is a temperature-sensitive stick 4
The valve body 9 is controlled by the size of the gap between the spherical valve element 9 attached to the lower end of the rod-shaped member 8 connected to the lower end of the valve member and the valve seat 16a. 3, it is pressed upward in FIG. The expansion valve 100
Further, a third receiving the low-pressure refrigerant from the evaporator 12
And a fourth flow path 19 for sending the low-pressure refrigerant toward the compressor 13. The first flow path 10, the expansion orifice 16 and the second flow path 11 constitute a high-pressure refrigerant flow path,
The third flow path 18 and the fourth flow path 19 constitute the low-pressure refrigerant flow path 5. The expansion valve 100 further has a temperature-sensitive chamber 22 defined by a lid 23 made of a SUS material in the shape of a shade and the diaphragm 1 and filled with a temperature-sensitive gas such as R12. A stop 3 made of a material having good heat conductivity is connected to the lower surface of the diaphragm 1, and the upper end of a temperature sensing rod 4 is loosely inserted into and connected to the recess of the stop 3, and crosses the low-pressure refrigerant flow path 5. And transmits the temperature of the refrigerant flowing through the low-pressure refrigerant flow path 5 to the temperature-sensitive gas in the temperature-sensitive chamber 22 through the stopper 3. Below the stopper 3, there is a chamber 21 which communicates with an outer equalization pipe (not shown) through an opening 20, and the stopper 3 is capable of performing a limited vertical movement in this chamber 21. Also, Stopper 3
The temperature sensing rod 4 slidably extends in the peripheral wall 24 of the valve body between the diaphragm 1 and the low-pressure refrigerant flow path 5 and extends across the low-pressure refrigerant flow path 5. An O-ring 6 is fitted to the temperature sensing rod 4 to seal between the temperature sensing rod 4 and the surrounding wall 24. Therefore, the temperature-sensitive rod 4 transmits the temperature of the refrigerant flowing through the low-pressure refrigerant flow path 5 to the temperature-sensitive gas in the temperature-sensitive chamber 22, the pressure of the temperature-sensitive gas, the force of the spring 17, Room 21
The gap between the spherical valve body 9 and the valve seat 16a is slid up and down to a position determined depending on the internal pressure, thereby controlling the size of the expansion orifice 16 through which the high-pressure refrigerant passes. It comes to adjust.

なお、上述した構成とほぼ同様の構成で成る冷凍サイ
クル用膨張弁は特開昭63−29166号公報、米国特許第3,4
50,345号明細書及び米国特許第3,537,645号明細書に開
示されている。
An expansion valve for a refrigeration cycle having substantially the same configuration as that described above is disclosed in JP-A-63-29166, U.S. Pat.
No. 5,037,645 and U.S. Pat. No. 3,537,645.

(発明が解決しようとする問題点) 従来の冷凍サイクル用膨張弁は、上述したように感温
棒を介してエバポレータから出る冷媒の温度が感温ガス
に伝達され、感温ガスの圧力変化によつて弁体を変位さ
せてエバポレータへの冷媒の流量を調節しているわけで
あるが、冷凍サイクル用膨張弁がエバポレータの風上側
に設置されるのが通常であるので冷凍サイクル用膨張弁
の本体、特に本体の上部が温風により加熱される。その
ために、低圧冷媒の温度よりも感温室内の感温ガスの温
度の方が高くなつてしまい、特に雰囲気温度が高い場合
には、膨張弁が誤作動を行なつてしまう惧れがあつた。
(Problems to be Solved by the Invention) As described above, in the conventional expansion valve for a refrigeration cycle, the temperature of the refrigerant flowing out of the evaporator is transmitted to the temperature-sensitive gas through the temperature-sensitive rod, and the temperature of the temperature-sensitive gas changes. Therefore, the flow rate of the refrigerant to the evaporator is adjusted by displacing the valve body.However, since the expansion valve for the refrigeration cycle is usually installed on the windward side of the evaporator, the expansion valve for the refrigeration cycle is not used. The main body, especially the upper part of the main body, is heated by warm air. For this reason, the temperature of the temperature-sensitive gas in the temperature-sensitive chamber becomes higher than the temperature of the low-pressure refrigerant, and particularly when the ambient temperature is high, the expansion valve may malfunction. .

本発明は従来の冷凍サイクル用膨張弁におけるこのよ
うな問題を解決することを目的としている。
An object of the present invention is to solve such a problem in a conventional expansion valve for a refrigeration cycle.

(問題を解決するための手段) 本発明は、膨張オリフイスを通してエバポレータに冷
媒を通過させる高圧冷媒流路と、該エバポレータから排
出された冷媒をコンプレツサに流すための低圧冷媒流路
と、ダイアフラムによつて画成されていて感温ガスを封
入している感温室と、一端が該ダイアフラムに伝熱関係
に接続されていて前記低圧冷媒流路を流れる冷媒の温度
を前記感温ガスに伝達するとともに前記低圧冷媒流路を
横切つて延び、他端には前記膨張オリフイスの開度を制
御する弁体を備えた感温棒と、前記ダイアフラムと前記
低圧冷媒流路との間に位置し、前記感温棒を摺動自在に
受け入れる貫通穴を画成している弁本体の周囲壁とを備
えた冷凍サイクル用膨張弁において、前記貫通穴に樹脂
リングを装着して該樹脂リング内を前記感温棒が摺動す
るように構成したことを特徴とする。
(Means for Solving the Problem) The present invention provides a high-pressure refrigerant flow path through which a refrigerant passes through an expansion orifice to an evaporator, a low-pressure refrigerant flow path through which a refrigerant discharged from the evaporator flows to a compressor, and a diaphragm. A temperature-sensitive chamber that is defined and encloses a temperature-sensitive gas, and one end of which is connected to the diaphragm in heat transfer relation to transmit the temperature of the refrigerant flowing through the low-pressure refrigerant flow path to the temperature-sensitive gas. A temperature sensing rod having a valve body for controlling an opening degree of the expansion orifice at the other end and extending between the low pressure refrigerant flow path, and located between the diaphragm and the low pressure refrigerant flow path; A refrigerating cycle expansion valve having a through hole for slidably receiving a temperature sensing rod and a peripheral wall of a valve body, wherein a resin ring is attached to the through hole and the inside of the resin ring is sensed. Warm The rod is configured to slide.

更に本発明は、前記樹脂リングが前記低圧冷媒流路に
向かつて直径が大となるテーパー孔を含む貫通孔を有す
ることを特徴とする。
Further, the present invention is characterized in that the resin ring has a through-hole including a tapered hole whose diameter increases toward the low-pressure refrigerant flow path.

(作用) 本発明によれば、弁本体の周囲壁から感温棒に伝達さ
れる熱を樹脂リングが実質的に遮断するように作用する
ので、感温ガスは低圧冷媒流路を流れる冷媒の温度をよ
り正確に感受するようになる。また、本発明によれば、
樹脂リングの貫通孔が低圧冷媒流路に向かつて直径が大
となるテーパー孔を含むので、低圧冷媒流路を流れる冷
媒が感温棒を伝わつてよりダイアフラムに近づくように
なり、感温ガスが低圧冷媒流路を流れる冷媒の温度を更
に精度よく感受できるようになる。
(Action) According to the present invention, since the resin ring acts to substantially block the heat transmitted from the peripheral wall of the valve body to the temperature sensing rod, the temperature sensitive gas is generated by the refrigerant flowing through the low pressure refrigerant flow path. The temperature is more accurately sensed. According to the present invention,
Since the through-hole of the resin ring includes a tapered hole whose diameter increases toward the low-pressure refrigerant flow path, the refrigerant flowing through the low-pressure refrigerant flow path travels closer to the diaphragm by transmitting through the temperature-sensitive rod, and the temperature-sensitive gas flows therethrough. The temperature of the refrigerant flowing through the low-pressure refrigerant flow path can be more accurately sensed.

(実施例) 以下、図面に従つて本発明の冷凍サイクル用膨張弁の
実施例を説明する。
Hereinafter, an embodiment of an expansion valve for a refrigeration cycle of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例である冷凍サイクル用膨張
弁の縦断面図であつて、第3図と同様に冷凍サイクル内
に接続された状態で図示してある。第2図(a),
(b),(c)は本発明の実施例に使用される樹脂リン
グの、それぞれ、上面図、縦断面図、及び底面図であ
る。
FIG. 1 is a longitudinal sectional view of an expansion valve for a refrigeration cycle according to an embodiment of the present invention, which is shown in a state connected to the inside of the refrigeration cycle as in FIG. FIG. 2 (a),
(B) and (c) are a top view, a longitudinal sectional view, and a bottom view, respectively, of the resin ring used in the embodiment of the present invention.

第1図において、前述した第3図と同じ符号は同じ又
は同等の部分を示しているので詳しい説明は省略する
が、本発明に関連する部分を敢えて繰り返えして説明す
ると、本発明の一実施例である冷凍サイクル用膨張弁20
0は、膨張オリフイス16を通つてエバポレータ12に冷媒
を通過させるべく第1の流路10、膨張オリフイス16及び
第2の流路11で構成された高圧冷媒流路と、エバポレー
タ12から排出された冷媒をコンプレツサ13に流すべく第
3の流路18及び第4の流路19で構成された低圧冷媒流路
5とを有している。また、ダイアフラム1と例えばSUS
材料で成る蓋23とによつて画成されている感温室22が備
えられ、感温室22内にはR12ガスなどで成る感温ガスが
封入されている。ダイアフラム1の下面には熱伝導性の
良好な材料、例えば真鍮、で成るストツパ3が連結さ
れ、このストツパ3は室21内において制限された上下移
動が可能である。感温棒4の上端は、ストツパ3の下面
に設けた凹所にゆるくはめこまれて、芯ずれを吸収する
ようにして、ストツパ3に接続されている。感温棒は低
圧冷媒流路5を流れる冷媒の温度をストツパ3及びダイ
アフラム1を介して感温室22内の感温ガスに伝達する。
感温棒4の下端には棒状部材8を介して球状の弁体9が
取り付けられていて、弁体9は弁座16aと協働して膨張
オリフイス16の開度を制御する。ダイアフラム1と低圧
冷媒流路5との間には、低圧冷媒流路5を横切つて延び
る感温棒4を上下動自在に通す貫通穴2を形成する弁本
体の周囲壁24が備えられている。
In FIG. 1, the same reference numerals as those in FIG. 3 indicate the same or equivalent parts, and therefore detailed description is omitted. However, if the parts related to the present invention are repeated and explained, the present invention will be described. One embodiment of a refrigeration cycle expansion valve 20
0 is a high-pressure refrigerant flow path composed of the first flow path 10, the expansion orifice 16 and the second flow path 11 for allowing the refrigerant to pass through the expansion orifice 16 to the evaporator 12, and is discharged from the evaporator 12. It has a low-pressure refrigerant flow path 5 composed of a third flow path 18 and a fourth flow path 19 for flowing the refrigerant to the compressor 13. Also, the diaphragm 1 and, for example, SUS
A temperature sensing chamber 22 defined by a lid 23 made of a material is provided, and the temperature sensing chamber 22 is filled with a temperature sensing gas such as R12 gas. A stop 3 made of a material having good heat conductivity, for example, brass, is connected to the lower surface of the diaphragm 1, and the stop 3 can move up and down within the chamber 21 with a limited amount. The upper end of the temperature sensing rod 4 is loosely fitted into a recess provided on the lower surface of the stopper 3, and is connected to the stopper 3 so as to absorb misalignment. The temperature sensing rod transmits the temperature of the refrigerant flowing through the low-pressure refrigerant flow path 5 to the temperature sensing gas in the temperature sensing chamber 22 via the stopper 3 and the diaphragm 1.
A spherical valve element 9 is attached to the lower end of the temperature sensing rod 4 via a rod-shaped member 8, and the valve element 9 controls the opening degree of the expansion orifice 16 in cooperation with the valve seat 16a. Between the diaphragm 1 and the low-pressure refrigerant flow path 5, there is provided a peripheral wall 24 of a valve body forming a through-hole 2 through which a temperature-sensitive rod 4 extending across the low-pressure refrigerant flow path 5 is vertically movable. I have.

本発明においては、弁本体の周囲壁24に画成された貫
通穴2に樹脂リング7が装着されている。本実施例で
は、樹脂リング7は円筒形の外面を有し、テフロン製の
ものであり、熱伝導率が0.24〜0.36W/m・kである。樹
脂リング7内には、第2図に示すように、その一端に開
口する円筒形の孔7bと、この孔7bと接続し且つリング7
の他端に開口するテーパー孔7aとが形成されて貫通孔を
形成している。装着方法は、貫通穴2内にこの樹脂リン
グ7を打ち込み嵌合させることによつて行なわれる。
In the present invention, the resin ring 7 is mounted in the through hole 2 defined in the peripheral wall 24 of the valve body. In this embodiment, the resin ring 7 has a cylindrical outer surface, is made of Teflon, and has a thermal conductivity of 0.24 to 0.36 W / m · k. In the resin ring 7, as shown in FIG. 2, a cylindrical hole 7b opened at one end thereof and a ring 7b connected to the hole 7b.
And a tapered hole 7a which is open at the other end thereof to form a through hole. The mounting method is performed by driving and fitting the resin ring 7 into the through hole 2.

感温棒4の周面に形成された円周溝にはOリング6が
装着されて感温棒4とともに樹脂リング7の円筒形の孔
7b内を上下に摺動可能であり、しかも、低圧冷媒流路5
から室21を気密に封止している。第1図から分るよう
に、テーパー孔7aは低圧冷媒流路5内の冷媒をよりダイ
アフラム1に近づける作用をし、よつて、感温室22の感
度を良好にする。
An O-ring 6 is mounted in a circumferential groove formed on the peripheral surface of the temperature sensing rod 4, and a cylindrical hole of the resin ring 7 is provided together with the temperature sensing rod 4.
7b can be slid up and down, and the low-pressure refrigerant flow path 5
The chamber 21 is hermetically sealed. As can be seen from FIG. 1, the tapered hole 7a acts to make the refrigerant in the low-pressure refrigerant flow path 5 closer to the diaphragm 1 and thus improves the sensitivity of the temperature sensing chamber 22.

次に、本発明の上記した実施例の作動について説明す
る。
Next, the operation of the above embodiment of the present invention will be described.

コンプレツサ13で圧縮されコンデンサ14で凝縮された
冷媒はレシーバ15内で気液2相に分離され、レシーバ15
から出た液冷媒が膨張弁200の膨張オリフイス16を通さ
れ、ここで液冷媒が断熱膨張させられてエバポレータ12
に導入され、エバポレータ12内で蒸発されてエバポレー
タ12の周囲から熱を奪い高温、低圧冷媒となる。この低
圧冷媒は膨張弁200の低圧冷媒流路5を通してコンプレ
ツサ13に戻される。この膨張弁200はエバポレータ12の
風上側に位置するためにその雰囲気温度は、クールダウ
ン初期に60゜〜50℃程度であり、定常運転時には約27℃
程度である。この温度は、低圧冷媒温度よりもほぼ20〜
30℃程度高くなつている。従つて、膨張弁200の本体の
周囲壁24の温度が著しく上昇し、この周囲壁24の温度に
よつて、感温棒4によつて伝達されるべき低圧冷媒の温
度に外乱が加わつてしまうことになるわけであるが、本
発明においては、前述した樹脂リング7が周囲壁24と感
温棒4との間に介在されているので、周囲壁24から感温
棒4への熱の伝導が遮断される。かくて、感温棒4が雰
囲気温度の影響を受ける度合が減少せしめられ、感温棒
4は低圧冷媒の温度をより正確に感温室22内の感温ガス
に感応せしめる。なお、第2図を参照して前述したよう
に、樹脂リング7に、低圧冷媒流路に向かつて直径が大
となるテーパー孔7aを備えたことによつて、低圧冷媒を
ダイアフラム1の下部により近づけることができるの
で、低圧冷媒の温度をより正確に感温ガスに伝達せしめ
ることが可能となる。
The refrigerant compressed by the compressor 13 and condensed by the condenser 14 is separated into a gas-liquid two phase in the receiver 15 and
Is discharged through the expansion orifice 16 of the expansion valve 200, where the liquid refrigerant is adiabatically expanded and the evaporator 12
And evaporates in the evaporator 12 to remove heat from around the evaporator 12 to become a high-temperature, low-pressure refrigerant. This low-pressure refrigerant is returned to the compressor 13 through the low-pressure refrigerant flow path 5 of the expansion valve 200. Since this expansion valve 200 is located on the windward side of the evaporator 12, the ambient temperature is about 60 ° C. to 50 ° C. in the initial stage of the cool down, and about 27 ° C. during the steady operation.
It is about. This temperature is approximately 20 to less than the low pressure refrigerant temperature.
It is about 30 ° C higher. Accordingly, the temperature of the peripheral wall 24 of the main body of the expansion valve 200 rises remarkably, and the temperature of the peripheral wall 24 causes disturbance to the temperature of the low-pressure refrigerant to be transmitted by the temperature sensing rod 4. However, in the present invention, since the above-described resin ring 7 is interposed between the peripheral wall 24 and the temperature-sensitive rod 4, heat transfer from the peripheral wall 24 to the temperature-sensitive rod 4 is performed. Is shut off. Thus, the degree to which the temperature sensing rod 4 is affected by the ambient temperature is reduced, and the temperature sensing rod 4 makes the temperature of the low pressure refrigerant more sensitive to the temperature sensing gas in the temperature sensing chamber 22. As described above with reference to FIG. 2, the resin ring 7 is provided with the tapered hole 7a having a large diameter toward the low-pressure refrigerant flow path, so that the low-pressure refrigerant is supplied to the lower part of the diaphragm 1. Since the temperature can be approached, the temperature of the low-pressure refrigerant can be more accurately transmitted to the temperature-sensitive gas.

(本発明の効果) 本発明によれば、膨張弁の感温棒に対する雰囲気温度
の影響を減少させることができるので、低圧冷媒の温度
に依存してより正確に膨張オリフイスの開度を制御する
ことができる。更に、樹脂リングの貫通孔を低圧冷媒流
路に向かつて直径が大きくなるテーパー孔となるように
構成したことによつて、低圧冷媒はダイアフラムにより
近づくことになり、低圧冷媒と感温ガスとの温度差が小
さくなり、誤作動の惧れがより減少する。
(Effects of the Present Invention) According to the present invention, the influence of the ambient temperature on the temperature sensing rod of the expansion valve can be reduced, so that the opening degree of the expansion orifice is controlled more accurately depending on the temperature of the low-pressure refrigerant. be able to. Further, by configuring the through hole of the resin ring to be a tapered hole whose diameter increases toward the low-pressure refrigerant flow path, the low-pressure refrigerant comes closer to the diaphragm, and the low-pressure refrigerant and the temperature-sensitive gas communicate with each other. The temperature difference is reduced, and the possibility of malfunction is further reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は冷凍サイクル内に接続された状態で示す、本発
明の冷凍サイクル用膨張弁の一実施例の縦断面図、第2
図の(a),(b),(c)は、それぞれ本発明に使用
される樹脂リング7の一例の上面図、縦断面図及び底面
図、第3図は第1図に似た図であるが従来の冷凍サイク
ル用膨張弁の縦断面図である。 1……ダイアフラム、2……通路、 3……ストツパ、4……感温棒、 5……低圧冷媒流路、6……Oリング、 7……樹脂リング、7a,7b……孔、 8……棒状部材、9……弁体、 10……第1の流路、11……第2の流路、 12……エバポレータ、13……コンプレツサ、 14……コンデンサ、15……レシーバ、 16……膨張オリフイス、16a……弁座、 17……ばね、18……第3の流路、 19……第4の流路、20……開口、 21……室、22……感温室、 23……蓋、24……弁本体の周囲壁、 200……冷凍サイクル用膨張弁。
FIG. 1 is a longitudinal sectional view of one embodiment of an expansion valve for a refrigeration cycle of the present invention, shown in a state connected in a refrigeration cycle.
(A), (b) and (c) of the figure are a top view, a longitudinal sectional view and a bottom view of an example of a resin ring 7 used in the present invention, respectively, and FIG. It is a longitudinal sectional view of a conventional refrigeration cycle expansion valve. DESCRIPTION OF SYMBOLS 1 ... Diaphragm, 2 ... Passage, 3 ... Stopper, 4 ... Temperature sensing rod, 5 ... Low pressure refrigerant flow path, 6 ... O-ring, 7 ... Resin ring, 7a, 7b ... Hole, 8 ... rod-shaped member, 9 ... valve element, 10 ... first flow path, 11 ... second flow path, 12 ... evaporator, 13 ... compressor, 14 ... condenser, 15 ... receiver, 16 ... expansion orifice, 16a ... valve seat, 17 ... spring, 18 ... third flow path, 19 ... fourth flow path, 20 ... opening, 21 ... chamber, 22 ... thermosensitive chamber, 23 ... lid, 24 ... wall around valve body, 200 ... expansion valve for refrigeration cycle.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】膨張オリフイスを通してエバポレータに冷
媒を通過させる高圧冷媒流路と、該エバポレータから排
出された冷媒をコンプレツサに流すための低圧冷媒流路
と、ダイアフラムによつて画成されていて感温ガスを封
入している感温室と、一端が該ダイアフラムに伝熱関係
に接続されていて前記低圧冷媒流路を流れる冷媒の温度
を前記感温ガスに伝達するとともに前記低圧冷媒流路を
横切つて延び、他端には前記膨張オリフイスの開度を制
御する弁体を備えた感温棒と、前記ダイアフラムと前記
低圧冷媒流路との間に位置し、前記感温棒を摺動自在に
受け入れる貫通穴を画成している弁本体の周囲壁とを備
えた冷凍サイクル用膨張弁において、前記貫通穴に樹脂
リングを装着して該樹脂リング内を前記感温棒が摺動す
るように構成したことを特徴とする冷凍サイクル用膨張
弁。
A temperature-sensitive diaphragm defined by a diaphragm, a high-pressure refrigerant passage for passing refrigerant through an expansion orifice to an evaporator, a low-pressure refrigerant passage for flowing refrigerant discharged from the evaporator to a compressor, and a diaphragm. A temperature sensing chamber enclosing a gas, one end of which is connected to the diaphragm in heat transfer relationship to transmit the temperature of the refrigerant flowing through the low pressure refrigerant flow path to the temperature sensitive gas and traverse the low pressure refrigerant flow path; A temperature-sensitive rod provided with a valve body for controlling the opening of the expansion orifice at the other end, and located between the diaphragm and the low-pressure refrigerant flow path, so that the temperature-sensitive rod is slidable. A refrigerating cycle expansion valve having a valve body surrounding wall defining a through hole for receiving, wherein a resin ring is attached to the through hole so that the temperature sensing rod slides in the resin ring. Composed Refrigeration cycle for the expansion valve, wherein the door.
【請求項2】前記樹脂リングが前記低圧冷媒流路に向か
つて直径が大となるテーパー孔を含む貫通孔を有する特
許請求の範囲第1項記載の冷凍サイクル用膨張弁。
2. The refrigeration cycle expansion valve according to claim 1, wherein said resin ring has a through-hole including a tapered hole having a large diameter toward said low-pressure refrigerant flow path.
JP1006984A 1989-01-13 1989-01-13 Expansion valve for refrigeration cycle Expired - Lifetime JP2586427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006984A JP2586427B2 (en) 1989-01-13 1989-01-13 Expansion valve for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1006984A JP2586427B2 (en) 1989-01-13 1989-01-13 Expansion valve for refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH02187579A JPH02187579A (en) 1990-07-23
JP2586427B2 true JP2586427B2 (en) 1997-02-26

Family

ID=11653432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006984A Expired - Lifetime JP2586427B2 (en) 1989-01-13 1989-01-13 Expansion valve for refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2586427B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961038A (en) * 1995-07-13 1999-10-05 Pacific Industrial Co., Ltd. Thermal type expansion valve

Also Published As

Publication number Publication date
JPH02187579A (en) 1990-07-23

Similar Documents

Publication Publication Date Title
US3525234A (en) Receiver containing a thermostatic expansion valve and suction throttling valve
US4258899A (en) Actuating apparatus for adjusting a movable element, particularly the closure member of a valve
JPH0571860B2 (en)
US1934548A (en) Pressure responsive device
US2355894A (en) Refrigerating system
US4632305A (en) Expansion valve
US2215947A (en) Refrigerating apparatus
US2363010A (en) Refrigerant control system
JP2586427B2 (en) Expansion valve for refrigeration cycle
US2410795A (en) Expansion valve
US3498074A (en) Control system for refrigerating apparatus
US4344566A (en) Thermostatic expansion valve
JP3942848B2 (en) Expansion valve unit
US2701451A (en) Expansion valve for refrigerating apparatus
US2160453A (en) Refrigerating apparatus
US2564421A (en) Flow control valve for refrigeration systems
US4323220A (en) Actuating apparatus for adjusting a movable element, particularly the closure member of a valve
JP2001116402A (en) Expansion valve for refrigerating device
US2719674A (en) Refrigeration expansion valves
US2368592A (en) Expansion valve
JP3476619B2 (en) Expansion valve
US3696628A (en) Thermostatic expansion valve for refrigeration system
JPH11223426A (en) Expansion valve for automotive air conditioner
JPH081421Y2 (en) Expansion valve
JPS595814Y2 (en) Temperature automatic expansion valve