JP2000209030A - Oscillation circuit - Google Patents

Oscillation circuit

Info

Publication number
JP2000209030A
JP2000209030A JP11011365A JP1136599A JP2000209030A JP 2000209030 A JP2000209030 A JP 2000209030A JP 11011365 A JP11011365 A JP 11011365A JP 1136599 A JP1136599 A JP 1136599A JP 2000209030 A JP2000209030 A JP 2000209030A
Authority
JP
Japan
Prior art keywords
circuit
oscillation
oscillation circuit
resistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011365A
Other languages
Japanese (ja)
Inventor
Akio Seki
昭男 関
Teru Ueda
輝 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP11011365A priority Critical patent/JP2000209030A/en
Publication of JP2000209030A publication Critical patent/JP2000209030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the oscillation frequency of an oscillation circuit which is using a crystal vibrator, etc., in terms of temperature, etc. SOLUTION: A resistor R1 is connected in series to a crystal vibrator X and a resistor R2 is connected in parallel to the vibrator X respectively. At the same time, a capacitor C2 is connected in series to the vibrator X to properly suppress the exciting level of the vibrator X and also to turn the oscillation frequency characteristic into a smooth tertiary curve corresponding to the temperature of the signal that is amplified by a transistor Q11 and outputted from an emitter. Thus, the temperature compensation is facilitated. Meanwhile, the power voltage supplied to an oscillation circuit of a microwave band, etc., using a dielectric resonator is varied by a temperature compensation circuit according to the temperatures to stabilize the oscillation frequency in regard to the temperature. In regard to the humidity, the relative humidity is detected by a humidity detection circuit. Then the temperature compensation circuit generates the control voltage in response to the relative humidity and controls the oscillation circuit to stabilize the oscillation frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発振回路に係り、水
晶振動子または誘電体共振器を用いた発振回路の温度変
化または湿度変化に対する周波数安定度を向上するもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oscillating circuit, and more particularly, to an oscillating circuit using a crystal resonator or a dielectric resonator, which improves the frequency stability with respect to a change in temperature or humidity.

【0002】[0002]

【従来の技術】発振回路には、高い発振周波数安定度を
得るため水晶振動子、あるいは誘電体共振器が用いられ
る。図2は水晶振動子の等価回路であるが、水晶振動子
を用いた発振回路では等価直列抵抗Rに対して発振回路
の負性抵抗を十分に大きくすることにより安定した発振
が得られる。ところが、水晶振動子の励振レベルが大き
くなり過ぎると、図3(イ)に示すように温度に対する
発振周波数特性が高温度領域で三次曲線から外れ、不自
然なカーブとなり、発振周波数を温度補償する場合に困
難が生ずる。
2. Description of the Related Art A crystal oscillator or a dielectric resonator is used in an oscillation circuit in order to obtain high oscillation frequency stability. FIG. 2 shows an equivalent circuit of a crystal oscillator. In an oscillation circuit using a crystal oscillator, stable oscillation can be obtained by sufficiently increasing the negative resistance of the oscillation circuit with respect to the equivalent series resistance R. However, if the excitation level of the crystal resonator becomes too high, the oscillation frequency characteristic with respect to temperature deviates from a cubic curve in a high temperature region as shown in FIG. Difficulties arise in some cases.

【0003】また、誘電体共振器はマイクロ波帯の局部
発振回路等によく用いられるが、誘電体共振器を用いた
発振回路の温度に対する周波数特性は図5(ロ)に示す
如く二次曲線状の特性を示す。この特性は、誘電体共振
器の材料の選択等によって二次曲線の傾きを右上がりに
するか、または左上がりにすることは可能であるが、二
次曲線を直線に変えることはできない。また、相対湿度
に対する周波数特性は図7(ロ)に示す如く相対湿度の
上昇で周波数が低下するという特性を持つ。
A dielectric resonator is often used for a local oscillation circuit in a microwave band, and the frequency characteristic of an oscillation circuit using the dielectric resonator with respect to temperature is quadratic as shown in FIG. Shows the characteristics of the shape. This characteristic allows the slope of the quadratic curve to rise to the right or to the left by selecting the material of the dielectric resonator or the like, but the quadratic curve cannot be changed to a straight line. Further, the frequency characteristic with respect to the relative humidity has a characteristic that the frequency decreases as the relative humidity increases as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような点
に鑑み、水晶振動子を用いる発振回路では、水晶振動子
の励振レベルを適宜のレベルに抑え、温度変化に対して
発振周波数の特性が素直な三次曲線になるようにして温
度補償を可能にし、また、誘電体共振器を用いる発振回
路では、温度に関しては、発振回路に供給する電圧に温
度特性を持たせて発振周波数を安定化させ、湿度に関し
ては、発振回路に印加する制御電圧を相対湿度に応じて
変化させ、環境変化に対して発振周波数を安定化させる
ことを目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, the present invention provides an oscillation circuit using a crystal oscillator, in which the excitation level of the crystal oscillator is suppressed to an appropriate level, and the oscillation frequency characteristic with respect to temperature changes. Is a simple cubic curve to enable temperature compensation.In the case of an oscillator circuit using a dielectric resonator, the voltage supplied to the oscillator circuit has temperature characteristics to stabilize the oscillation frequency. With respect to humidity, an object is to change the control voltage applied to the oscillation circuit in accordance with the relative humidity, and to stabilize the oscillation frequency against environmental changes.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の発振回路では、水晶振動子の一端子をトラ
ンジスタのベースに接続し、他端子を負荷容量を介して
接地接続してなる発振回路において、前記水晶振動子の
励振レベルを制限する手段を設け、発振周波数の温度特
性を補償し易くする。
In order to achieve the above object, in an oscillation circuit according to the present invention, one terminal of a crystal oscillator is connected to the base of a transistor, and the other terminal is grounded via a load capacitor. In the oscillation circuit, means for limiting the excitation level of the crystal resonator is provided to facilitate compensating the temperature characteristics of the oscillation frequency.

【0006】この水晶振動子の励振レベルの制限手段
は、水晶振動子に直列に第1抵抗器を接続したものとす
る。
The means for limiting the excitation level of the crystal unit is such that a first resistor is connected in series with the crystal unit.

【0007】または、水晶振動子に並列に第2抵抗器を
接続したものとする。
Alternatively, it is assumed that a second resistor is connected in parallel with the quartz oscillator.

【0008】あるいは、水晶振動子の一端子とトランジ
スタのベースとの間にコンデンサを直列に接続したもの
とする。
Alternatively, it is assumed that a capacitor is connected in series between one terminal of the crystal unit and the base of the transistor.

【0009】また、誘電体共振器を用いた発振回路にお
いて、発振回路に電源を供給する電源回路と発振回路と
の間に、電源回路よりの電圧を周囲温度に応じて可変
し、発振回路に供給して発振周波数を可変する温度補償
回路を設け、温度変化時の発振周波数の変動を抑止する
ように構成する。
Further, in an oscillation circuit using a dielectric resonator, a voltage from the power supply circuit is varied between the power supply circuit for supplying power to the oscillation circuit and the oscillation circuit in accordance with the ambient temperature. A temperature compensating circuit for supplying and varying the oscillation frequency is provided so as to suppress the fluctuation of the oscillation frequency when the temperature changes.

【0010】この温度補償回路は、電源回路よりの電圧
をエミッタに入力し、コレクタより発振回路に出力する
PNP型トランジスタと、PNP型トランジスタのベー
スにコレクタを接続し、ベースを第1サーミスタおよび
第3抵抗器の並列回路を介してPNP型トランジスタの
コレクタに接続すると共に第2サーミスタおよび第4抵
抗器の直列回路を介して接地に接続し、エミッタを第5
抵抗器を介して接地に接続すると共にツェナダイオード
を介してPNP型トランジスタのコレクタに接続したN
PN型トランジスタとから構成する。なお、第1サーミ
スタおよび第3抵抗器の並列回路に直列に第6抵抗器を
接続してもよい。
In this temperature compensation circuit, a voltage from a power supply circuit is input to an emitter, a PNP transistor that outputs from a collector to an oscillation circuit, a collector is connected to the base of the PNP transistor, and the base is connected to a first thermistor and a first thermistor. It is connected to the collector of a PNP transistor via a parallel circuit of three resistors, connected to ground via a series circuit of a second thermistor and a fourth resistor, and has an emitter connected to the fifth.
N connected to ground via a resistor and to the collector of a PNP transistor via a Zener diode
And a PN-type transistor. Note that a sixth resistor may be connected in series with a parallel circuit of the first thermistor and the third resistor.

【0011】また、誘電体共振器を用いた発振回路に、
相対湿度を検出する湿度検出回路と、湿度検出回路より
の信号に応じた制御電圧を生成し、発振回路に印加して
発振周波数を制御する制御電圧生成回路とを設け、相対
湿度の変化時の発振周波数の変動を抑止するように構成
する。
An oscillation circuit using a dielectric resonator includes:
A humidity detection circuit for detecting relative humidity, and a control voltage generation circuit for generating a control voltage according to a signal from the humidity detection circuit and controlling the oscillation frequency by applying the control voltage to an oscillation circuit are provided. It is configured to suppress the fluctuation of the oscillation frequency.

【0012】[0012]

【発明の実施の形態】発明の実施の形態を実施例に基づ
き図面を参照して説明する。図1は本発明による発振回
路の一実施例の要部ブロック図で(イ)は水晶振動子を
用いた発振回路の一例、(ロ)および(ハ)は水晶振動
子回路部分の他の例、図2は水晶振動子の等価回路、図
3は水晶振動子の励振レベルと周波数特性の関係を示す
図である。図1の1、1′および1″はそれぞれ水晶振
動子回路で、Xは水晶振動子、C1は負荷容量、R1は第1
抵抗器、R2は第2抵抗器、C2はコンデンサである。Q11
は発振回路を構成するエミッタフォロワ接続のトランジ
スタ(NPN型)で、抵抗器R11 および抵抗器R12 でベ
ースバイアス電圧を与え、トランジスタQ11 に合わせて
バイアス容量(コンデンサ)C11 およびC12 を決定し、
電力増幅し、エミッタ回路の抵抗器R13 を介し発振信号
を出力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments with reference to the drawings. FIG. 1 is a block diagram of a main part of an embodiment of an oscillator circuit according to the present invention. (A) is an example of an oscillator circuit using a crystal oscillator, and (B) and (C) are other examples of a crystal oscillator circuit portion. FIG. 2 is an equivalent circuit diagram of the crystal unit, and FIG. 3 is a diagram showing the relationship between the excitation level of the crystal unit and the frequency characteristics. In FIG. 1, reference numerals 1, 1 'and 1 "denote crystal oscillator circuits, respectively, where X is a crystal oscillator, C1 is a load capacitance, and R1 is a first crystal oscillator.
A resistor, R2 is a second resistor, and C2 is a capacitor. Q11
Is an emitter-follower-connected transistor (NPN type) constituting an oscillation circuit. A base bias voltage is applied by a resistor R11 and a resistor R12. Bias capacitances (capacitors) C11 and C12 are determined in accordance with the transistor Q11.
The power is amplified and an oscillation signal is output via the resistor R13 of the emitter circuit.

【0013】水晶振動子Xの発振周波数は負荷容量C1に
よって決定される。この発振回路は回路の負性抵抗を水
晶振動子Xの等価直列抵抗Rに対して十分に大きくとる
ことで安定した発振が得られるが、これは同時に水晶振
動子Xの励振能力を高めることであり、励振レベルが大
きくなる。ところが、水晶振動子Xの励振レベルが過大
になると、図3(イ)に示す如く高温度領域の発振周波
数特性が三次曲線から外れ、上下動して波うち型にな
り、発振周波数を温度補償する場合に極めて難しいもの
となる。そこで、水晶振動子Xの励振レベルを適宜に制
限する手段を設け、温度に対する発振周波数の特性を図
3(ロ)に示す如く滑らかに変化する三次曲線とし、温
度補償をし易くする。図1(イ)の水晶振動子回路1は
水晶振動子Xに第1抵抗器R1を直列に介挿した例(第1
抵抗器R1を負荷容量C1側に介挿するようにもできる)、
(ロ)の水晶振動子回路1′は水晶振動子Xに第2抵抗
器R2を並列に接続した例、(ハ)の水晶振動子回路1″
は水晶振動子XにコンデンサC2を直列に介挿した例であ
るが、これらにより、水晶振動子Xの消費電力(励振エ
ネルギー)が介挿したこれら抵抗器あるいはコンデンサ
で分割消費され、水晶振動子Xの励振レベルが適宜に制
限され、発振周波数の温度特性が滑らかに変化する三次
曲線となり、温度補償を容易に行うことができる。
The oscillation frequency of the crystal unit X is determined by the load capacitance C1. In this oscillation circuit, stable oscillation can be obtained by setting the negative resistance of the circuit sufficiently large with respect to the equivalent series resistance R of the crystal unit X. This is achieved by simultaneously increasing the excitation capability of the crystal unit X. Yes, the excitation level increases. However, when the excitation level of the crystal unit X becomes excessive, the oscillation frequency characteristic in the high temperature region deviates from the cubic curve as shown in FIG. It is extremely difficult to do so. Therefore, means for appropriately restricting the excitation level of the crystal unit X is provided, and the characteristic of the oscillation frequency with respect to the temperature is set as a cubic curve that smoothly changes as shown in FIG. The crystal oscillator circuit 1 of FIG. 1A has an example in which a first resistor R1 is inserted in series with a crystal oscillator X (first
It is also possible to insert the resistor R1 on the load capacitance C1 side),
The crystal oscillator circuit 1 'of (b) is an example in which the second resistor R2 is connected in parallel to the crystal oscillator X, and the crystal oscillator circuit 1''of (c).
Is an example in which a capacitor C2 is interposed in series with a crystal unit X. With these, the power consumption (excitation energy) of the crystal unit X is divided and consumed by these interposed resistors or capacitors. The excitation level of X is appropriately restricted, and the temperature characteristic of the oscillation frequency becomes a cubic curve that changes smoothly, so that temperature compensation can be easily performed.

【0014】図4は本発明による発振回路の他の実施例
の要部ブロック図、および温度補償回路の一例で、21は
電源回路、22は温度補償回路、23は誘電体共振器を用い
たマイクロ波帯の局部発振回路等に用いる発振回路であ
る。発振回路23の発振周波数は、図5(ロ)に示す如
く、中温度領域(20℃〜25℃)をピークとしてこれより
高温度領域および低温度領域で共に発振周波数が下がる
(逆U字型)という温度特性を示す。ところで、発振回
路23は、図5(イ)に示す如く電源電圧が上がれば発振
周波数が上昇するという特性を持つ。そこで、温度補償
回路22により、電源回路21よりの電圧Viを、中温度領域
(20℃〜25℃)で低く、高温度領域および低温度領域で
高い電圧となる(U字型)ように出力電圧Voに温度特性
を持たせ、発振回路23に供給するようにする。これによ
り、図5(ロ)の周波数特性は温度変化に対して略平坦
(直線)になり、発振周波数の変動を抑止する。
FIG. 4 is a block diagram of a main part of another embodiment of an oscillation circuit according to the present invention and an example of a temperature compensation circuit. Reference numeral 21 denotes a power supply circuit, 22 denotes a temperature compensation circuit, and 23 denotes a dielectric resonator. This is an oscillation circuit used for a local oscillation circuit in the microwave band. As shown in FIG. 5 (b), the oscillation frequency of the oscillation circuit 23 peaks in the middle temperature range (20 ° C. to 25 ° C.) and decreases in both the high temperature range and the low temperature range. ). Incidentally, the oscillation circuit 23 has a characteristic that the oscillation frequency increases as the power supply voltage increases, as shown in FIG. Therefore, the temperature compensation circuit 22 outputs the voltage Vi from the power supply circuit 21 so as to be low in the middle temperature range (20 ° C. to 25 ° C.) and high in the high temperature range and the low temperature range (U-shaped). The voltage Vo has a temperature characteristic and is supplied to the oscillation circuit 23. Thereby, the frequency characteristic of FIG. 5B becomes substantially flat (linear) with respect to the temperature change, and the fluctuation of the oscillation frequency is suppressed.

【0015】温度補償回路22は、電源回路21よりの電圧
ViをPNP型トランジスタQ21 のエミッタに入力し、コ
レクタより電圧Voを発振回路23に出力し、PNP型トラ
ンジスタQ21 のベースにNPN型トランジスタQ22 のコ
レクタを接続し、NPN型トランジスタQ22 はベースを
第1サーミスタTh21と第3抵抗器R21 の並列回路を介し
て出力電圧Vo端(PNP型トランジスタQ21 のコレク
タ)に接続すると共に第2サーミスタTh22と第4抵抗器
R22 の直列回路を介して接地に接続し、エミッタをツェ
ナダイオードDzを介して出力電圧Vo端に接続すると共に
第5抵抗器R23 を介して接地に接続する。第3抵抗器R2
1 は第1サーミスタTh21の抵抗値の温度変化を鈍らせる
ためのものであり、第4抵抗器R22 は二つのサーミスタ
回路(第1サーミスタTh21と第3抵抗器R21 の並列回路
と、第2サーミスタTh22と第4抵抗器R22 の直列回路)
の接続点の電圧分岐比率を調整するためのものである。
二つのサーミスタ回路の接続点の電圧、すなわち出力電
圧Voの分岐比率は温度によって変化し、この電圧がNP
N型トランジスタQ22 のベース電圧となるが、エミッタ
電圧(基準電圧)は出力電圧Voと連動するため、二つの
サーミスタ回路の各素子の適宜な選定によりNPN型ト
ランジスタQ22 のバイアス電圧に適宜の温度依存性を持
たせることができ、PNP型トランジスタQ21 のベース
電流に温度依存性を持たせ、出力電圧Voを上述のU字型
の温度特性にすることができる。なお、第1サーミスタ
Th21と第3抵抗器R21 の並列回路に第6抵抗器を直列接
続することにより、第6抵抗器の適宜の選定で温度補償
精度を上げることができる。
The temperature compensating circuit 22 is provided with a voltage from the power supply circuit 21.
Vi is input to the emitter of the PNP transistor Q21, a voltage Vo is output from the collector to the oscillation circuit 23, the collector of the NPN transistor Q22 is connected to the base of the PNP transistor Q21, and the base of the NPN transistor Q22 is the first. It is connected to the output voltage Vo terminal (collector of the PNP transistor Q21) through a parallel circuit of the thermistor Th21 and the third resistor R21, and the second thermistor Th22 and the fourth resistor
R22 is connected to ground via a series circuit, the emitter is connected to the output voltage Vo terminal via a zener diode Dz, and is connected to ground via a fifth resistor R23. Third resistor R2
Numeral 1 is for reducing the temperature change of the resistance value of the first thermistor Th21, and the fourth resistor R22 is composed of two thermistor circuits (a parallel circuit of the first thermistor Th21 and the third resistor R21 and a second thermistor circuit). Series circuit of Th22 and fourth resistor R22)
To adjust the voltage branching ratio at the connection point.
The voltage at the connection point of the two thermistor circuits, that is, the branch ratio of the output voltage Vo changes with temperature.
Although this becomes the base voltage of the N-type transistor Q22, the emitter voltage (reference voltage) is linked to the output voltage Vo, so that the temperature of the bias voltage of the NPN-type transistor Q22 depends on the appropriate selection of each element of the two thermistor circuits. , The temperature of the base current of the PNP transistor Q21 can be made temperature dependent, and the output voltage Vo can have the above-mentioned U-shaped temperature characteristic. The first thermistor
By connecting the sixth resistor in series to the parallel circuit of Th21 and the third resistor R21, the temperature compensation accuracy can be increased by appropriately selecting the sixth resistor.

【0016】図6は本発明による発振回路のもう一つの
実施例の要部ブロック図で、図の31は湿度検出回路、32
は制御電圧生成回路、33は誘電体共振器を用いたマイク
ロ波帯の局部発振回路等に用いる発振回路である。湿度
検出回路31は、例えば、スチレンの共重合体の薄膜上に
電導性表面吸着層のパターンを形成し、周囲を非電導性
物質で囲んだ構造とし、水分の吸着で表面吸着層の抵抗
値が低下する点を利用する湿度センサを用いる。湿度セ
ンサは、電導性表面吸着層に適宜の抵抗器を介して交流
電圧を印加することにより、相対湿度の上昇で抵抗器の
両端間の電圧が上昇するので、この電圧を出力する。す
なわち、図7(イ)に示す如く相対湿度の上昇で湿度検
出回路31の出力電圧(信号レベル)が上昇する。制御電
圧生成回路32は、湿度検出回路31よりの信号レベルの上
昇にて出力される制御電圧が上昇する。発振回路33は、
図7(ロ)に示す如く、相対湿度が上昇すると発振周波
数が低下し、図7(ハ)に示す如く、制御電圧が上昇す
れば発振周波数が上昇する。すなわち、図6に示すブロ
ック図の構成により、相対湿度の上昇で湿度検出回路31
の出力信号レベルが上昇し、制御電圧生成回路32の出力
する制御電圧が上昇し、発振回路33の発振周波数が上
昇、すなわち、相対湿度の上昇で低下状態にあった発振
回路33の発振周波数は低下を抑制され、安定化する。
FIG. 6 is a block diagram showing a main part of another embodiment of the oscillation circuit according to the present invention.
Reference numeral 33 denotes a control voltage generation circuit, and reference numeral 33 denotes an oscillation circuit used for a local oscillation circuit in a microwave band using a dielectric resonator. For example, the humidity detecting circuit 31 has a structure in which a conductive surface adsorption layer pattern is formed on a thin film of a styrene copolymer, and the surroundings are surrounded by a non-conductive substance. A humidity sensor that utilizes the point at which the temperature decreases is used. The humidity sensor outputs an AC voltage to the conductive surface adsorption layer by applying an AC voltage to the conductive surface attraction layer through an appropriate resistor, because the voltage between both ends of the resistor increases due to an increase in relative humidity. That is, as shown in FIG. 7 (a), the output voltage (signal level) of the humidity detection circuit 31 increases as the relative humidity increases. The control voltage output from the control voltage generation circuit 32 increases when the signal level from the humidity detection circuit 31 increases. The oscillation circuit 33
As shown in FIG. 7B, when the relative humidity increases, the oscillation frequency decreases. As shown in FIG. 7C, when the control voltage increases, the oscillation frequency increases. That is, according to the configuration of the block diagram shown in FIG.
Rises, the control voltage output from the control voltage generation circuit 32 rises, and the oscillation frequency of the oscillation circuit 33 rises, that is, the oscillation frequency of the oscillation circuit 33 that has fallen due to the rise in relative humidity is Reduction is suppressed and stabilized.

【0017】[0017]

【発明の効果】以上に説明したように、本発明による発
振回路によれば、水晶振動子を用いるものでは、水晶振
動子の励振レベルを適宜のレベルに抑え、温度変化に対
して発振周波数の特性が素直な三次曲線になるようにし
たものであるから、温度補償を容易に行うことができ、
また、誘電体共振器を用いるものでは、温度に関して
は、発振回路に供給する電圧を温度補償回路で温度変化
に応じて可変し、発振回路の発振周波数を制御するもの
で、さらに、湿度に関しては、発振回路に印加する制御
電圧を相対湿度に応じて可変し、発振周波数を安定化さ
せるもので、マイクロ波帯の局部発振回路等に用いる場
合に局部発振周波数を温度あるいは相対湿度の変化に対
して安定化することができる。
As described above, according to the oscillation circuit according to the present invention, in the case of using the crystal oscillator, the excitation level of the crystal oscillator is suppressed to an appropriate level, and the oscillation frequency is changed with respect to temperature change. Since the characteristic is a straight cubic curve, temperature compensation can be easily performed,
In the case of using a dielectric resonator, with respect to temperature, the voltage supplied to the oscillation circuit is varied according to a temperature change by a temperature compensation circuit to control the oscillation frequency of the oscillation circuit. In order to stabilize the oscillation frequency, the control voltage applied to the oscillation circuit is varied according to the relative humidity.When the oscillation frequency is used for a local oscillation circuit in a microwave band, etc., the local oscillation frequency is changed with respect to changes in temperature or relative humidity. And can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による発振回路の一実施例の要部ブロッ
ク図である。
FIG. 1 is a block diagram of a main part of an embodiment of an oscillation circuit according to the present invention.

【図2】水晶振動子の等価回路である。FIG. 2 is an equivalent circuit of a crystal resonator.

【図3】水晶振動子の励振レベルと周波数特性の関係を
示す図である。
FIG. 3 is a diagram illustrating a relationship between an excitation level of a crystal resonator and frequency characteristics.

【図4】本発明による発振回路の他の実施例の要部ブロ
ック図および温度補償回路の一例である。
FIG. 4 is a main part block diagram of another embodiment of the oscillation circuit according to the present invention and an example of a temperature compensation circuit.

【図5】図4の発振回路の電圧および温度に対する発振
周波数特性である。
5 is an oscillation frequency characteristic of the oscillation circuit of FIG. 4 with respect to voltage and temperature.

【図6】本発明による発振回路の他の実施例の要部ブロ
ック図である。
FIG. 6 is a main part block diagram of another embodiment of the oscillation circuit according to the present invention.

【図7】図6の発振回路の湿度検出特性、湿度および制
御電圧に対する発振周波数特性である。
FIG. 7 is a graph showing an oscillating frequency characteristic of the oscillation circuit of FIG.

【符号の説明】[Explanation of symbols]

1、1′、1″ 水晶振動子回路 X 水晶振動子 C1 負荷容量 R1、R2 第1、第2抵抗器 C2 コンデンサ Q11 トランジスタ(NPN型) R11 〜R13 抵抗器 C11 、C12 コンデンサ R 水晶振動子の等価直列抵抗 C 水晶振動子の等価直列容量 L 水晶振動子の等価直列線輪 Co 水晶振動子の等価並列容量 21 電源回路 22 温度補償回路 23、33 発振回路 31 湿度検出回路 32 制御電圧生成回路 Q21 PNP型トランジスタ Q22 NPN型トランジスタ Dz ツェナダイオード Th21、Th22 第1、第2サーミスタ R21 〜R23 第3〜第5抵抗器 1, 1 ', 1 "crystal resonator circuit X crystal resonator C1 load capacitance R1, R2 first and second resistors C2 capacitor Q11 transistor (NPN type) R11 to R13 resistors C11, C12 capacitor R Equivalent series resistance C Equivalent series capacitance of crystal unit L Equivalent series wire of crystal unit Co Equivalent parallel capacitance of crystal unit 21 Power supply circuit 22 Temperature compensation circuit 23, 33 Oscillation circuit 31 Humidity detection circuit 32 Control voltage generation circuit Q21 PNP transistor Q22 NPN transistor Dz Zener diode Th21, Th22 First and second thermistors R21 to R23 Third to fifth resistors

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J079 AA04 BA02 BA32 CB02 DA00 FA12 FA14 FA21 FB11 GA02 GA15 5J081 AA03 CC17 CC23 DD03 DD26 EE05 FF17 FF19 FF23 GG01 HH06 KK02 KK03 KK12 KK22 LL01 MM01 5J106 AA01 CC02 EE02 GG01 HH03 KK13 KK19 LL01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5J079 AA04 BA02 BA32 CB02 DA00 FA12 FA14 FA21 FB11 GA02 GA15 5J081 AA03 CC17 CC23 DD03 DD26 EE05 FF17 FF19 FF23 GG01 HH06 KK02 KK03 KK12 KK22 LL01 KK01 KK01 KK01 KK01 KK01 KK01 LL01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水晶振動子の一端子をトランジスタのベ
ースに接続し、他端子を負荷容量を介して接地接続して
なる発振回路において、前記水晶振動子の励振レベルを
制限する手段を設けることにより発振周波数の温度特性
を補償し易くするようにした発振回路。
1. An oscillation circuit in which one terminal of a crystal unit is connected to a base of a transistor and the other terminal is grounded via a load capacitor, means for limiting an excitation level of the crystal unit is provided. An oscillation circuit that facilitates compensating for the temperature characteristics of the oscillation frequency.
【請求項2】 前記水晶振動子の励振レベル制限手段
は、前記水晶振動子に直列に第1抵抗器を接続してなる
請求項1記載の発振回路。
2. The oscillation circuit according to claim 1, wherein the excitation level limiting means of the crystal unit is configured by connecting a first resistor in series with the crystal unit.
【請求項3】 前記水晶振動子の励振レベル制限手段
は、前記水晶振動子に並列に第2抵抗器を接続してなる
請求項1記載の発振回路。
3. The oscillation circuit according to claim 1, wherein said excitation level limiting means of said crystal unit is connected to a second resistor in parallel with said crystal unit.
【請求項4】 前記水晶振動子の励振レベル制限手段
は、前記水晶振動子の一端子と前記トランジスタのベー
スとの間にコンデンサを直列接続してなる請求項1記載
の発振回路。
4. The oscillation circuit according to claim 1, wherein the excitation level limiting means of the crystal unit is configured by connecting a capacitor in series between one terminal of the crystal unit and a base of the transistor.
【請求項5】 誘電体共振器を用いた発振回路におい
て、該発振回路に電源を供給する電源回路と発振回路と
の間に、電源回路よりの電圧を周囲温度に応じて可変
し、発振回路に供給して発振周波数を可変する温度補償
回路を設け、温度変化時の発振周波数の変動を抑止する
ようにした発振回路。
5. An oscillation circuit using a dielectric resonator, wherein the voltage from the power supply circuit is varied between the power supply circuit for supplying power to the oscillation circuit and the oscillation circuit in accordance with the ambient temperature. An oscillation circuit provided with a temperature compensating circuit for varying the oscillation frequency by supplying the oscillation frequency to the oscillation circuit to suppress the variation of the oscillation frequency when the temperature changes.
【請求項6】 前記温度補償回路は、前記電源回路より
の電圧をエミッタに入力し、コレクタより前記発振回路
に出力するPNP型トランジスタと、該PNP型トラン
ジスタのベースにコレクタを接続し、ベースを第1サー
ミスタおよび第3抵抗器の並列回路を介して前記PNP
型トランジスタのコレクタに接続すると共に第2サーミ
スタおよび第4抵抗器の直列回路を介して接地に接続
し、エミッタを第5抵抗器を介して接地に接続すると共
にツェナダイオードを介して前記PNP型トランジスタ
のコレクタに接続したNPN型トランジスタとから構成
した請求項5記載の発振回路。
6. A temperature compensating circuit, comprising: a PNP transistor that inputs a voltage from the power supply circuit to an emitter and outputs a voltage from a collector to the oscillation circuit; a collector connected to a base of the PNP transistor; The PNP through a parallel circuit of a first thermistor and a third resistor
The PNP transistor is connected to the collector of the PNP transistor via a series circuit of a second thermistor and a fourth resistor, to the ground via a fifth resistor, and to the ground via a Zener diode. 6. The oscillation circuit according to claim 5, comprising an NPN-type transistor connected to the collector.
【請求項7】 前記第1サーミスタおよび第3抵抗器の
並列回路に直列に第6抵抗器を接続した請求項6記載の
発振回路。
7. The oscillation circuit according to claim 6, wherein a sixth resistor is connected in series to the parallel circuit of the first thermistor and the third resistor.
【請求項8】 誘電体共振器を用いた発振回路に、相対
湿度を検出する湿度検出回路と、湿度検出回路よりの信
号に応じた制御電圧を生成し、発振回路に印加して発振
周波数を制御する制御電圧生成回路とを設け、相対湿度
の変化時の発振周波数の変動を抑止するようにした発振
回路。
8. An oscillating circuit using a dielectric resonator generates a humidity detecting circuit for detecting relative humidity and a control voltage corresponding to a signal from the humidity detecting circuit, and applies the control voltage to the oscillating circuit to reduce the oscillating frequency. An oscillation circuit provided with a control voltage generation circuit for controlling the oscillation frequency when the relative humidity changes.
JP11011365A 1999-01-20 1999-01-20 Oscillation circuit Pending JP2000209030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011365A JP2000209030A (en) 1999-01-20 1999-01-20 Oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011365A JP2000209030A (en) 1999-01-20 1999-01-20 Oscillation circuit

Publications (1)

Publication Number Publication Date
JP2000209030A true JP2000209030A (en) 2000-07-28

Family

ID=11776011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011365A Pending JP2000209030A (en) 1999-01-20 1999-01-20 Oscillation circuit

Country Status (1)

Country Link
JP (1) JP2000209030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106190A (en) * 2011-11-14 2013-05-30 Daishinku Corp Oscillator circuit and oscillator circuit manufacturing method
WO2014073503A1 (en) * 2012-11-08 2014-05-15 古野電気株式会社 Reference signal generation device and reference signal generation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106190A (en) * 2011-11-14 2013-05-30 Daishinku Corp Oscillator circuit and oscillator circuit manufacturing method
WO2014073503A1 (en) * 2012-11-08 2014-05-15 古野電気株式会社 Reference signal generation device and reference signal generation method
JPWO2014073503A1 (en) * 2012-11-08 2016-09-08 古野電気株式会社 Reference signal generator and reference signal generation method

Similar Documents

Publication Publication Date Title
KR0129039B1 (en) Oscillator
KR910003911A (en) Crystal oscillator with temperature compensation of frequency characteristics
JP2002157030A (en) Stabilized dc power supply device
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
JP2000209030A (en) Oscillation circuit
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
US4600899A (en) Dual mode crystal phase shift transistor oscillator
US5444422A (en) Low phase noise high frequency integrated oscillator with minimum pins
JP2002135051A (en) Piezoelectric oscillator
JP3825304B2 (en) Oscillator circuit
JP3239776B2 (en) Temperature compensated piezoelectric oscillator
JPS62145902A (en) Variable frequency oscillation circuit
JPH0370202A (en) Piezoelectric oscillator
JPH0533054Y2 (en)
JPH0117603B2 (en)
RU1781813C (en) Device for temperature stabilization of capacitance of varactor diode
JPH03252206A (en) Variable frequency oscillator
JP2001044757A (en) Voltage controlled oscillator
JPH02168705A (en) Voltage controlled oscillating circuit
JPH03104403A (en) Oscillator
JPH03126303A (en) Temperature compensation crystal oscillator
JPH06140836A (en) Voltage controlled oscillator
JP2004213272A (en) Zapping circuit
JPS59127407A (en) Gunn diode oscillating device
JP2000307346A (en) Frequency temperature compensation circuit for crystal oscillator circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513