JPH03104403A - Oscillator - Google Patents

Oscillator

Info

Publication number
JPH03104403A
JPH03104403A JP24245189A JP24245189A JPH03104403A JP H03104403 A JPH03104403 A JP H03104403A JP 24245189 A JP24245189 A JP 24245189A JP 24245189 A JP24245189 A JP 24245189A JP H03104403 A JPH03104403 A JP H03104403A
Authority
JP
Japan
Prior art keywords
transistor
circuit
oscillation
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24245189A
Other languages
Japanese (ja)
Other versions
JP2815920B2 (en
Inventor
Hironobu Hongo
廣信 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1242451A priority Critical patent/JP2815920B2/en
Publication of JPH03104403A publication Critical patent/JPH03104403A/en
Application granted granted Critical
Publication of JP2815920B2 publication Critical patent/JP2815920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To avoid fluctuation of oscillation output power to both a temperature change and a power voltage change by providing a resistor circuit being an emitter resistor of an oscillation transistor(TR) having a temperature characteristic and a TR circuit having a reference voltage and applying a current feedback to control a collector current of the oscillation TR. CONSTITUTION:The oscillation circuit section consists of an oscillation TR 1 and load circuits 2, 3. A collector current of the TR 1 flows so that a voltage generated in a resistance circuit 4 is equal to a reference voltage in a TR circuit 5. The reference voltage in this case is a base-emitter voltage of a TR 12 and constant independently of a change in a power supply voltage and a collector current Ic of the TR 1 is also constant. On the other hand, the reference voltage has a temperature characteristic varying with a temperature change, but the resistance circuit 4 has a temperature characteristic to cancel the temperature characteristic of the reference voltage of the TR circuit 5, then there is no relative change between the reference voltage and the voltage generated in the resistance circuit 4 even in the presence of the temperature change and then the collector current Ic of the TR 1 is unchanged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は発振器に係り、特にトランジスタとこれに接続
された負荷回路からなる発振回路部を有する発振器に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oscillator, and more particularly to an oscillator having an oscillation circuit section consisting of a transistor and a load circuit connected to the transistor.

安定した無線システムを構築するためには、無線システ
ムを構成する各ユニットの電気的特性が安定であること
が必要である。それゆえ、上記のユ.ニットの一つであ
る局部発振器となる発振器についても温度変化、電源電
圧変化に対して発振出力電力が安定であることが讐求さ
れる。
In order to construct a stable wireless system, it is necessary that the electrical characteristics of each unit constituting the wireless system be stable. Therefore, above Yu. The oscillator, which is a local oscillator, is also required to have stable oscillation output power against changes in temperature and power supply voltage.

〔従来の技術〕[Conventional technology]

第7図は従来の発振器の・一例の構成図を示す。 FIG. 7 shows a configuration diagram of an example of a conventional oscillator.

同図中、21は発振素子であるNPNトランジスタで、
そのコレクタは接地されている。22は発振条件を決め
る負荷回路で、例えばマイクロストリップ線路によるス
タブよりなり、その線路長によって容量性又は誘導性の
インピーダンスを示す。
In the figure, 21 is an NPN transistor which is an oscillation element.
Its collector is grounded. Reference numeral 22 denotes a load circuit that determines the oscillation conditions, and is composed of, for example, a stub formed by a microstrip line, and exhibits capacitive or inductive impedance depending on the line length.

23は発振周波数を決定する負荷回路で、例えば誘電体
共振器(OR)とマイクロストリップ線路(負荷回路2
2を構成するものとは別のもの)とが磁気的に結合され
た回路構成とされている。なお、この発振器が電『制御
発振器の場合は、負荷回路23には更にバラクタ副共振
回路が磁気的に結合される。
23 is a load circuit that determines the oscillation frequency, for example, a dielectric resonator (OR) and a microstrip line (load circuit 2
2) are magnetically coupled to each other in a circuit configuration. Note that when this oscillator is an electrically controlled oscillator, a varactor sub-resonant circuit is further magnetically coupled to the load circuit 23.

トランジスタ21のエミッタと負荷回路22の接続点は
、コイル24及び抵抗25を直列に介して電源電圧−■
coとサーミスタ26の・一端に夫々接続されている。
The connection point between the emitter of the transistor 21 and the load circuit 22 is connected to the power supply voltage -■ through a coil 24 and a resistor 25 in series.
Co and one end of the thermistor 26, respectively.

トランジスタ21のベースと負荷回路23の接続点はコ
イル27及び抵杭28を直列に介して接地される一方、
コイル27を介してサーミスタ26の他端に接続されて
いる。この発振器はトランジスタ21と負荷回路22及
び23による発振回路部と、抵抗25.28.コイル2
4.27及びサーミスタ26によるトランジスタ21の
バイアス回路とより構成されている。
The connection point between the base of the transistor 21 and the load circuit 23 is grounded through a coil 27 and a resistor 28 in series,
It is connected to the other end of the thermistor 26 via a coil 27. This oscillator includes an oscillation circuit section including a transistor 21, load circuits 22 and 23, and resistors 25, 28, . coil 2
4.27 and a bias circuit for the transistor 21 using a thermistor 26.

この発振器においては、トランジスタ21と負荷回路2
2により負性抵抗を示し、負荷回路23からの信号がト
ランジスタ21のベースに入力され、ここで増幅された
後再び負荷回路23方向へ反射され、マイクロ波の発振
動n@行なう。このとき、トランジスタ21のベース・
エミッタ間電圧VBEと抵抗25に発生する電圧■εと
の和の電圧が、サーミスタ26に発生する電圧に等しく
なるように、トランジスタ21のコレクタ電流1cが流
れ、またトランジスタ21のコレクタ・エミッタ間電圧
VCEとコレクタ電流ICの積に比例することで表わさ
れる発振出力電力Poが発生する。
In this oscillator, a transistor 21 and a load circuit 2
2 indicates a negative resistance, and a signal from the load circuit 23 is input to the base of the transistor 21, where it is amplified and then reflected back toward the load circuit 23, causing microwave oscillation n@. At this time, the base of the transistor 21
The collector current 1c of the transistor 21 flows so that the sum of the emitter voltage VBE and the voltage ■ε generated in the resistor 25 becomes equal to the voltage generated in the thermistor 26, and the collector-emitter voltage of the transistor 21 flows. An oscillation output power Po is generated which is proportional to the product of VCE and collector current IC.

この発振出力電力POは例えば負荷回路23から取り出
される。
This oscillation output power PO is taken out from the load circuit 23, for example.

第8図(A>,(B)は夫々第7図に示した従来の発振
器の温度特性と電源電圧特性とを示す。
FIGS. 8A and 8B show the temperature characteristics and power supply voltage characteristics of the conventional oscillator shown in FIG. 7, respectively.

一般にトランジスタ21の■BEは−2mV/”C程度
の温度係数をもつ。このため、この従来の発振器では高
温になると発振出力電力POが低下しようとするが、サ
ーミスタ26が上記のトランジスタ?1のVBEの温度
係数を打ち消し、トランジスタ21のコレクタ電流1c
を増やす方向に動作するので、結局、第8図(A>に■
及び■で示す如く、コレクタ電流Ic及び発振出力電力
Poは温度変化に対して略一定に保たれる。
In general, the BE of the transistor 21 has a temperature coefficient of about -2 mV/''C. Therefore, in this conventional oscillator, when the temperature rises, the oscillation output power PO tends to decrease, but the thermistor 26 By canceling the temperature coefficient of VBE, the collector current 1c of the transistor 21
As a result, in Figure 8 (A>)
As shown by and ■, the collector current Ic and the oscillation output power Po are kept substantially constant against temperature changes.

第9図は従来の発振器の他の例の構成図を示す。FIG. 9 shows a configuration diagram of another example of a conventional oscillator.

同図中、第7図と同一構成部分には同一符号を付し、そ
の説明を省略する。第9図において、NPNトランジス
タ30のベースは抵抗31と■イル24の接続点に接続
され、トランジスタ30のエミッタは抵抗31の他端と
電源端子との接続点に接続され、更にトランジスタ30
のコレクタは」イル27と抵抗32の非接地側端子との
接続点に接続されている。
In the figure, the same components as those in FIG. 7 are denoted by the same reference numerals, and their explanations will be omitted. In FIG. 9, the base of the NPN transistor 30 is connected to the connection point between the resistor 31 and the 24, the emitter of the transistor 30 is connected to the connection point between the other end of the resistor 31 and the power supply terminal, and the transistor 30 is connected to the connection point between the other end of the resistor 31 and the power supply terminal.
The collector of is connected to the connection point between the coil 27 and the non-ground terminal of the resistor 32.

この第9図に示す従来の発振器はトランジスタ21と0
荷回路22及び23による発振同絡部と、抵抗31.3
2.コイル24.27及びトランジスタ30よりなるト
ランジスタ21のバイアス回路とより構成され、マイク
ロ波の発振信号を出力する発振動作を行なう。ここで、
トランジスタ30及び抵抗31はトランジスタ21と共
に定電流回路を構成し、抵抗31に発生する電圧と、ト
ランジスタ30のベース・エミツタ間電圧VBEとが等
しくなるように、トランジスタ21のコレクタ電流Ic
が流れる。
The conventional oscillator shown in FIG. 9 has transistors 21 and 0.
The oscillation connecting section by load circuits 22 and 23 and the resistor 31.3
2. It is composed of coils 24 and 27 and a bias circuit of a transistor 21 made up of a transistor 30, and performs an oscillation operation to output a microwave oscillation signal. here,
The transistor 30 and the resistor 31 constitute a constant current circuit together with the transistor 21, and the collector current Ic of the transistor 21 is adjusted such that the voltage generated in the resistor 31 is equal to the base-emitter voltage VBE of the transistor 30.
flows.

第10図(A),(B)は夫々第9図に示した従来の発
振器の温度特性と電源電圧特性を示す3,この従来の発
振器では、電源電圧−vcCが変動しても、トランジス
タ30のV’(一定〉に等しB[ い値の電圧が抵抗31に発生するようにトランジスタ2
1のコレクタ電流1cが流れるため、第10図(B)に
Vlで示す如くコレクタ電流1cはN源電圧一vcoの
変動によらず一定である。よって、この従来の発振器で
は発振出力電力P○は同図(B)に■で示す如く電源電
圧−vcoの変動によりトランジスタ21の]レクタ・
1ミツタ間電圧V。,が若干変動するが、Icが一定と
なるので、電源電圧−vcoの変動に拘らず略一定に保
たれる。
10(A) and (B) respectively show the temperature characteristics and power supply voltage characteristics of the conventional oscillator shown in FIG. The transistor 2 is connected so that a voltage of a value equal to V' (constant) is generated across the resistor 31.
Since the collector current 1c of 1 flows, the collector current 1c is constant regardless of the fluctuation of the N source voltage -vco, as shown by Vl in FIG. 10(B). Therefore, in this conventional oscillator, the oscillation output power P○ changes due to fluctuations in the power supply voltage -vco, as shown by ■ in the figure (B).
1-meter voltage V. , will vary slightly, but since Ic remains constant, it will remain substantially constant regardless of fluctuations in the power supply voltage -vco.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、第7図に示した従来の発振器では、電i電圧
一VCCが変化すると基準電圧として用いるサーミスタ
26に発生する電圧が変化するため、第8図(B)に■
で示す如く電源電圧−Vccの変化に対応してトランジ
スタ21のコレクタ電流Icが変化する。それゆえ、こ
の従来の発振器は、電源電圧変化により発振出力電力P
oが第8図(B)に■で示す如く大きく変化してしまう
といった問題がある。
However, in the conventional oscillator shown in FIG. 7, when the electric voltage VCC changes, the voltage generated at the thermistor 26 used as the reference voltage changes, so the
As shown, the collector current Ic of the transistor 21 changes in response to a change in the power supply voltage -Vcc. Therefore, this conventional oscillator has an oscillation output power P due to a change in the power supply voltage.
There is a problem that o changes greatly as shown by ■ in FIG. 8(B).

他方、第9図に示した従来の発振器では、トランジスタ
30のコレクタ・エミツタ間電E VBEが−211V
/’C程度の温度係数を有するため、温度が変化すると
M準電圧として用いるvBE′が変化し、そのため第1
0図(A)にVで示す如くトランジスタ21のコレクタ
電流1cが温度変化に対応して変化してしまう。それゆ
え、この従来の発振器は、温度変化により発振出力電力
Poが第10図<A)に■で示す如く大きく変化してし
まうという問題がある。
On the other hand, in the conventional oscillator shown in FIG. 9, the collector-emitter voltage E VBE of the transistor 30 is -211V.
/'C, so when the temperature changes, vBE' used as the M quasi-voltage changes, and therefore the first
As shown by V in FIG. 0(A), the collector current 1c of the transistor 21 changes in accordance with the temperature change. Therefore, this conventional oscillator has a problem in that the oscillation output power Po changes greatly due to temperature changes, as shown by ■ in FIG. 10<A).

本発明は以上の点に鑑みてなされたもので、温度変化及
び電[i圧変化の両方に対して発振出力電力の変動を小
さくし得る発振器を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an oscillator that can reduce fluctuations in oscillation output power with respect to both temperature changes and voltage changes.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図を示す。同図中、1は発振用ト
ランジスタで、そのエミツタ側に第1の負荷回路2が接
続され、そのベース側に第2の負荷回路3が接続され、
これらにより発振回路部が構成される。第1の負荷回路
2は発振条件を定める負荷回路、第2の負荷回路3は発
振周波数を定める負荷回路である。
FIG. 1 shows a diagram of the principle of the present invention. In the figure, 1 is an oscillation transistor, a first load circuit 2 is connected to its emitter side, a second load circuit 3 is connected to its base side,
These constitute an oscillation circuit section. The first load circuit 2 is a load circuit that determines the oscillation conditions, and the second load circuit 3 is a load circuit that determines the oscillation frequency.

また、4は抵抗回路で、トランジスタ1のエミッタと電
源端子間に接続され、トランジスタ1のエミッタ抵抗を
構成し、温度特性をもつ。
Further, a resistor circuit 4 is connected between the emitter of the transistor 1 and the power supply terminal, constitutes an emitter resistance of the transistor 1, and has temperature characteristics.

5はトランジスタ回路で、抵抗回路4により温度特性が
打ち消される温度特性をもつ基準電圧を有し、抵抗回路
4に発生する電圧が上記ml電圧に等しくなるように発
振用トランジスタ1の」レクタ電流を制御する電流帰還
を発振用トランジスタ1のベースに対して行なう。
Reference numeral 5 denotes a transistor circuit, which has a reference voltage having a temperature characteristic whose temperature characteristics are canceled out by the resistor circuit 4, and the collector current of the oscillating transistor 1 is adjusted so that the voltage generated in the resistor circuit 4 is equal to the above ml voltage. A controlled current feedback is performed to the base of the oscillation transistor 1.

(作用) 本発明では抵抗回路4に発生する電圧がトランジスタ回
路5内の基準電圧に等しくなるように、トランジスタ1
のコレクタ電流が流される。ここで、基準電圧はトラン
ジスタのベース・エミツタ間電圧であり、電源電圧の変
化に拘らず一定である。従って、電源電圧が変化しても
抵抗回路4に発生する電圧が一定であり、よって抵抗回
路4に電圧を発生させるトランジスタ1のコレクタ電流
Icも一定となる。
(Function) In the present invention, the transistor 1
A collector current of is applied. Here, the reference voltage is the voltage between the base and emitter of the transistor, and is constant regardless of changes in the power supply voltage. Therefore, even if the power supply voltage changes, the voltage generated in the resistance circuit 4 remains constant, and therefore the collector current Ic of the transistor 1 that generates the voltage in the resistance circuit 4 also remains constant.

一方、上記基準電圧は温度変化により変化する温度特性
をもつが、抵抗回路4が編度特性をもち、トランジスタ
回路5の基準電圧の温度特性を打ち消すため、温度変化
があっても基準電圧と抵抗回路4に発生する電圧との相
対的変化はなく、従ってトランジスタ1のコレクタ電流
1cも変化しない。
On the other hand, the reference voltage has temperature characteristics that change due to temperature changes, but since the resistance circuit 4 has a knitting characteristic and cancels the temperature characteristics of the reference voltage of the transistor circuit 5, the reference voltage and resistance change even when there is a temperature change. There is no change relative to the voltage generated in the circuit 4, and therefore the collector current 1c of the transistor 1 also does not change.

(実施例) 第2図は本発明の第1実施例の構成図を示す。(Example) FIG. 2 shows a configuration diagram of a first embodiment of the present invention.

同図中、第1図と同一構成部分には同一符号を付し、そ
の説明を省略する。第2図において、負荷回路2及び3
は夫々前記した負荷回路22及び23と同一構成とされ
ている。また、トランジスタ1はバイボーラトランジス
タであるNPNトランジスタで、そのエミツタと負荷回
路2の接続点はコイル7,サーミスタ8及び抵抗9を直
列に介して−■ の電源端子に接続されている。また、
CC サーミスタ8及び抵抗9の直列回路に抵抗10が並列に
接続されており、これらは抵抗回路4を構成している。
In the figure, the same components as in FIG. 1 are denoted by the same reference numerals, and their explanations will be omitted. In Figure 2, load circuits 2 and 3
have the same configuration as the load circuits 22 and 23 described above, respectively. The transistor 1 is an NPN transistor which is a bipolar transistor, and the connection point between its emitter and the load circuit 2 is connected to the -2 power supply terminal via a coil 7, a thermistor 8 and a resistor 9 in series. Also,
A resistor 10 is connected in parallel to a series circuit of a CC thermistor 8 and a resistor 9, and these constitute a resistor circuit 4.

また、トランジスタ1のベースと負荷回路3の接続点は
コイル11を介してNPNt−ランジスタ12のコレク
タに接続されている。トランジスタ12はベースがコイ
ル7とサーミスタ8と抵抗10に接続されており、トラ
ンジスタ12のエミッタは前記一VCCの電源端子に接
続され、更にトランジスタ12のコレクタとコイル11
の接続点は抵抗13を介して接地されている。トランジ
スタ12及び抵抗13は前記したトランジスタ回路5を
構成している。
Further, the connection point between the base of the transistor 1 and the load circuit 3 is connected to the collector of an NPN transistor 12 via a coil 11. The base of the transistor 12 is connected to the coil 7, the thermistor 8, and the resistor 10, the emitter of the transistor 12 is connected to the above-mentioned VCC power supply terminal, and the collector of the transistor 12 and the coil 11 are connected to each other.
The connection point of is grounded via a resistor 13. The transistor 12 and the resistor 13 constitute the transistor circuit 5 described above.

本実施例において、トランジスタ12の25℃(常潟)
でのベース・エミツタ間電圧をvBE,i度係数をΔV
BE.温度T (”C)におけるトランジスタ12のベ
ース・エミツタ間電圧をVBE(T).トランジスタ1
のコレクタ電流をIc,抵抗回路4の温度Tにおける抵
抗値をR(T)とすると、VBE(T)とR (T)は
夫々次式で表わされる。
In this example, 25°C (Tokogata) of the transistor 12
The base-emitter voltage at is vBE, and the i degree coefficient is ΔV.
B.E. The base-emitter voltage of transistor 12 at temperature T (''C) is VBE(T).Transistor 1
Let Ic be the collector current of Ic, and let R(T) be the resistance value of the resistance circuit 4 at temperature T, then VBE(T) and R(T) are respectively expressed by the following equations.

V,E(T)−VBE+ΔVB[(T−25)   (
1)R (T) −Va((T> / Ic     
   (21コレクタ電流1cが決まると、抵抗回路4
の抵抗R (T)が定まる。そこで、サーミスタ8.抵
抗9及び10により■式で表わされるR (T)が実現
できる。
V,E(T)-VBE+ΔVB[(T-25) (
1) R (T) - Va ((T> / Ic
(21 Once the collector current 1c is determined, the resistor circuit 4
The resistance R (T) is determined. Therefore, thermistor 8. With the resistors 9 and 10, R (T) expressed by the formula (2) can be realized.

いま、トランジスタ12の常温でのVBEを0.6V,
ΔVBEをーハV/’C,コレクタ電流1cを100m
八とするものとすると、サーミスタ8として常温で抵抗
値が30Ωとなる、第3図にaで示す温度特竹のサーミ
スタを使用し、抵抗9及び10に夫々14Ωの抵抗を使
用する。
Now, the VBE of transistor 12 at room temperature is 0.6V,
ΔVBE is -ha V/'C, collector current 1c is 100m
8, the thermistor 8 is a temperature sensitive thermistor shown as a in FIG. 3, which has a resistance value of 30Ω at room temperature, and the resistors 9 and 10 are each 14Ω.

これにより、木実mVAは前記した従来と同様の動作原
理により発振動作を行なってマイクロ波帯の周波数を発
振出力する。ここで本実施例では温度変化により、基準
電圧として用いるトランジスタ12のベース・エミツタ
間電圧V8,(T)が−2mV/’Cの割合で変化する
が、サーミスタ8.抵抗9及び10よりなる抵抗回路4
によりR(T)も同じように変化するため、■式で表わ
されるコレクタ電流1cは第4図(A)に■で示す如く
温度変化に拘らず略一定となる。従って、発振出力電力
Poも温度変化に拘らず第4図(A)にXで示す如く一
定となる。
As a result, the tree mVA performs an oscillation operation based on the same operating principle as the conventional one described above, and outputs a frequency in the microwave band. Here, in this embodiment, the base-emitter voltage V8, (T) of the transistor 12 used as a reference voltage changes at a rate of -2 mV/'C due to a temperature change, but the thermistor 8. Resistance circuit 4 consisting of resistors 9 and 10
Since R(T) also changes in the same way, the collector current 1c expressed by the equation (2) remains approximately constant regardless of the temperature change, as shown by (2) in FIG. 4(A). Therefore, the oscillation output power Po also remains constant as shown by X in FIG. 4(A) regardless of temperature changes.

一方、電a電圧が変動した場合、本実施例では抵抗回路
4で発生する電圧が■,E(T)に等しくなるようにト
ランジスタ10ベースへ電流帰還をかけており、電源電
圧の変動に関係なくv,E(T)は一定であるから(た
だし、温度は一定)、トランジスタ1のコレクタ電流1
cは第4図(8)にXIで示す如く電源電圧の変動に関
係なく略一定となる。従って、本実施例によれば、第4
図(B)にX■で示す如く、発振出力電力PoのN源電
圧変動による変動は抑制される。
On the other hand, when the electric voltage fluctuates, in this embodiment, current feedback is applied to the base of the transistor 10 so that the voltage generated in the resistor circuit 4 becomes equal to E(T). Since v,E(T) is constant (however, the temperature is constant), the collector current of transistor 1 is
As shown by XI in FIG. 4(8), c remains approximately constant regardless of fluctuations in the power supply voltage. Therefore, according to this embodiment, the fourth
As shown by X in FIG. 3B, fluctuations in the oscillation output power Po due to fluctuations in the N source voltage are suppressed.

なお、第2図に示す第1実施例において、抵抗10の抵
抗値だけを上記条件と変えた場合の温度特性例を第5図
に示す。同図中、X■は抵抗10の抵抗値を15Ωと1
3Ωの並列合或抵抗fill(すなわち約6.96Ω)
、XIVは抵抗10の抵抗値を15Ωと15Ωの並列合
成抵抗値〈すなわち7,5Ω)としたときの温度特性を
示す。
Incidentally, in the first embodiment shown in FIG. 2, an example of temperature characteristics when only the resistance value of the resistor 10 is changed from the above conditions is shown in FIG. In the same figure, X■ represents the resistance value of resistor 10 as 15Ω and 1
3Ω parallel combination or resistor fill (i.e. about 6.96Ω)
, XIV shows the temperature characteristics when the resistance value of the resistor 10 is a parallel combined resistance value of 15Ω and 15Ω (that is, 7.5Ω).

第6図は本発明の第2実施例の構成図を示す。FIG. 6 shows a configuration diagram of a second embodiment of the present invention.

同図中、第1図及び第2図と同一構成部分には同一符号
を付し、その説明を省略する。第6図において、15は
サーミスタ、16は抵抗で、これらの並列回路により抵
抗回路4が構成されている点が前記第1実施例と異なる
In the figure, the same components as in FIGS. 1 and 2 are denoted by the same reference numerals, and their explanations will be omitted. In FIG. 6, 15 is a thermistor, 16 is a resistor, and the difference from the first embodiment is that a resistance circuit 4 is constituted by a parallel circuit of these.

本実施例は発振用トランジスタ1のコレクタ電流Ecと
してそれほど精度を要求ざれない場合の例で、従ってサ
ーミスタ15に1つの抵抗16を並列接続するだけで抵
抗回路4を構成することができ、第1実施例に比べて安
価であるという特長がある。
This embodiment is an example in which high precision is not required for the collector current Ec of the oscillation transistor 1. Therefore, the resistance circuit 4 can be configured by simply connecting one resistor 16 to the thermistor 15 in parallel. It has the advantage of being cheaper than the embodiment.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、電源電圧の変化に拘らず
発振用トランジスタのコレクタ電流を略一定にできるの
で、電源電圧の変化による発振出力電力の変化を抑制す
ることができ、しかち温度変化に対しても抵抗回路によ
ってトランジスタ回路の基!1!電圧の温度変化を打ち
消すことができるため、温度変化による発振出力電力の
変化も抑制することができる等の特長を有するものであ
る。
As described above, according to the present invention, the collector current of the oscillation transistor can be kept approximately constant regardless of changes in the power supply voltage, so it is possible to suppress changes in the oscillation output power due to changes in the power supply voltage, and the temperature Resistance circuits are the basis of transistor circuits even against changes! 1! Since temperature changes in voltage can be canceled out, changes in oscillation output power due to temperature changes can also be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の発振器の原理図、 第2図は本発明の第1実施例の構成図、第3図はサーミ
スタの温度特性図、 第4図は本発明の一実施例の特性図、 第5図は第2図の発振器のコレクタN流の温度変化の例
を示す図、 第6図は本発明の第2実施例の構成図、第7図は従来の
発振器の一例の構成図、第8図は第7図に示す発振器の
温度特性及び電源電汗特性を示す図、 第9図は従来の発振器の他の例の構成図、第10図は第
9図に示す発振器の温度特竹及び電源電圧特性を示す図
である。 図において、 1は発振用トランジスタ、 2は第1の負荷回路、 3は第2の負荷回路、 4は抵抗回路、 5はトランジスタ回路、 8,15はサーミスタ、 12はNPNトランジスタ を示す。 本発明の発振器の原理図 第1図 本発明の第1実施例の構成図 第2図 ”         一温度(”C) サーミスタの温度特性図 第3図 本発明の第2実施例の構成図 第6図 従来の発振器の一例の構成図 第7図 コレクタt,l![ Ic (m A ) 区 温度(゜C) 第2図の発振器のコレクタ電流の温度変化を示す図第5
図 従来の発振器の他の例の樟成図 第9図
Fig. 1 is a principle diagram of the oscillator of the present invention, Fig. 2 is a configuration diagram of the first embodiment of the present invention, Fig. 3 is a temperature characteristic diagram of the thermistor, and Fig. 4 is a characteristic diagram of an embodiment of the present invention. , FIG. 5 is a diagram showing an example of temperature change in the collector N current of the oscillator in FIG. 2, FIG. 6 is a configuration diagram of the second embodiment of the present invention, and FIG. 7 is a configuration diagram of an example of a conventional oscillator. , Figure 8 is a diagram showing the temperature characteristics and power supply characteristics of the oscillator shown in Figure 7, Figure 9 is a configuration diagram of another example of a conventional oscillator, and Figure 10 is a diagram showing the temperature characteristics of the oscillator shown in Figure 9. It is a figure showing special bamboo and power supply voltage characteristics. In the figure, 1 is an oscillation transistor, 2 is a first load circuit, 3 is a second load circuit, 4 is a resistance circuit, 5 is a transistor circuit, 8 and 15 are thermistors, and 12 is an NPN transistor. Principle diagram of the oscillator of the present invention Figure 1 Block diagram of the first embodiment of the present invention Figure 2 Diagram of temperature characteristics of a thermistor (C) Figure 3 Block diagram of the second embodiment of the present invention Figure: Configuration diagram of an example of a conventional oscillator Figure 7: Collector t, l! [Ic (mA) Temperature (°C) Figure 5 shows the temperature change of the collector current of the oscillator in Figure 2.
Figure 9: Another example of a conventional oscillator

Claims (1)

【特許請求の範囲】  発振用トランジスタ(1)のエミッタ側とベース側に
夫々発振条件と発振周波数を定める第1の負荷回路(2
)と第2の負荷回路(3)が接続された発振回路部を有
する発振器において、 前記発振用トランジスタ(1)のエミッタと電源端子間
に接続され、該発振用トランジスタ(1)のエミッタ抵
抗を構成し温度特性をもつ抵抗回路(4)と、 該抵抗回路(4)により温度特性が打ち消される温度特
性をもつ基準電圧を有し、該抵抗回路(4)に発生する
電圧が該基準電圧に等しくなるように該発振用トランジ
スタ(1)のコレクタ電流を制御する電流帰還を該発振
用トランジスタ(1)のベースに対して行なうトランジ
スタ回路(5)と、 を備えたことを特徴とする発振器。
[Claims] A first load circuit (2) that determines oscillation conditions and oscillation frequencies on the emitter side and base side of the oscillation transistor (1), respectively.
) and a second load circuit (3), the oscillator is connected between the emitter of the oscillation transistor (1) and a power supply terminal, and has an emitter resistance of the oscillation transistor (1). A resistor circuit (4) is configured and has a temperature characteristic, and a reference voltage has a temperature characteristic whose temperature characteristic is canceled by the resistor circuit (4), and the voltage generated in the resistor circuit (4) is equal to the reference voltage. An oscillator comprising: a transistor circuit (5) that performs current feedback to the base of the oscillation transistor (1) to control the collector current of the oscillation transistor (1) so that the collector current of the oscillation transistor (1) is equal.
JP1242451A 1989-09-19 1989-09-19 Oscillator Expired - Lifetime JP2815920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242451A JP2815920B2 (en) 1989-09-19 1989-09-19 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242451A JP2815920B2 (en) 1989-09-19 1989-09-19 Oscillator

Publications (2)

Publication Number Publication Date
JPH03104403A true JPH03104403A (en) 1991-05-01
JP2815920B2 JP2815920B2 (en) 1998-10-27

Family

ID=17089295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242451A Expired - Lifetime JP2815920B2 (en) 1989-09-19 1989-09-19 Oscillator

Country Status (1)

Country Link
JP (1) JP2815920B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749112A1 (en) * 1996-05-23 1997-11-28 Sennheiser Electronic OSCILLATOR CIRCUIT
JP2011151663A (en) * 2010-01-22 2011-08-04 Mitsubishi Electric Corp Phase synchronization oscillator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127552A (en) * 1973-04-05 1974-12-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127552A (en) * 1973-04-05 1974-12-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749112A1 (en) * 1996-05-23 1997-11-28 Sennheiser Electronic OSCILLATOR CIRCUIT
JP2011151663A (en) * 2010-01-22 2011-08-04 Mitsubishi Electric Corp Phase synchronization oscillator

Also Published As

Publication number Publication date
JP2815920B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
KR920000104B1 (en) Crystal oscillator circuit
US3986145A (en) Variable reactance circuit including differentially-connected transistor device providing a variable reactance input impedance
US4506208A (en) Reference voltage producing circuit
JPH08148933A (en) Voltage controlled oscillator
KR960016733B1 (en) Oscillation circuit
KR100450252B1 (en) Oscillation circuit and oscillation method
JPH0779209B2 (en) Tuned circuit oscillator with thermal stability especially used for proximity switches
KR970004620B1 (en) Reactance circuit
US5151667A (en) Temperature compensated oscillation circuit
AU2249597A (en) Bridge-stabilized oscillator circuit and method
JPH03104403A (en) Oscillator
JP2643180B2 (en) Monolithic integrated circuit
US5869989A (en) Amplifying electronic circuit with stable idling current
JPS5890807A (en) Transistor circuit
US4745375A (en) Variable frequency oscillator with current controlled reactance circuit
JP2002135051A (en) Piezoelectric oscillator
JP3825304B2 (en) Oscillator circuit
JP3949482B2 (en) Oscillator with temperature compensation function
KR100197842B1 (en) A variable reactance circuit
JPS61267403A (en) One terminal type oscillator circuit
JP2001077626A (en) Oscillator with buffer circuit
JPS6165607A (en) Crystal oscillation circuit
JP2714713B2 (en) Oscillation circuit
JPS63314012A (en) Reactance circuit
JP2000209030A (en) Oscillation circuit