JP2000206019A - Measuring method for young's modulus at high temperature of aluminum material - Google Patents

Measuring method for young's modulus at high temperature of aluminum material

Info

Publication number
JP2000206019A
JP2000206019A JP11004017A JP401799A JP2000206019A JP 2000206019 A JP2000206019 A JP 2000206019A JP 11004017 A JP11004017 A JP 11004017A JP 401799 A JP401799 A JP 401799A JP 2000206019 A JP2000206019 A JP 2000206019A
Authority
JP
Japan
Prior art keywords
load
tensile
modulus
young
aluminum material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004017A
Other languages
Japanese (ja)
Inventor
Yoshimasa Kasezawa
善正 加瀬沢
Nobuyasu Hagisawa
亘保 萩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP11004017A priority Critical patent/JP2000206019A/en
Publication of JP2000206019A publication Critical patent/JP2000206019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method in which Young's modulus at the high temperature of an aluminum material is measured with high reliability. SOLUTION: A tensile load which generates a stress at a yield strength of 0.2% or higher and at a tensile strength of 0.2% or lower is set at an aluminum-material test piece which is heated at a temperature in a temperature region of 150 to 350 deg.C. while the extension of the aluminum-materials test piece is increased sequentially by every 0.1 to 0.2%, the tensile load is applied repeatedly. A straight-line part in a place in which a load-extension curve rises in a load-extension diagram is made long. The inclination of the long straight- line part is measured. Between respective processes in which the tensile load is applied repeatedly, it is preferable that the load which is applied to the aluminum-materiel test piece is not removed completely so as to be shifted to the next application of the tensile load. As a result, since the inclination is found on the basis of the long straight-line part, an irregularity which is derived from a measuring operator, a measuring condition or the like is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温域におけるアルミ
ニウム材料のヤング率を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the Young's modulus of an aluminum material in a high temperature range.

【0002】[0002]

【従来の技術】アルミニウム,アルミニウム合金等のア
ルミニウム材料は、軽量で耐久性,強度に優れているこ
とから各種分野で使用されている。最近では、建築基準
法の改正に伴って建築用構造材としても利用される傾向
にある。アルミニウム材料を構造材として使用するため
には、火災等の際に加熱によるヤング率の低下状況を正
確に把握した上で構造設計する必要があり、また高温強
度に優れたアルミニウム材料の開発が重要であるが、そ
の前提として高温域におけるアルミニウム材料の機械的
物性を知る必要がある。現行の防火規定では、鋼材温度
350℃以下に耐えるように耐火被覆することが要求さ
れている耐火設計を考慮すると、アルミニウム材料を構
造材として使用する場合でもヤング率を含め350℃ま
での高温特性を知る必要がある。しかし、高温雰囲気に
おけるヤング率は、適切な測定方法がないため、正確な
値が得られていない。
2. Description of the Related Art Aluminum materials such as aluminum and aluminum alloys are used in various fields because of their light weight, excellent durability and strength. Recently, with the revision of the Building Standard Law, it has been used as a structural material for buildings. In order to use aluminum as a structural material, it is necessary to accurately understand the situation of the decrease in Young's modulus due to heating in the event of a fire, etc. and to design the structure, and it is important to develop an aluminum material with excellent high-temperature strength However, as a prerequisite, it is necessary to know the mechanical properties of the aluminum material in a high temperature range. Considering the fire-resistant design, which requires fire-resistant coating to withstand steel material temperatures of 350 ° C or less, the current high-temperature characteristics up to 350 ° C including the Young's modulus, even when using aluminum materials as structural materials, are taken into consideration. You need to know. However, an accurate value has not been obtained for the Young's modulus in a high-temperature atmosphere because there is no appropriate measurement method.

【0003】構造材料として使用される金属材料には、
火災等の加熱状態でも躯体の形状が所定時間維持される
ように、設計に際し高温下での正確なヤング率の値が要
求される。引張特性の測定に関し、たとえばJIS Z
2280(1993)に規定される金属材料の高温ヤン
グ率試験方法では、所定温度に加熱した金属材料に0.
2%耐力の50%以下の引張荷重を加え、荷重−伸び線
図の勾配から次式に従って高温ヤング率を求めている。 E=(P/A)×(l/Δl) ただし、E:ヤング率(N/m2 ) P:荷重(N) A:試験片の断面積(m2 ) l:試験片の標点距離(m) Δl:試験片の標点距離の増加分(m)
[0003] Metal materials used as structural materials include:
An accurate value of the Young's modulus at a high temperature is required in the design so that the shape of the skeleton is maintained for a predetermined time even in a heated state such as a fire. Regarding the measurement of tensile properties, for example, JIS Z
According to the high-temperature Young's modulus test method for a metal material specified in 2280 (1993), the metal material heated to a predetermined temperature has a resistance of 0.1%.
A tensile load of 50% or less of the 2% proof stress was applied, and the high temperature Young's modulus was determined from the gradient of the load-elongation diagram according to the following equation. E = (P / A) × (l / Δl) where E: Young's modulus (N / m 2 ) P: Load (N) A: Cross-sectional area of test specimen (m 2 ) l: Gauge distance of test specimen (M) Δl: increase in gauge length of test piece (m)

【0004】[0004]

【発明が解決しようとする課題】弾性変形域が比較的広
い鋼,合金鋼等の材料では、JISに規定されている方
法でも高温ヤング率を高い信頼性で求めることができ
る。しかし、アルミニウム材料では、低い引張荷重から
塑性変形が始まり、荷重−伸び線図上で比較的狭い範囲
に弾性変形域がみられる。なかでも、アルミニウム材料
が高温に加熱されていると、弾性変形域が非常に狭くな
る。そのため、弾性変形域に当る荷重−伸び曲線の勾配
を求めようとすると、終点の取り方にバラツキが生じ、
結果として求められる勾配の信頼性が低下する。本発明
は、このような問題を解消すべく案出されたものであ
り、加工硬化を起こす引張荷重を繰返しアルミニウム材
料に与えて荷重−伸び線図上で荷重−伸び曲線が立ち上
がる箇所での直線部分を広げた上で勾配を求めることに
より、高温下でのヤング率を測定することを目的とす
る。
For materials such as steel and alloy steel having a relatively large elastic deformation range, the high-temperature Young's modulus can be obtained with high reliability even by the method specified in JIS. However, in an aluminum material, plastic deformation starts from a low tensile load, and an elastic deformation region is observed in a relatively narrow range on the load-elongation diagram. Above all, when the aluminum material is heated to a high temperature, the elastic deformation region becomes very narrow. Therefore, when trying to find the gradient of the load-elongation curve that falls into the elastic deformation range, there is variation in how to take the end point,
The resulting gradient is less reliable. The present invention has been devised to solve such a problem. A tensile load causing work hardening is repeatedly applied to an aluminum material, and a straight line at a point where a load-elongation curve rises on a load-elongation diagram is obtained. The purpose is to measure the Young's modulus at high temperature by obtaining the gradient after widening the portion.

【0005】[0005]

【課題を解決するための手段】本発明の高温下における
ヤング率測定方法は、その目的を達成するため、温度域
150〜350℃にある温度に加熱されているアルミニ
ウム材料試験片に0.2%耐力以上で引張強さ以下の応
力を生じさせる引張荷重を設定し、伸びを0.1〜0.
2%づつ順次増加させながら引張荷重を繰返し加え、荷
重−伸び線図上で荷重−伸び曲線が立ち上がる箇所の直
線部分を長くし、長くなった直線部分の勾配を測定する
ことを特徴とする。引張荷重を繰返し加える各工程の間
では、アルミニウム材料試験片に加えられている荷重を
完全に除去することなく次回の引張荷重負荷に移行する
ことが好ましい。具体的には、2N/mm2 以上の応力
を加えたままで次回の引張荷重負荷に移行することが好
ましい。
In order to achieve the object, the method of the present invention for measuring a Young's modulus under a high temperature has a test method in which an aluminum material test piece heated to a temperature within a temperature range of 150 to 350 ° C. % Tensile strength and a tensile load that generates a stress that is equal to or less than the tensile strength.
The method is characterized in that a tensile load is repeatedly applied while being sequentially increased by 2%, a linear portion where a load-elongation curve rises on a load-elongation diagram is lengthened, and a gradient of the elongated linear portion is measured. During each step of repeatedly applying a tensile load, it is preferable to shift to the next tensile load load without completely removing the load applied to the aluminum material test piece. Specifically, it is preferable to shift to the next tensile load while applying a stress of 2 N / mm 2 or more.

【0006】[0006]

【作用】350℃に加熱したアルミニウム合金A505
2P−O材の引張試験では、JIS G0567−19
93に規定されているII−10の試験片で標点間距離5
0mm,引張速度1mm/分及び2mm/分で引張荷重
を繰返し加えると、それぞれ図1及び図2の荷重−伸び
線図にみられるように、荷重−伸び曲線が変化する。初
回の引張荷重が加えられたアルミニウム材料試験片の荷
重−伸び曲線は、荷重が約700Nに達するまではほぼ
直線上に乗っているが、荷重が大きくなるに従って荷重
−伸び曲線の勾配が緩やかになる。これに対し、2回目
の引張荷重が加えられたアルミニウム材料試験片では、
荷重−伸び曲線が立上がる部分の直線部分が1500N
付近まで長くなっている。直線部分は、更に引張荷重を
繰返し加えるごとに長くなる傾向を示す。引張荷重の繰
返し負荷によって直線部分が長くなることは、引張荷重
が加えられたアルミニウム材料が加工硬化することに由
来する。しかし、加工硬化したアルミニウム材料試験片
にあっても、図1,2にみられるように荷重−伸び曲線
の直線部分は、引張荷重の繰返し回数に拘らず一定の勾
配をもっている。このことから、直線部分を長くした状
態で直線部分の勾配を求めるとき、得られた値に対する
信頼性が向上することが判る。
[Action] Aluminum alloy A505 heated to 350 ° C.
In the tensile test of the 2P-O material, JIS G0567-19 was used.
In the test specimen of II-10 specified in 93, the distance between gauges is 5
When a tensile load is repeatedly applied at 0 mm and a tensile speed of 1 mm / min and 2 mm / min, the load-elongation curve changes as shown in the load-elongation diagrams of FIGS. 1 and 2, respectively. The load-elongation curve of the aluminum material test piece to which the first tensile load was applied is approximately linear until the load reaches about 700 N, but the slope of the load-elongation curve gradually decreases as the load increases. Become. On the other hand, in the aluminum material specimen to which the second tensile load was applied,
The straight line portion where the load-elongation curve rises is 1500 N
It is long to the vicinity. The linear portion tends to become longer each time a tensile load is repeatedly applied. The fact that the linear portion becomes longer due to the repeated load of the tensile load is derived from work hardening of the aluminum material to which the tensile load is applied. However, even in the work-hardened aluminum material test piece, as shown in FIGS. 1 and 2, the linear portion of the load-elongation curve has a constant gradient regardless of the number of repeated tensile loads. This indicates that the reliability of the obtained value is improved when the gradient of the straight line portion is obtained with the straight line portion lengthened.

【0007】本発明では、このような引張荷重の繰返し
負荷が荷重−伸び曲線の直線部分を長くすることを利用
し、長くした直線部分の勾配、すなわちヤング率を求め
ている。直線部分を長くするためには、アルミニウム材
料試験片に繰返し加える引張荷重を0.2%耐力以上に
する必要がある。0.2%耐力に満たない引張荷重では
アルミニウム材料試験片を加工硬化させる作用が小さ
く、測定に必要な長さまで直線部分を長くできない。し
かし、引張強さを超える過剰な引張荷重では、試験片に
生じるくびれのため適正な測定値が得られない。引張荷
重の設定に際しては、同種材料の予備実験で求めた値を
使用でき、或いは1回目を0.25%の歪みになる程度
の引張り量で除荷し、伸びを0.1%づつ増加させて引
張荷重を繰返し加え、結果として得られた線図から適正
な範囲を選択することもできる。
In the present invention, the gradient of the lengthened linear portion, that is, the Young's modulus, is obtained by utilizing such a repeated load of the tensile load that lengthens the linear portion of the load-elongation curve. In order to lengthen the straight portion, it is necessary that the tensile load repeatedly applied to the aluminum material test piece be 0.2% proof stress or more. With a tensile load of less than 0.2% proof stress, the effect of work hardening the aluminum material test piece is small, and the linear portion cannot be lengthened to the length required for measurement. However, with an excessive tensile load exceeding the tensile strength, an appropriate measurement value cannot be obtained due to the necking generated in the test piece. In setting the tensile load, the value obtained in a preliminary experiment of the same material can be used, or the first time is performed by unloading with a tensile amount of about 0.25% strain, and the elongation is increased by 0.1%. The tensile load can be applied repeatedly to select an appropriate range from the resulting diagram.

【0008】直線部分は、伸びを増加させながら引張荷
重を2回以上繰返し負荷すると勾配測定に十分な長さに
なる。直線部分の長さは引張荷重の繰返し負荷回数が多
くなると収斂する傾向を示し、それ以上に引張荷重を繰
返し負荷しても測定精度の向上に有効な直線部分の延長
がみられない。測定しようとするアルミニウム材料試験
片の種類や材質にもよるが、引張荷重の繰返し負荷回数
を好ましくは5〜6回にするとき、勾配の測定に十分な
長さをもつ直線部分になる。引張荷重の繰返し負荷に際
し、今回の荷重負荷から次回の荷重負荷に移行する間で
アルミニウム材料試験片に加えられている荷重をゼロに
しないことが望ましい。荷重をゼロにすると、次回の荷
重負荷で測定装置の緩みやガタの影響が荷重−伸び線図
に現れ、測定結果に誤差が取り込まれ易い。これに対
し、荷重を完全に除去することなく次回の荷重負荷に移
行すると、緩みやガタの影響を受けない測定結果が得ら
れるばかりでなく、通常の試験片は勿論、箔状や線状の
アルミニウム材料についても測定が可能になる。緩みや
ガタの影響を排除するためには、引張荷重を応力が2N
/mm2 になるまで低減した状態で次回の荷重負荷に移
行することが好ましい。
[0008] If the tensile load is repeatedly applied two or more times while increasing the elongation, the straight portion becomes long enough for the slope measurement. The length of the linear portion tends to converge as the number of repeated tensile loads increases, and even if the tensile load is repeatedly applied more than that, there is no extension of the linear portion effective for improving the measurement accuracy. Although it depends on the type and material of the aluminum material test piece to be measured, when the number of repeated tensile loads is preferably 5 to 6, the straight portion has a length sufficient for measuring the gradient. When the tensile load is repeatedly applied, it is preferable that the load applied to the aluminum material test piece during the transition from the current load to the next load is not set to zero. When the load is reduced to zero, the influence of looseness or backlash of the measuring device appears on the load-elongation diagram at the next load application, and an error is likely to be included in the measurement result. On the other hand, when the load is transferred to the next load without completely removing the load, not only measurement results that are not affected by looseness or backlash can be obtained, but also normal test specimens, as well as foil or linear Measurement can be performed on aluminum materials. In order to eliminate the effects of loosening and backlash, the tensile load should be 2N
/ Mm 2 , it is preferable to shift to the next load application in a state where the load is reduced to / mm 2 .

【0009】[0009]

【実施例】アルミニウム合金A5052P−O材(0.
2%耐力90N/mm2 )からJIS G0567−1
993に規定するII−10号試験片を切り出し、350
℃に加熱保持して引張試験した。引張試験では、引張速
度1mm/分及び2mm/分で引張荷重を加えて約0.
1〜0.2%の伸びを生じさせた後、引張荷重を除去す
る操作を繰り返し、各荷重負荷回数ごとに荷重−伸び線
図を作製した。なお、今回の荷重負荷から次回の荷重負
荷に移行する過程では、試験片に加えられている荷重を
完全に除去することなく、2N/mm2 まで低下させ
た。得られた荷重−伸び線図をそれぞれ図1及び図2に
示す。図1及び図2から各荷重負荷ごとに荷重−伸び曲
線を独立させた荷重−伸び線図を作製し、研究者5名に
提示して直線部分の勾配からヤング率を算出させた。表
1の算出結果にみられるように、勾配の算出値は、初回
の荷重−伸び曲線から得られたものではバラツキが大き
く、荷重負荷回数が多くなるに従ってバラツキが減少し
た。そして、2回以上繰返して荷重を負荷した後で得ら
れた荷重−伸び曲線から得られた勾配では、算出者によ
って異なる偏差が900N/mm2 と極めて小さくなっ
た。なお、表1における従来法は、0.2%耐力の50
%以下の引張荷重を加えて除荷することを5回繰り返す
ものであり、このときの応力−歪み曲線を図3に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Aluminum alloy A5052PO material (0.
From 2% proof stress 90N / mm 2 ) to JIS G0567-1
No. II-10 test piece specified in 993 was cut out and 350
The specimen was subjected to a tensile test while being kept at a temperature of ℃. In the tensile test, a tensile load was applied at a tensile speed of 1 mm / min and 2 mm / min to about 0.
After the elongation of 1 to 0.2% was generated, the operation of removing the tensile load was repeated, and a load-elongation diagram was prepared for each load application. In the process of shifting from the current load to the next load, the load applied to the test piece was reduced to 2 N / mm 2 without completely removing it. The obtained load-elongation diagrams are shown in FIGS. 1 and 2, respectively. From FIG. 1 and FIG. 2, a load-elongation diagram in which a load-elongation curve was made independent for each load was prepared, presented to five researchers, and the Young's modulus was calculated from the gradient of the linear portion. As can be seen from the calculation results in Table 1, the calculated values of the gradient showed a large variation in the values obtained from the initial load-elongation curve, and the variation decreased as the number of times of load application increased. Then, in the gradient obtained from the load-elongation curve obtained after the load was repeatedly applied two or more times, the deviation different depending on the calculator was as extremely small as 900 N / mm 2 . Note that the conventional method in Table 1 has a 50% strength of 0.2%.
% Is repeated five times by applying a tensile load of not more than 5%, and a stress-strain curve at this time is shown in FIG.

【0010】 [0010]

【0011】以上の説明では、マニュアルでヤング率を
求めたが、得られた荷重−伸び曲線をコンピュータ処理
してヤング率を算出するとき、測定者によるバラツキを
一層少なくできる。コンピュータ処理では、次の手順に
従ってヤング率が算出される。先ず、引張試験機から出
力される負荷荷重及び伸びのデジタル信号と試験片の断
面積,標点間距離のデータをパソコンに取り込み、荷重
と伸びから応力−歪み線図を作成する(ステップ1)。
次いで、データを任意の歪み単位で分け、応力と歪みの
平均を求める(ステップ2)。平均化した応力−歪み線
図に基づき、始めの点から3点以上の値を使用して式
(1)で直線回帰し、式(2)で相関係数Rmax を求
め、相関係数Rmax が最大となる範囲、すなわち直線が
最も当てはまる範囲を求める(ステップ3)。そして、
相関係数Rmax が最大になる範囲を平均前のデータに当
てはめ、式(1)で直線回帰し、直線の傾きを式(3)
で求めてヤング率とする(ステップ4)。このときのフ
ローを図4に示す。回帰式 Y=AX+B ・・・・・・・・・・・・・・・・・・・(1) Y:応力 X:歪み相関係数 回帰式の回帰係数 このようにして、一つの試験片に対し複数回繰り返して
得られた各試験データについてヤング率を算出し、最大
値及び最小値を除いて平均ヤング率を求めた。得られた
結果を表2に示す。また、本発明に従った測定結果を、
従来法、すなわち0.2%耐力値以下の引張荷重を5回
繰り返し加えた各10本の試験片から求められた測定結
果と比較して表3に示す。これらの結果から、本発明に
よるとき、バラツキが少なく、信頼性の高い高温下での
ヤング率が測定できることが判る。
In the above description, the Young's modulus was calculated manually. However, when the obtained load-elongation curve is processed by a computer to calculate the Young's modulus, the variation by the measurer can be further reduced. In the computer processing, the Young's modulus is calculated according to the following procedure. First, digital signals of the load and elongation output from the tensile tester, the data of the cross-sectional area of the test piece, and the data of the distance between gauge points are taken into a personal computer, and a stress-strain diagram is created from the load and elongation (step 1). .
Next, the data is divided into arbitrary strain units, and the average of stress and strain is obtained (step 2). Based on the averaged stress-strain diagram, linear regression is performed using equation (1) using values of three or more points from the initial point, and a correlation coefficient R max is calculated using equation (2). A range where max is the maximum, that is, a range where the straight line best fits is determined (step 3). And
The range in which the correlation coefficient R max is maximum is applied to the data before averaging, and linear regression is performed using equation (1).
(Step 4). FIG. 4 shows the flow at this time. Regression equation Y = AX + B (1) Y: stress X: strain correlation coefficient Regression coefficient of regression equation In this way, the Young's modulus was calculated for each test data obtained by repeating a plurality of times for one test piece, and the average Young's modulus was obtained excluding the maximum value and the minimum value. Table 2 shows the obtained results. Further, the measurement results according to the present invention,
Table 3 shows a comparison with the conventional method, that is, a measurement result obtained from each of ten test pieces to which a tensile load of 0.2% proof stress or less was repeatedly applied five times. From these results, it can be seen that according to the present invention, the Young's modulus under high temperature can be measured with little variation and high reliability.

【0012】 [0012]

【0013】 [0013]

【0014】[0014]

【発明の効果】以上に説明したように、本発明において
は、引張荷重を繰返し加えることによりアルミニウム材
料試験片を加工硬化させ、荷重−伸び線図上で荷重−伸
び曲線が立ち上がる箇所の直線部分を長くした後、その
直線部分の勾配を求めている。このように長くした直線
部分から勾配が求められるため、従来では終点の取り方
に起因して異なっていた算出値のバラツキが解消され、
高温下でのヤング率が高い信頼度で得られる。
As described above, in the present invention, a tensile test load is repeatedly applied to work-harden an aluminum material test piece, and a straight line portion where a load-elongation curve rises on a load-elongation diagram is obtained. , The gradient of the straight line portion is determined. Since the gradient is determined from the linear portion that has been lengthened in this manner, the variation in the calculated value that has conventionally been different due to the method of determining the end point is eliminated,
Young's modulus at high temperature can be obtained with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 350℃に加熱したアルミニウム合金A50
52P−Oの試験片に引張速度1mm/分で引張荷重を
繰返し加えたときに得られた荷重−伸び曲線を示すグラ
FIG. 1 Aluminum alloy A50 heated to 350 ° C.
Graph showing a load-elongation curve obtained when a tensile load was repeatedly applied to a 52PO specimen at a tensile speed of 1 mm / min.

【図2】 350℃に加熱したアルミニウム合金A50
52P−Oの試験片に引張速度2mm/分で引張荷重を
繰返し加えたときに得られた荷重−伸び曲線を示すグラ
FIG. 2 Aluminum alloy A50 heated to 350 ° C.
A graph showing a load-elongation curve obtained when a tensile load is repeatedly applied to a test piece of 52PO at a tensile speed of 2 mm / min.

【図3】 従来法によるヤング率の測定を説明するため
のグラフ
FIG. 3 is a graph for explaining measurement of Young's modulus by a conventional method.

【図4】 本発明に従ってコンピュータ処理でヤング率
を求めるときのフロー図
FIG. 4 is a flowchart for calculating a Young's modulus by computer processing according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度域150〜350℃にある温度に加
熱されているアルミニウム材料試験片に0.2%耐力以
上で引張強さ以下の応力を生じさせる引張荷重を設定
し、伸びを0.1〜0.2%づつ順次増加させながら引
張荷重を繰返し加え、荷重−伸び線図上で荷重−伸び曲
線が立ち上がる箇所の直線部分を長くし、長くなった直
線部分の勾配を測定することを特徴とするアルミニウム
材料の高温下におけるヤング率測定方法。
1. An aluminum material test piece heated to a temperature in a temperature range of 150 to 350 ° C. is set to a tensile load that generates a stress of not less than 0.2% proof stress and not more than tensile strength. Applying a tensile load repeatedly while sequentially increasing by 1 to 0.2%, lengthening the linear portion where the load-elongation curve rises on the load-elongation diagram, and measuring the slope of the elongated linear portion. Characteristic method for measuring Young's modulus of aluminum material under high temperature.
【請求項2】 引張荷重を繰返し加える各工程の間で、
アルミニウム材料試験片に加えられている荷重を完全に
除去することなく次回の引張荷重負荷に移行する請求項
1記載のアルミニウム材料の高温下におけるヤング率測
定方法。
2. Between each step of repeatedly applying a tensile load,
2. The method for measuring the Young's modulus of an aluminum material at a high temperature according to claim 1, wherein a transition is made to the next tensile load without completely removing the load applied to the aluminum material test piece.
JP11004017A 1999-01-11 1999-01-11 Measuring method for young's modulus at high temperature of aluminum material Pending JP2000206019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004017A JP2000206019A (en) 1999-01-11 1999-01-11 Measuring method for young's modulus at high temperature of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004017A JP2000206019A (en) 1999-01-11 1999-01-11 Measuring method for young's modulus at high temperature of aluminum material

Publications (1)

Publication Number Publication Date
JP2000206019A true JP2000206019A (en) 2000-07-28

Family

ID=11573216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004017A Pending JP2000206019A (en) 1999-01-11 1999-01-11 Measuring method for young's modulus at high temperature of aluminum material

Country Status (1)

Country Link
JP (1) JP2000206019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175538A (en) * 2011-01-27 2011-09-07 浙江华电器材检测研究所 Method for testing high-temperature load-bearing capacity of transmission line aluminum and aluminum alloy electric apparatus
CN104330300A (en) * 2014-11-24 2015-02-04 重庆大学 Method for indirectly measuring thermal-damage coupling strength of ultrahigh-temperature ceramic material
CN114112722A (en) * 2021-10-29 2022-03-01 上海汇众萨克斯减振器有限公司 Regression equation-based method for evaluating maximum yield stress of metal rod during bending

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175538A (en) * 2011-01-27 2011-09-07 浙江华电器材检测研究所 Method for testing high-temperature load-bearing capacity of transmission line aluminum and aluminum alloy electric apparatus
CN104330300A (en) * 2014-11-24 2015-02-04 重庆大学 Method for indirectly measuring thermal-damage coupling strength of ultrahigh-temperature ceramic material
CN104330300B (en) * 2014-11-24 2016-08-17 重庆大学 Superhigh temperature ceramic material heat-damage stiffness of coupling indirect measurement method
CN114112722A (en) * 2021-10-29 2022-03-01 上海汇众萨克斯减振器有限公司 Regression equation-based method for evaluating maximum yield stress of metal rod during bending
CN114112722B (en) * 2021-10-29 2024-01-02 上海汇众萨克斯减振器有限公司 Regression equation-based maximum yield stress evaluation method for metal rod bending

Similar Documents

Publication Publication Date Title
US7360442B2 (en) Method for measuring and calculating tensile elongation of ductile metals
WO2016045024A1 (en) Method for measuring and determining fracture toughness of structural material in high-temperature environment
Hwangbo et al. Fatigue life and plastic deformation behavior of electrodeposited copper thin films
CN112577653B (en) Method for measuring high-strength bolt fastening axial force of bridge
CN112903394A (en) Method and device for measuring fracture toughness of coating
JP2000206019A (en) Measuring method for young's modulus at high temperature of aluminum material
CN108548720B (en) Method for obtaining ductile material J resistance curve by I-type crack elastoplasticity theoretical formula
Zhang et al. Analysis of the effects of compressive stresses on fatigue crack propagation rate
US4404682A (en) Method for foreseeing residual life of structural member making use of X-ray
JP2596083B2 (en) Elasto-plastic fracture toughness test method
Mowbray Use of a compact-type strip specimen for fatigue crack growth rate testing in the high-rate regime
JP7156336B2 (en) FATIGUE REMAINING LIFE DETERMINATION DEVICE AND FATIGUE REMAINING LIFE DETERMINATION METHOD
Breslauer et al. Determination of the energy dissipated during peel testing
JP7375605B2 (en) Fatigue strength evaluation method for composite materials
Roebuck et al. Data acquisition and analysis of tensile properties for metal matrix composites
Mokhtarishirazabad et al. Some observations on failure of austenitic stainless steel: Effects of in-and out of plane constraint
CN114062167B (en) Method for accurately controlling constant strain rate of normal-temperature sample of universal testing machine in stretching process
JPH063238A (en) Method for calculating tensile elastic modules in extensiometer
Panwitt et al. Automated crack length measurement for mixed mode fatigue cracks using digital image correlation
JP3714180B2 (en) Fatigue crack growth rate evaluation method for steel
Tuǧcu Tensile instability in a round bar including the effect of material strain-rate sensitivity
JP5226592B2 (en) Limit load prediction method for resin molded parts with stress concentration
JP2005221389A (en) Automatic measuring method of yield strength of metal material
Hance Influence of discontinuous yielding on normal anisotropy (R-value) measurements
RU2207537C2 (en) Method for determining the tensile strength of metals